Jakarta HiveMind Project
Documentation

1. HiveMind Project
1.1. Reference

1.1.1. HiveMind Services

In HiveMind, a service is simply an object that implements a particular interface, the service
interface. You supply the service interface (packaged as part of a module). You supply the
core implementation of the interface (in the same module, or in a different module). At
runtime, HiveMind putsit all together.

HiveMind uses four service models. primitive, singleton, threaded and pooled. In the
primitive and singleton models, each service will ultimately be just a single object instance.
In the threaded and pooled models, there may be many instances simultaneously, one for
each thread.

Unlike EJBs, there's no concept of location transparency: services are always local to the
same JVM. Unlike XML-based web services, there's no concept of language transparency:
services are aways expressed in terms of Java interfaces. Unlike IMX or Jini, there's no
concept of hot-loading of of services. HiveMind is kept delibrately simple, yet still very
powerful, so that your code is kept ssimple.

1.1.1.1. Defining Services

A service definition begins with a Java interface, the service interface. Any interface will do,
HiveMind doesn't care, and there's no base HiveMind interface.

A module descriptor may include <service-point> elements to define services. A module may
contain any number of services.

Each <service-point> establishes an id for the service and defines the interface for the
service. An exampleis provided later in this document.

HiveMind is responsible for supplying the service implementation as needed; in most cases,

Page 1

Jakarta HiveMind Project Documentation

the service implementation is an additional Java class which implements the service
interface. HiveMind will instantiate the class and configure it as needed. The exact timing is
determined from the service's service model:

e primitive: the serviceis constructed on first reference

« singleton : the serviceis not constructed until a method of the service interfaceis
invoked

« threaded : invoking a service method constructs and binds an instance of the service to
the current thread

« pooled : aswith threaded, but service implementations are stored in a pool when
unbound from athread for future use in other threads.

Additional service models can be defined via the hivemind.ServiceModels configuration
point.

HiveMind uses a system of proxies for most of the service models (all except the primitive
service model, which primarily exists to bootstrap the core HiveMind services used by other
services). Proxies are objects that implement the service interface and take care of details
such as constructing the actual implementation of a service on the fly. These lifecycle issues
are kept hidden from your code behind the proxies.

A service definition may include service contributions, or may leave that for another module.

Ultimately, a service will consist of a core implementation (a Java object that implements the
service interface) and, optionally, any number of interceptors. Interceptors sit between the
core implementation and the client, and add functionality to the core implementation such as
logging, security, transaction demarkation or performance monitoring. Interceptors are yet
more objects that implement the service interface.

Instantiating the core service implementation, configuring it, and wrapping it with any
interceptors is referred to as constructing the service. Typically, a service proxy will be
created first. The first time that a service method is invoked on the proxy, the service
implementation is instantiated and configured, and any interceptors for the service are
created.

1.1.1.2. Extending Services

Any module may contribute to any service extension point. An <implementation> element
contains these contributions. Contributions take three forms:

« Service constructors:
» <create-instance> to instantiate an instance of a Java class as the implementation
» <invoke-factory> to have another service create the implementation

» <interceptor>to add additional logic to a core implementation

Page 2

Jakarta HiveMind Project Documentation

Service Constructors

A service constructor is used to instantiate a Java class as the core implementation instance
for the service.

There are two forms of service constructors: instance creators and implementation factories.

An instance creator is represented by a <create-instance> element. It includes a class
attribute, the Java class to instantiate.

An implementation factory is represented by a <invoke-factory> element. It includes a
service-id attribute, the id of a service implementation factory service (which implements the
ServicelmplementationFactory interface). The most common example is the
hivemind.BuilderFactory service.

I mplementation Factories
An implementation factory is used to create a core implementation for a service at runtime.

Often, the factory will need some additional configuration information. For example, the
hivemind.lib.EJBProxyFactory service uses its parameters to identify the INDI name of the
EJB's home interface, as well as the home interface class itself.

Parameters to factory services are the XML elements enclosed by the <invoke-factory>
element. Much like a configuration contribution, these parameters are converted from XML
into Java objects before being provided to the factory.

The most common service factory is hivemind.BuilderFactory. It is used to construct a
service and then set properties of the service implementation object.

I nter ceptor Contributions

An interceptor contribution is represented by an <interceptor> element. The service-id
attribute identifies a service interceptor factory service: a service that implements the
ServicelnterceptorFactory interface.

An interceptor factory knows how to create an object that implements an arbitrary interface
(the interface being defined by the service extension point), adding new functionality. For
example, the hivemind.L ogginglnterceptor factory creates an instance that logs entry and exit
to each method.

The factory shouldn't care what the service interface itself is ... it should adapt to whatever
interface is defined by the service extension point it will create an instance for.

Page 3

Jakarta HiveMind Project Documentation

A service extension point may have any number of interceptor contributions. If the order in
which interceptors are applied is important, then the optional bef or e and af t er attributes
can be specified.

A Stack of Interceptors

In this example, is was desired that any method logging occur first, before the other
interceptors. This ensures that the time taken to log method entry and exit is not included in
the performance statistics (gathered by the performance interceptor). To ensure that the
logging interceptor isthefirst, or earliest, interceptor, the special value * (rather than alist of
interceptor service ids) is given for its bef or e attribute (within the <interceptor> element).
This forces the logging interceptor to the front of the list (however, only a single interceptor
may be so designated).

Likewise, the security checks should occur last, after logging and after performance; thisis
accomplished by setting the af t er attribute to *. The performance interceptor naturally
falls between the two.

This is about as complex as an interceptor stack is likely to grow. However, through the use
of explicit dependencies, almost any arraingment of interceptors is possible ... even when
different modules contribute the interceptors.

Interceptors implement the t oSt ri ng() method to provide a useful identification for the
interceptor, for example:

<Iterceptor: hi vem nd. Loggi ngl nt er cept or for
com nyco. MyServi ce(com nyco. MyServi cel nterface) >

This string identifies the interceptor service factory (hivemind.Logginglnterceptor), the
service extension point (com.myco.MyService) and the service interface
(com.myco.MyServicel nterface).

If toString() ispart of the service interface (really, a very rare case), then the interceptor does not override the service
implementation's method. However, thisis not arecommended practice.

1.1.1.3. A short example

As an example, let's create an interface with a single method, used to add together two
numbers.
package com nyco. nypackage;

public interface Adder

{

Page 4

Jakarta HiveMind Project Documentation

public int add(int argl, int arg2);

We could define many methods, and the methods could throw exceptions. Once more,
HiveMind doesn't care.

We need to create a module to contain this service. Well create a smple HiveMind
deployment descriptor. Thisisan XML file, named hivemodule.xml, that must be included in
the modules META-INF directory.

<?xm version="1.0"7?>
<nmodul e i d="com myco. mypackage" version="1.0.0">
<servi ce-poi nt id="Adder" interface="com nyco. nypackage. Adder"/ >
</ modul e>
The complete id for this service is com nmyco. nypackage. Adder , formed from the
module id and the service id. Commonly, the service id will exactly match the complete

name of the service interface, but thisis not required.

Normally, the <service-point> would contain a <create-instance> or <invoke-factory>
element, used to create the core implementation. For this example, welll create a second
module that provides the implementation. First we'll define the implementation class.

package com nyco. nypackage. i npl ;

i mport com myco. mypackage. Adder

public class Adderlnpl inplenents Adder
?ublic int add(int argl, int arg2?)

return argl + argz;

}
}

That's what we meant by a POJO. Well create a second module to provide this
implementation.

<?xm version="1.0"?>
<nodul e i d="com myco. mypackage.inmpl" version="1.0.0">
<i npl ement ati on service-id="com myco. mypackage. Adder " >
<creat e-i nstance cl ass="com nyco. nypackage. i npl . Adder | npl "/ >
</i npl enent ati on>
</ modul e>

The runtime code to access the service is very streamlined:

Regi stry registry = . . .
Adder service = (Adder) registry.getService("com nyco. nypackage. Adder", Adder. cl ass);
int sum = service.add(4, 7);

Page 5

Jakarta HiveMind Project Documentation

Another module may provide an interceptor:

<?xm version="1.0"7?>
<nmodul e i d="com myco. anot her package versi on="1.0.0">

<i npl ement ati on service-id="com myco. mypackage. Adder " >

<interceptor service-id="hivemn nd.Loggi ngl nterceptor">

</i npl enent at i on>
</ nodul e>
Here the Logging interceptor is applied to the service extension point. The interceptor will be
inserted between the client code and the core implementation. The client in the code example
won't get an instance of the Adderlmpl class, it will get an instance of the interceptor, which
internally invokes methods on the Adderlmpl instance. Because we code against interfaces

instead of implementations, the client code neither knows nor cares about this.

1.1.1.4. Primitive Service Model

The simplest service model is the primitive service model; in this model the service is
constructed on first reference. This is appropriate for services such as service factories and
interceptor factories, and for several of the basic services provided in the hivemind module.

1.1.1.5. Singleton Service M odel

Constructing a service can be somewhat expensive; it involves instantiating a core service
implementation, configuring its properties (some of which may also be services), and
building the stack of interceptors for the service. Although HiveMind encourages you to
define your application in terms of a large number of small, simple, testable services, it is
also desirable to avoid a cascade of unneccesary object creation due to the dependencies
between services.

To resolve this, HiveMind defers the actual creation of services by default. Thisis controled
by the nodel attribute of the <service-point> element; the default model is singleton.

When a service is first requested a proxy for the service is created. This proxy implements
the same service interface as the actual service and, the first time a method of the service
interface is invoked, will force the construction of the actual service (with the core service
implementation, interceptors, references to other services, and so forth).

In certain cases (including many of the fundamental services provided by HiveMind) this
behavior is not desired; in those cases, the primitive service model is specified. In addition,
thereisrarely a need to defer service implementation or service interceptor factory services.

1.1.1.6. Threaded Service Moded

Page 6

Jakarta HiveMind Project Documentation

In general, singleton services (using the singleton or primitive service models) should be
sufficient. In some cases, the service may need to keep some specific state. State and
multithreading don't mix, so the threaded service model constructs, as needed, a service
instance for the current thread. Once constructed, the service instance stays bound to the
thread until it is discarded. The particular service implementation is exclusive to the thread
and isonly accessible from that thread.

The threaded service model uses a specia proxy class (fabricated at runtime) to support this
behavior; the proxy may be shared between threads but methods invoked on the proxy are
redirected to the private service implementation bound to the thread. Binding of a service
implementation to athread occurs automatically, the first time a service method isinvoked.

The service instance is discarded when notified to cleanup; this is controlled by the
hivemind.ThreadEventNotifier service. If your application has any threaded services, you are
responsible for invoking thef i r eThr eadCl eanup() method of the service.

A core implementation may implement the Discardable interface. If so, it will receive a
notification as the service instance is discarded.

HiveMind includes a servlet filter to take care creating the Registry and managing the
ThreadEventNotifier service.

1.1.1.7. Pooled Service M odel

The pooled service model is very similar to the threaded model, in that a service
implementation will be exclusively bound to a particular thread (until the thread is cleaned
up). Unlike the threaded model, the service is not discarded; instead it is stored into a pool
for later reuse with the same or a different thread.

As with the threaded model, all of this binding and unbinding is hidden behind a dynamically
fabricated proxy class.

Core service implementations may implement the RegistryShutdownListener interface to
receive a callback for final cleanups (as with the singleton and deferred service models).

In addition, a service may implement the PoolManageable interface to receive callbacks
specific to the pooled service. The service is notified when it is activated (bound to a thread)
and deactivated (unbound from the thread and returned to the pool).

1.1.1.8. Service Lifecycle

As discussed, the service model determines when a service isinstantiated. In many cases, the
service needs to know when it has been created (to perform any final initializations) or when

Page 7

Jakarta HiveMind Project Documentation

the Registry has been shut down.

A core service implementation may also implement the RegistryShutdownL istener interface.
When a Registry is shutdown, the r egi st r yDi dShut down() method is invoked on all
services (and many other objects, such as proxies). The order in which these notifications
occur is not defined. A service may release any resources it may hold at this time. It should
not invoke methods on other service interfaces.

The threaded service model does not register services for Registry shutdown notification;
regardless of whether the core service implementation implements the
RegistryShutdownL.istener interface or not. Instead, the core service implementation should
implement the Discardable interface, to be informed when a service bound to a thread is
discarded.

It is preferred that, whenever possible, services use the singleton service model (the default)
and not the primitive model. All the service models (except for the primitive service model)
expose a proxy object (implementing the service interface) to client code (included other
services). These proxies are aware of when the Registry is shutdown and will throw an
exception when a service method is invoked on them.

1.1.1.9. Services and Events

It is fairly common that some services will produce events and other services will consume
events. The use of the hivemind.BuilderFactory to construct a service simplifies this, using
the < event-1|istener> element. The BuilderFactory can register a core service
implementation (not the service itself!) as a listener of events produced by some other
service.

The producing service must include a matched pair of listener registration methods, i.e., both
addFoolLi st ener () and renoveFooLi st ener. Note that only the implementation
class must implement the listener interface; the service interface does not have to extend the
listener interface. The core service implementation is registered directly with the producer
service, bypassing any interceptors or proxies.

1.1.1.10. Frequently Asked Questions
« Whydol passtheinterface classto getService()?

Thisisto add an additional level of error checking and reporting. HiveMind knows, from
the module descriptors, the interface provided by the service extension point, but it can't
tell if you know that. By passing in the interface you'll cast the returned service to,
HiveMind can verify that you won't get a ClassCastException. Instead, it throws an
exception with more details (the service extension point id, the actual interface provided,

Page 8

Jakarta HiveMind Project Documentation

and the interface you passed it).
« What if no module provides a coreimplementation of the service?

HiveMind checks for a service constructor when the registry itself is assembled. If a
service extension point has no service constructor, an error islogged (identifying the
extension point id). In addition, get Ser vi ce() will throw an
ApplicationRuntimeException.

« What if | need to do someinitializationsin my service?

If you have additional initializations that can't occur inside your core service
implementations constructor (for instance, if the initializations are based on properties set
after the service implementation object isinstantiated), then your class should use the
hivemind.BuilderFactory to invoke an initializer method.

« What if | don't invoke Registry.cleanupThread()?

Then service implementations bound to the current thread stay bound. When the thread is
next used to process arequest, the same services, in whatever state they were left in, will
be used. This may not be desirable in a servlet or Tapestry application, as some state from
aclient may be left inside the services, and a different client may be associated with the
thread in later executions.

« What if | want my serviceto becreated early, not just when needed?

Contribute your service into the hivemind.Eagerl oad configuration; thiswill force
HiveMind to instantiate the service on startup. Thisis often used when developing an
application, so that configuration errors are caught early; it may also be useful when a
service should be instantiated to listen for events from some other service.

1.1.2. Configuration Points

A central concept in HiveMind is configuration extension points. Once you have a set of
services, its natural to want to configure those services. In HiveMind, a configuration point
contains an unordered list of elements. Each element is contributed by a module ... any
module may make contributions to any configuration point.

Thereis no explicit connection between a service and a configuration point, though it is often
the case that a service and a configuration point will be similarily named (or even identically
named; services and configuration points are in seperate namespaces). Any relationship
between a service and an configuration point is explicit only in code ... the service may be
configured with the elements of a configuration point and operate on those elements in some

way.

1.1.2.1. Defining a Configuration Point

Page 9

Jakarta HiveMind Project Documentation

A module may include <configuration-point> elements to define new configuration points. A
configuration point may specify the expected, or alowed, number of contributions:

Zero or one
Zero or more (the default)
At least one
Exactly one

At runtime, the number of actual contributions is checked against the constraint and an error
isreported if the number doesn't match.

Defining the Contribution Format

A significant portion of an configuration point is the <schema> element ... this is used to
define the format of contributions that may be made inside <contribution> elements.
Contributions take the form of XML elements and attributes, the <schema> element
identifies which elements and which attributes and provides rules that transform the
contributions into Java objects.

This is very important: what gets fed into an configuration point (in the form of contributed
<contribution>s) is XML. What comes out on the other side is a list of configured Java
objects. Without these XML transformation rules, it would be necessary to write Java code to
walk the tree of XML elements and attributes to create the Java objects; instead this is done
inside the module deployment descriptor, by specifying a <schema> for the configuration
point, and providing rules for processing each contributed element.

If a contribution from an <contribution> is invalid, then a runtime error is logged and the
contribution is ignored. The runtime error will identify the exact location (the file, line
number and column number) of the contribution so you can go fix it.

The <schema> element contains <element> elements to describe the XML elements that may
be contributed. <element>s contain <attribute>s to define the attributes allowed for those
elements. <element>s also contain <rules> used to convert the contributed XML into Java
objects.

Here's an example from the HiveMind test suite. The Dat umobject has two properties. key
and value.

<confi guration-point id="Sinple">
<schema>
<el ement nane="dat uni >
<attribute name="key" required="true"/>
<attriute nane="val ue" required="true"/>

<conversi on cl ass="hiveni nd.test.config.inpl.Datuni/>

Page 10

Jakarta HiveMind Project Documentation

</ el ement >
</ schema>
</ confi guration-poi nt >

<contribution configuration-id="Sinple">
<dat um key="key1l" val ue="val uel"/>
<dat um key="key2" val ue="val ue2"/>
</contri bution>
The <conversion> element creates an instance of the class, and initializes its properties from
the attributes of the contributed element (the dat umand itskey and val ue attributes). For

more complex data, the <map> and <rules> elements add power (and complexity).

This extrawork in the module descriptor eliminates a large amount of custom Java code that
would otherwise be necessary to walk the XML contributions tree and convert elements and
attributes into objects and properties. Yes, you could do thisin your own code ... but would
you really include all the error checking that HiveMind does? Or the line-precise error
reporting? Would you bother to create unit tests for all the failure conditions?

Using HiveMind alows you to write the schema and rules and know that the conversion
from XML to Java objects is done uniformly, efficiently and robustly.

The end result of this mechanism is very concise, readable contributions (as shown in the
<contribution> in the example).

In addition, it is common for multiple configuration points to share the exact same schema.
By assigning an id attribute to a <schema> element, you may reference the same schema for
multiple configuration points. For example, the hivemind.FactoryDefaults and
hivemind.ApplicationDefaults configuration points use the same schema. The hivemind
module deployment descriptor accomplishes this by defining a schema for one configuration
point, then referencing it from another:

<schema i d="Defaul ts">
<el enent name="defaul t">

</ el enent >
</ schema>

<confi guration-point id="FactoryDefaults" schena-id="Defaults"/>

Like service points and configuration points, schemas may be referenced within a single
module using an unqualified id, or referenced between modules using a fully qualified id
(that is, prefixed with the modul€e's id).

1.1.2.2. Accessing Configuration Points

Page 11

Jakarta HiveMind Project Documentation

Like services, configuration points are meant to be easy to access (the only trick is getting a
reference to the registry to start from).

Regi stry reglstry = .
Li st elements = regi stry getConflguratlon(com nyco. MyConfi g");

int count = el enents. size();
for (int i =0; i < count; i++)

M/El ement el ement = (MyEl enent) el enents.get(i);

Although it is possible to access configurations via the Registry, it is often not a good idea It is unlikely that you want the
information contained in a configuration as an unordered list. A best practice is to aways access the configuration through a
service, which can organize and validate the data in the configuration.

The list of elements is aways returned as an unmodifiable list. An empty list may be
returned.

The order of the elements in the list is not defined. If order is important, you should create a
new (modifiable) list from the returned list and sort it.

Note that the elements in the list are no longer the XML elements and attributes that were
contributed, the rules provided in the configuration point's <schema> are used to convert the
contributed XML into Java objects.

1.1.2.3. Lazy Loading

At application startup, all the module deployment descriptors are located and parsed and
in-memory objects created. Validations (such as having the correct number of contributions)
occur at this stage.

The list of elements for an configuration point is not created until the first call to
Regi stry. get Confi guration() forthat configuration point.

In fact, it is not created even then. When the element list for an configuration point is first
accessed, what's returned is not really the list of elements; it's a proxy, a stand-in for the real
data. The actual elements are not converted until they are actually needed, in much the same
way that the creation of servicesis deferred.

In general, you will never know (or need to know) this; when you accessthe si ze() of the
list or get () any of its elements, the conversion of contributions into Java objects will be

Page 12

Jakarta HiveMind Project Documentation

triggered, and those Java objects will be returned in the list.

If there are minor errors in the contribution, then you may see errors logged; if the
<contribution> contributions are singificantly malformed, HiveMind may be unable to
recover and will throw a runtime exception.

1.1.2.4. Substitution Symbols

The information provided by HiveMind module descriptors is entirely static, but in some
cases, some aspects of the configuration should be dynamic. For example, a database URL or
an e-mail address may not be known until runtime (a sophisticated application may have an
installer which collects this information).

HiveMind supports this notion through substitution symbols. These are references to values
that are supplied at runtime. Substitution symbols can appear inside literal values ... both as
XML attributes, and as character datainside XML elements.

Example:

<contri bution configuration-id="com myco. MyConfig">

<val ue> dir/foo.txt </value>

<val ue> ${config.dir}/${config.file} </value>
</contri bution>
This example contributes two elements to the com nyco. MyConf i g configuration point.
The first contribution is simply the text di r/f 0o. t xt. In the second contribution, the
content contains substitution symbols (which use a syntax derived from the Ant build tool).
Symbol substitution occurs before <schema> rules are executed, so the confi g. di r and
config. fil e symbolswill be converted to strings first, then whatever rules are in place to
convert theval ue element into a Java object will be executed.

If you contribute text that includes symbols that you do not want to be expanded then you must add an extra dollar sign to the
false symbol. This is to support legacy data that was aready using the HiveMind symbol notation for its own, internal
purposes. For example, f oo $${ bar} baz will be expanded into thetextf oo ${ bar} baz.

Symbol Sour ces

This begs the question: where do symbol values come from? The answser is application
dependent. HiveMind itself defines a configuration configuration point for this purpose:
hivemind.Symbol Sources. Contributions to this configuration point define new objects that
can provide values for symbols, and identify the order in which these objects should be
consulted.

Page 13

http://ant.apache.org/

Jakarta HiveMind Project Documentation

If at runtime none of the configured Symbol Sources provides avalue for a given symbol then
HiveMind will leave the reference to that symbol as is, including the surrounding ${ and } .
Additionally an error will be logged.

1.1.2.5. Frequently Asked Questions
« Aretheany default implementations of Symbol Sour ce?

Thereis now an configuration point for setting factory defaults:
hivemind.FactoryDefaults . A second configuration point, for application defaults,
overrides the factory defaults: hivemind.ApplicationDefaults.

SystemPropertiesSymbol Source is a one-line implementation that allows access to
system properties as substitution symbols. Note that this configuration is not loaded by
default.

Additional implementations may follow in the future.
« What'sall thisabout schemas and rules?

A central goal of HiveMind isto reduce code clutter. If configuration point contributions
arejust strings (in a.propertiesfile) or just XML, that puts alot of burden on the
developer whose code reads the configuration to then massage it into useful objects. That
kind of ad-hoc code is notoriously buggy; in HiveMind it is aimost entirely absent.
Instead, all the XML parsing occurs inside HiveMind, which uses the schema and rules to
validate and convert the XML contributions into Java objects.

Y ou can omit the schema, in which case the elements are left as XML (instances of
Element) and your code is responsible for walking the elements and attributes ... but why
bother? Far easier to let HiveMind do the conversions and validations.

e Howdol know if the element list isa proxy or not?

Basically, you can't, short of performing ani nst anceof check. Thereisn't any need to
tell the difference between the deferred proxy to the element list and the actual element
list; they are both immutable and both behave identically.

1.1.3. HiveDoc

HiveMind includes tools for documentating a HiveMind registry ... the combined information
from all modules that are deployed at runtime. At build time, all related HiveMind module
deployment descriptors are parsed and the results combined into a single file. The master file
(which is only used for this documentation) is then converted into a set of HTML files using
XSLT. The end result is much like JavaDoc ... it's fully hyperlinked and allows you to see all
services, configuration points, contributions and schemas clearly.

Page 14

Jakarta HiveMind Project Documentation

Incorporated into the generated documentation is user-supplied descriptions. The <attribute>,
<configuration-point>, <element>, <module>, <schema> and <service-point> elements can

enclose a description (as character data), i.e.:

<nodul e i d="nynodul e" version="1.0.0">

A modul e for ny application with my services,

</ nmodul e>

The HiveDoc for the HiveMind framework and library is available here.

} Details on building the documentation will be coming soon. ‘

1.1.4. HiveMind M odule Descriptor

The purpose of the module descriptor isto provide a runtime and compile-time description of
each HiveMind module in terms of service and configuration extension points and

contributions to those extension points.

The descriptor is named hi venodul e. xm and is stored in the META-INF directory of

the module.

The root element of the descriptor is the <module> element.

1.1.4.1. attribute

<attribute> is used to define an attribute within an <element>. Inside a <contribution>, only
known attributes are allowed in elements; unknown attributes will be logged as an error and
ignored. In addition, some attributes are required; again, errors occur if the contributed
element does not provide avalue for the attribute.

Attribute

name

required

unique

string

boolean

boolean

yes

no

no

Description

The name of the
attribute.

If true, the attribute
must be provided in
the contributed
configuration element.
The default is false.

If true, the attribute
must contain a unique
value with respect to

Page 15

Jakarta HiveMind Project Documentation

all other contributions
to the same
configuration point.
The default is false.

translator string no The translator
configuration that is
used to convert the
attribute into a useable
type. By default, the
attribute is treated as a
single string.

1.1.4.2. configur ation-point
The <configuration-point> element defines a configuration extension point.
Attribute Type Required ? Description

id string yes The simple id of the
service extension
point. The fully
qualified id for the
extension point is
created by prefixing
with the module's id

(and a dot).
occurs unbounded | 0..1 no The number of
| 1| 1..n | none contributions allowed:

e unbounded
(default): any
number
0..1: optiona
1: required

1..n: at least one
none: none allowed

none doesn't make
sense for
occurances to a
configuration

point, but does
occasionally make

sense for
parameters to a
factory.

Page 16

Jakarta HiveMind Project Documentation

schema-id string no Used to reference a
<schema> (in the
same module, or a
different one) that
defines the format of
contributions into the
configuration point.
This may be omitted, in
which case the
extension point will
contain a list of
Element .

Contains; <schema>

<configuration-point> only defines a configuration point, it does not supply any data into that
point. The <contribution> element is used to provide such data.

1.1.4.3. contribution

The <contribution> element contributes elements to an existing configuration extension
point.

Attribute Type Required ? Description

configuration-id string yes Either the id of an
<configuration-point>
within the module, or
the fully qualified id of
an
<configuration-point>
in another module.

The content of the <contribution> consists of elements. These e ements are converted, in
accordance with the configuration point's <schema>, into Java objects.

1.1.4.4. conversion

<conversion> is an aternative to <rules> that is generaly simpler and more concise. An
<element> should contain <conversion> or <rules> but not both.

<conversion> is geared towards the typical case; a straight-forward mapping of the element
to an instance of a Java class, and a mapping of the element'’s attributes to the properties of
the Java object.

Attribute Type Required ? Description

Page 17

Jakarta HiveMind Project Documentation

class string yes The fully qualified
name of a Java class
to instantiate.

parent-method string no The name of a method
of the parent object
used to add the
created object to the
parent. The default,
addEl enent, is
appropriate for
top-level <element>s.

Contains. <map>

Each attribute will be mapped to a property. A limited amount of name mangling occurs: if
the attribute name contains dashes, they are removed, and the character following is
converted to upper case. So, an attribute named "compl ex-attribute-name" would be mapped
to a property named "complexAttributeName". Only attributes identified with a <attribute>
element will be mapped, others will be ignored.

1.1.4.5. create-instance

<create-instance> is used, within <service-point> and <implementation> to create the core
service implementation for a service by instantiating a class. This is appropriate for simple
services that require no explicit configuration.

Attribute Type Required ? Description
class class name yes Fully qualified class
name to instantiate.
model primtive | 'no The model used to
si ngl eton | construct and manage
t hreaded | pool ed the service. singleton

is the default.
Additional service models can be defined via the hivemind.ServiceModels configuration
point.
1.1.4.6. element

The <element> element is used to define an element in a the <schema>. <element> may also
be nested within another <element>, to indicate an element that may be enclosed within
another element.

Page 18

Jakarta HiveMind Project Documentation

Attribute Type Required ? Description
name string yes The name of the
element.
content-translator string no The translator

configuration that is
used to convert the
element's content into
a useable type. By
default, the content is
treated as a single
string.

Contains; <attribute>, <conversion>, <element>, <rules>

Future enhancements to the HiveMind framework will include greater sophistication in
defining configuration content.
1.1.4.7. implementation

The <implementation> element contributes a core implementation or interceptors to a service
extension point.

Attribute Type Required ? Description

service-id string yes The id of the service to
extend; this may be a
fully qualified id, or the
local id of a service
within the same
module.

Contains; <create-instance>, <interceptor>, <invoke-factory>

1.1.4.8. inter ceptor

<interceptor> contributes an interceptor factory to a service extension point. An interceptor
factory is a service which implements the Servicel nterceptorFactory interface.

When the service is constructed, each invoked interceptor factory will fabricate an
interceptor class to provide additional functionality for the service.

Attribute Type Required ? Description

service-id string yes The id of the service
that will create the
interceptor for the

Page 19

Jakarta HiveMind Project Documentation

service. This may be
the local id of a service
defined within the
same module, or a fully
qualified id.

before string no A list of interceptors
whose behavior should
come later in execution
than this interceptor.

after string no A list of interceptors
whose behavior should
come earlier in
execution than this
interceptor.

Like a service implementation factory, a service interceptor factory may need parameters. As
with <invoke-factory>, parameters to the interceptor factory are enclosed by the
<interceptor> element. The service interceptor factory will decode the parameters using the
schemaidentified by itspar anet er s- schema- i d attribute.

Interceptor ordering is based on dependencies, each interceptor can identify, by interceptor
service id, other interceptors. Interceptors in the bef or e list are deferred until after this
interceptor. Likewise, thisinterceptor is deferred until after all interceptorsintheaft er list.

The af t er dependencies will look familar to anyone who has used Ant or any version of Make. bef or e dependencies are
simply the opposite.

The value for bef ore or aft er isalist of service ids seperated by commas. Service ids
may be unqualified if they are within the same module. Alternately, the fixed value * may be
used instead of a list: this indicates that the interceptor should be ordered absolutely first or
absolutely last.

1.1.4.9. invoke-factory

The <invoke-factory> element is used to provide a service implementation for a service by
invoking another service, afactory service.

Attribute Type Required ? Description

service-id string no The id of the factory
service. This may be a
simple id for a service
within the same

Page 20

http://ant.apache.org/

Jakarta HiveMind Project Documentation

model primtive | 'no
si ngl eton |

t hreaded | pool ed

module, or a fully

qualified service id.
The default, if not
specified, is

hivemind.BuilderFactory.

The model used to
construct and manage
the service. singleton
is the default.

A service factory defines its parameters in terms of a schema. The content of the
<invoke-factory> is converted, in accordance with the factory's schema, and provided to the

factory.

Additional service models can be defined via the hivemind.ServiceM odel's configuration point.

1.1.4.10. map

The <map> element appears within <conversion> to override the default mapping from an
attribute to a property. By default, the property name is expected to match the attribute name
(with the name mangling described in the description of <conversion>); the <map> element

is used to handle exceptions to the rule.

Attribute Type
attribute string yes
property string yes

1.1.4.11. module

The <module> e ement is the root € ement.
Attribute Type

id string yes

Required ?

Required ?

Description

The name of the
attribute, which should
match a name defined
by an<attribute> (of the
enclosing <element>).

The corresponding
property (of the Java
object specified by the
enclosing
<conversion>)

Description

The id should be a

Page 21

Jakarta HiveMind Project Documentation

dotted sequence, like a
package name. In
general, the module id
should be the package
name.

version version number yes The version of the
module as a dotted
sequence of three
numbers. Example:
"1.0.0"

Contains; <contribution>, <configuration-point>, <implementation> , <service-point>,
<schema>, <sub-module>

The version is not currently used, but alater release of HiveMind will include runtime dependency checking based on version
’ number. ‘

1.1.4.12. parameters-schema

The <parameters-schema> element is identical to the <schema> element, but only appears
inside <service-point>, to define the schema for the parameters for a service implementation
factory or service interceptor factory.

1.1.4.13.rules

<rules> is a container for element and attribute parsing rules within an <element>. These
rules are responsible for converting the contributed element and its attributes into objects and
object properties. The available rules are documented separately .

1.1.4.14. schema

The <schema> element is used to describe the format of element contributions to an
<configuration-point>, or parameters provided to a service or interceptor factory.

Attribute Type Required ? Description

id string yes Assigns a local id to
the schema that may
be referenced
elsewhere.

Contains; <gelement>

Page 22

Jakarta HiveMind Project Documentation

At afuture time, the <schema> element will be extended to provide more options, to provide
more precise control over the elements that may be provided in an <contribution>. At this
time, a<schema> issimply alist of <element> elements.

When <schema> appears directly within <configuration-point>, or <parameters-schema> appears directly within
<service-point>, then thei d attribute is not allowed.

1.1.4.15. service-point

The <service-point> element defines a service extension point.

Attribute Type
id string yes
interface class name yes
parameters-schema-id | string no

parameters-occurs unbounded | 0..1 no

| 2] 21..n | none

Required ?

Description

The simple id of the
service extension
point. The fully
qualified id for the
extension point is
created by prefixing
with the module's id
(and a dot).

The fuly qualified
name of the Java
interface supplied by
this service extension
point.

Used to reference a
<schema> (in the
same module, or a
different one) that
defines parameters
used by the service.
This is used when the
service being defined
is a
ServicelmplementationFactory
or a
ServicelnterceptorFactory.

The number of

parameter element

contributions allowed:

e unbounded: any
number

Page 23

Jakarta HiveMind Project Documentation

0..1: optiona

1 (default) : required
1..n: at least one
none: none alowed

Contains; <create-instance>, <interceptor>, <invoke-factory> , <parameters-schema>

1.1.4.16. sub-module

The <sub-module> element is used to identify an additional HiveMind module deployment
descriptor. This is used when a single JAR file contains logically distinct packages, each of
which should be treated as an individual HiveMind module. This can also be useful as away
to reduce developer conflict against a single, large, central module descriptor by effectively
breaking it into smaller pieces. Sub-modules identified in this way must still have their own
unique moduleid.

Attribute Type Required ? Description
descriptor string yes Location of the module
descriptor.

The descriptor should be specified as a relative path, either the name of another module
descriptor within the same folder, or within a child folder.

1.1.5. Contribution Processing Rules

The concept of performing a rules-directed conversion of elements and attributes into Java
objects was pioneered (to my knowledge) in the Jakarta Digester framework (which started
inside Tomcat, moved to Struts, and is now available on its own).

The technique is very powerful, even in the limited subset of Digester provided by HiveMind
(over time, the number of available rules will increase).

1.1.5.1. Rules

Rules are attached to <element>s. Each rule object has two methods:. the begin() method is
invoked when the element is first encountered. The content of the element is then processed
recursively (which will involve more rules). Once that completes, the end() method is
invoked.

Note: begi n() isinvoked in the order that rules are defined within the <rules> element.
end() isinvoked ininverse order. This rarely makes any difference.

Element processing is based on an object stack. Several rules will manipulate the top object

Page 24

http://jakarta.apache.org/commons/digester/

Jakarta HiveMind Project Documentation

on the stack, setting properties based on attributes or content. The <create-object> rule will
instantiate a new object at begi n() and pop it off the stack at end() .

In several cases, rule descriptions reference the parent and child objects. The top object on
the stack is the child, the object beneath that is the parent. The <set-parent> and
<invoke-parent> rules are useful for creating hierarchies of objects.

create-obj ect

The <create-object> rule is used to create a new object, which is pushed onto the stack at
begi n() . The object is popped off the stack at end() . <create-object> is typically paired
up with <invoke-parent> to connect the new object (as a child) to a parent object.

Attribute Type Required ? Description

class string yes The complete class
name of the object to
create. The class must
be public, and have a
no-arguments public
constructor.

custom

The <custom> rule is used to provide a custom implementation of the Rul e interface. Note
that any such rules must not contain any individual state, as they will be reused, possibly by
multiple threads.

Attribute Type Required ? Description

class string yes The complete class
name of the class
implementing the Rul e
interface.

invoke-parent

The <invoke-parent> rule is used to connect the child (top object on the stack) to its parent
(the next object down). A method of the parent is invoked, passing the child as a parameter.
This invocation occurs inside the rule's begi n() method; to ensure that the child object is
fully configured before being added to the parent place this rule after all properties of the
child object have been configured.

Attribute Type Required ? Description

method string yes The name of the

Page 25

Jakarta HiveMind Project Documentation

method to invoke on
the parent object.

depth number no The depth of the
parent object within the
object stack. The top
object (the child) is at
depth 0, and default
depth of the parent is
1.

Top level elements should include an <invoke-parent> rule, and specify the method as addEl enment . This adds the created,
configured object to the list of contributed objects for the <contribution> (or for service factories, adds the object as a
parameter).

push-attribute

The <push-attribute> rule reads an attribute, converts it with a translator, and pushes the
result onto the stack. It will typically be combined with a <invoke-parent> to get the pushed
value added to the configuration point elements (or to some parent object).

Attribute Type Required ? Description
attribute string yes The name of the
attribute to read.

read-attribute

The <read-attribute> rule reads an attribute from the current element, optionally trandates it
(from a string to some other type), and then assigns the value to a property of the top object
on the object stack.

Attribute Type Required ? Description

property string yes The name of the
property of the top
object on the stack to

update.
attribute string yes The name of the
attribute to read.
skip-if-null boolean no If "true" (the default),
then an omitted
attribute will be

ignored. If "false", the

Page 26

Jakarta HiveMind Project Documentation

translator string no

r ead-content

property will be
updated regardless.

A translator that
overrides the
attribute's translator.

The <read-content> rule is similar to <read-attribute>, except it concerns the content of the

current element (the text wrapped by its start and end tags).
Attribute Type Required ?
property string yes

set-module

Description

The name of the
property of the top
object on the stack to
update.

<set-module> is used to set a property of the top object on the stack to the module which
made the contribution. This is often used when some other attribute of the contribution is the
name of a service or configuration extension point (but it is advantageous to defer access to

the service or configuration). The module can be used to resolve
configurations that are local to the contributing module.

Attribute Type Required ?

property string yes

set-par ent

The <set-parent> rule is used to set a property of the child object
allows for backwards connections from child objects to parent objects.

Attribute Type Required ?

property string yes

names of services or

Description

The name of the
property of the top
object to update with
the contributing
module.

to parent object. This

Description

The name of the
property of the child
object to set.

Page 27

Jakarta HiveMind Project Documentation

set-property
The <set-property> rule is used to set a property of the top object to a preset value.
Attribute Type Required ? Description
property string yes The name of the

property of the child
object to set.

value string yes The value to set the
proeprty to. The is
interpreted as with the
smart translator,
meaning that
conversion to normal
Java types (boolean,
int, etc.) will work as
expected.

1.1.5.2. Trandators

Commonly, it is necessary to perform some translation or transformation of string attribute
value to convert the value into some other type, such as boolean, integer or date. This can be
accomplished by specifying a translator in the <attribute> element (it also applies to element
content, with thecont ent - t r ansl at or attribute of the <element> element).

A trandator is an object implementing the Trandator interface. The t r ansl at or value
specified in a rule may be either the complete class name of a class implementing the
interface, or one of a number of builtin values.

Trandators configurations consist of a translator name, and an optional initalizer string. The
initializer string is separated from the trandator id by a comma, ex: i nt, m n=0 (where
m n=0 is the initidlizer string). Initializer strings are generadly in the format of
key=val ue[, key=val ue] * ... but each Trandator is free to interpret the initializer
string its own way.

The following sections describe the basic transators provided with the framework. You can
add additional translators by contributing to the hivemind.Translators configuration point.

bean

The bean tranglator expects its input to bean in the form servi ce-i d: | ocator. The
service-id references a service implementing BeanFactory.

Page 28

Jakarta HiveMind Project Documentation

Thistranglator is contributed by the hivemind.lib module.

boolean

The boolean trandlator converts an input string into a boolean value. "true” is trandated to
true, and "false" to false.

A default value is used when the input is blank. Normally, this default is false, but the
"default" key in theinitializer can override this(i.e., bool ean, def aul t =t r ue).
class

The class trandator converts a class name into a Class object. The value must be a fully
qualified class name. A null input value returns null.

Thistrandator is hard-coded, and does not appear in the hivemind.Trans ators configuration point.

configuration

The configuration translator converts an input value into a configuration point id, then
obtains the elements for that configuration point asa List. The id may be fully qualified, or a
local id within the contributing module.

A blank input value returns null.

double

The double translator converts the input into an double precision floating point value. It
recognizes three initializer values:

« default: the default value (normally 0) to use when the input is blank
e min: aminimum acceptible value
e max: amaximum acceptible value

enumeration

The enumeration translator converts input strings into enumerated values. Enumeration
requires an initializer string, with a specia format:
enuner ati on, cl ass- nane, i nput =fi el d-name[, i nput =fi el d- nane] *

Page 29

Jakarta HiveMind Project Documentation

That is, the initializer begins with the name of the class containing some number of public
static fields. Input values are mapped against field names. Example:
enuner ation, j ava. | ang. Bool ean, yes=TRUE, no=FALSE

If theinput is null or empty, then the trandlator returns null.
id-list
Trandates a comma-seperated list of ids into a comma-seperated list of fully qualified ids

(qualified against the contributing module). Alternately, passes the value * through as-is. I1d
lists are typically used to establish ordering of items within alist, as with <interceptor>.

instance

The object trandator converts a fully qualified class name into an object instance. The class
must implement a public no-arguments constructor.

int
The int trandlator converts the input into an integer value. It recognizes three initializer

values;

o default: the default value (normally 0) to use when the input is blank
e min: aminimum acceptible value
e max: amaximum acceptible value

Thistrandator is hard-coded, and does not appear in the hivemind.Trans ators configuration point.

long

The long trandator converts the input into an long integer (64 bit) value. It recognizes three
initializer values:

» default: the default value (normally 0) to use when the input is blank

e min: aminimum acceptible value

e max: amaximum acceptible value

obj ect

The object trandator is allows the caller to provide an object value in a multitude of ways.
The object trandator inverts the normal roles; the caller has al the power in determining how
to interpret the value, and the schema takes whatever value shows up. The object trandator is

Page 30

Jakarta HiveMind Project Documentation

driven by the hivemind.ObjectProviders configuration.

qualified-id
Trandatesanid into afully qualified id (qualified against the contributing modul€e'sid).

resource

The resource trandator is used to find a resource packaged with (or near) the module's
deployment descriptor. The input value is the relative path to afile. The translator converts
the input value to a Resource for that file.

If the file doesn't exist, then an error is logged. If a localization of the file exists, then the
Resource for that localization is returned.

service

The service tranglator is used to lookup a service in the registry. The input value is either a
local service id from the contributing module, or afully qualified serviceid.

Thistrandator is hard-coded, and does not appear in the hivemind.Trans ators configuration point.

service-point

The service trandator is used to lookup a service point (not a service) in the registry. The
input value is either a local service id from the contributing module, or a fully qualified
serviceid.

smart

The smart tranglator attempts an automatic conversion from a string value (the attribute value
or element content) to a particular type. It determines the type from the property to which the
value will be assigned. Smart translator makes use of the JavaBeans's PropertyEditor class
for the conversion, which allows easy this trandator to be used with most common primitive
types, such as int, short and boolean. See the SmartTrandator documentation for more
details.

In general, the smart tranglator is the useful for most ordinary Java type properties, unless
you want to specify range constraints.

It recognizes oneinitializer value:

Page 31

Jakarta HiveMind Project Documentation

» default: the default value to use when the input is blank

Thistrandator is hard-coded, and does not appear in the hivemind.Trans ators configuration point.

1.1.6. Library Dependencies

HiveMind has a number of dependencies on other open-source frameworks. The Ant build
files for HiveMind will automatically download dependencies from the Maven repository on
ibiblio.

File Name Notes

commons-logging-1.0.3.jar Commons-Logging

easymock-1.1.jar EasyMock testing framework Only needed by
HiveMindTestCase, which
exists as the basis for your own
tests.

jboss-j2ee-3.2.1 jar JBoss J2EE Server Used by some services of the
HiveMind library. No

dependencies on JBoss itself,
just on the javax.ejb

package.

javassist-2.6.jar Javassist bytecode library

oro-2.0.6.jar ORO Reqgular Expressions

spring-full-1.0.1.jar Spring Used by the
hivemind.lib.SpringLookupFactory
service.

Typicaly, al you need is the HiveMind libraries, Javassist, ORO and commons-logging.
Your EJB container will provide the j avax. ej b classes. Obviously, you should include
Spring if your are using Spring, and EasyMock if you are writing tests using the
H veM ndTest Case baseclass.

In most cases, HiveMind has been built against a "handy" version; in al likelyhood you can
vary the exact version of a dependency to suite your existing environment. Just remember to
write some tests!

HiveMind is explicitly designed to be used with JDK 1.3 and above. It uses no features from JDK 1.4 that aren't also available
onJDK 1.3.

Page 32

http://ant.apache.org/
http://maven.apache.org/
http://www.ibiblio.org/maven/
http://jakarta.apache.org/commons/logging/
http://www.easymock.org/
http://jboss.org/
http://www.jboss.org/products/javassist
http://jakarta.apache.org/oro/
http://www.springframework.org

Jakarta HiveMind Project Documentation

1.2. History of Changes

1.2.1. Version 1.0-rc-2 (Sep 11 2004)

Add method get Synbol Val ue() to Registrylnfrastructure and Module (HLS)

Fix class |loader issues concerning fabricated classesin different modules. (HLS) Fixes
HIVEMIND-48.

Allow symbolsto be escaped rather than expanded. (HLS) FixesHIVEMIND-47.

The previous fix was incomplete; this should close the remaining sychronization gaps.
(HL'S) Thanks to James Carman. Fixes HIVEMIND-44.

Class loading issue inside Tomcat. (HLS) Fixes HIVEMIND-49.

Tweak HiveMind to work properly in a JavaWebStart application. (HLS) Thanks to
James Carman. Fixes HIVEMIND-10.

Addcl ear Cache() methodtoPropertyUtils. (HLS)

Changethe API for Cl assFact ory totakeaCl assLoader , not aModul e. (HLS)
Handle duplicated methods in service interfaces, avoiding "attempt to redefine method"
errors. (HLS) FixesHIVEMIND-52.

1.2.2. Version 1.0-rc-1 (Aug 25 2004)

Remove support for Simple Data Language ... it'sall XML again. (HLS)

Re-work part of PipelineFactory to take advantage of object references. (HLS)

Make the service-id of <invoke-factory> optional and default to
hivemind.BuilderFactory. (HLYS)

Change the hivemind.Startup configuration to take an object reference, not aserviceid.
(HLYS)

SmartTrangator should differentiate between blank strings and null input (HLS) Thanks
to Michael Frericks. Fixes HIVEMIND-29.

Improvements to HiveBuild to properly handle changing versions or useages of artifacts.
(HLYS)

Add ability to mark attributes of an element as unigque, such that duplicate valuesin
contributions result in errors. (HLS) Thanks to Johan Lindquist. Fixes HIVEMIND-43.
Add checks to SchemaProcessorlmpl for empty stack conditions (HLS) Fixes
HIVEMIND-41.

Add parameters-occurs attribute to <service-point> element. (HLS) Fixes
HIVEMIND-33.

Specify location in all module deployment descriptor parse exceptions. (HLS) Fixes
HIVEMIND-23.

Add Quick Reference Sheet. (HLS) Thanksto Stefan Liebig. Fixes HIVEMIND-42.

Page 33

changes.rss
http://nagoya.apache.org/jira/browse/HIVEMIND-48
http://nagoya.apache.org/jira/browse/HIVEMIND-47
http://nagoya.apache.org/jira/browse/HIVEMIND-44
http://nagoya.apache.org/jira/browse/HIVEMIND-49
http://nagoya.apache.org/jira/browse/HIVEMIND-10
http://nagoya.apache.org/jira/browse/HIVEMIND-52
http://nagoya.apache.org/jira/browse/HIVEMIND-29
http://nagoya.apache.org/jira/browse/HIVEMIND-43
http://nagoya.apache.org/jira/browse/HIVEMIND-41
http://nagoya.apache.org/jira/browse/HIVEMIND-33
http://nagoya.apache.org/jira/browse/HIVEMIND-23
http://nagoya.apache.org/jira/browse/HIVEMIND-42

Jakarta HiveMind Project Documentation

Add get Cause() method to ApplicationRuntimeException (HLS) Thanksto Luke
Blanshard. FixesHIVEMIND-16.

Add polling methods to Registry. (HLS) Thanks to Naresh Sikha. Fixes HIVEMIND-37.
Add polling methods to BeanFactory. (HLS) Thanks to Naresh Sikha. Fixes
HIVEMIND-36.

Fix broken synchronization in ThreadedServiceM odel and PooledServiceModel that
could make them randomly fail when creating a service by invoking afactory. (HLS)
Thanks to James Carman. Fixes HIVEMIND-44.

Check for <sub-module> references that do not exist. (HLS) Thanks to Johan Lindquist.
FixesHIVEMIND-34.

1.2.3. Version 1.0-beta-2 (Aug 1 2004)

Removed dependency on Werkz. (KW) Fixes HIVEMIND-6.

Added link to the Jakarta mailing lists page. (HLS)

Modifed the build scripts to properly include variable info when compiling. (HLS)
Thanksto Achim Hugen. FixesHIVEMIND-21.

Moved the Ant build scripts to a new directory, hivebuild, in preparation for making
hivebuild reusable on new projects. (HLS)

Added protected method constructRegistry() to HiveMindFilter. (HLS)

Renamed existing 'object’ trandator to 'instance’, and created a new 'object’ trandlator with
great flexibility. Extend BuilderFactory to add a set-object element that leverages the
object trandator. (HLS)

Created service-property object trandator. (HLS)

Added aversion of Regi stry. get Servi ce() that omitsthe serviceid (but requires
that exactly one service point implements the service interface). (HLS) Thanksto Marcus
Brito. Fixes HIVEMIND-20.

Extended the BuilderFactory to autowire services. (HLS) FixesHIVEMIND-22.

Added a new module that contains HiveMind example code. (HLS)

Fixed some latent bugs related to submodules inside the constructRegistry task. Made
some more improvements to the hivebuild scripts. (HLS)

Updated the download location for the Forrest distribution. (HLS)

Added more examples and examples documentation. (HLS)

Added StrictErrorHandler, an implementation of ErrorHandler that always throws an
ApplicationRuntimeException. (HLS)

Moved the code for the Grabber Ant task into the tree and improve the build scripts to
dynamically compile and useit. (HLS)

Typo in jar-module.xml causes broken build if junit library ismissing (HLS) Thanksto
Johan Lindquist. FixesHIVEMIND-31.

Made a number of changes to ensure HiveMind compatibility with JDK 1.3. (HLS) Fixes
HIVEMIND-35.

Page 34

http://nagoya.apache.org/jira/browse/HIVEMIND-16
http://nagoya.apache.org/jira/browse/HIVEMIND-37
http://nagoya.apache.org/jira/browse/HIVEMIND-36
http://nagoya.apache.org/jira/browse/HIVEMIND-44
http://nagoya.apache.org/jira/browse/HIVEMIND-34
http://nagoya.apache.org/jira/browse/HIVEMIND-6
http://nagoya.apache.org/jira/browse/HIVEMIND-21
http://nagoya.apache.org/jira/browse/HIVEMIND-20
http://nagoya.apache.org/jira/browse/HIVEMIND-22
http://nagoya.apache.org/jira/browse/HIVEMIND-31
http://nagoya.apache.org/jira/browse/HIVEMIND-35

Jakarta HiveMind Project Documentation

Changed some unit tests to adapt to platform line endings. (HLS) Fixes HIVEMIND-26.
Fix the HiveDoc XSL to use XML (not SDL) output. (HLS) Thanks to Johan Lindquist.
Fixes HIVEMIND-46.

1.2.4. Version 1.0-beta-1 (Jun 26 2004)

Added changelog. (HLS)

Refactored ClassFab and related classes for easier reuse outside of HiveMind. Added a
new suite of tests related to ClassFab.(HLS)

Created two new servicesin hivemind-lib for creating default implementations of
arbitrary interfaces (DefaultlmplementationBuilder) and for using that to create
placeholder services (PlaceholderFactory).(HLYS)

Created MessageFormatter class as a wrapper around ResourceBundle and an easy way
for individual packages to gain access to runtime messages. (HLS)

Modified the read-attribute rule to allow atrandator to be specified (overriding the
trandator for the attribute).(HLS)

Addedthequal i fied-idandid-Ii st trandators.(HLS)

Added the hivemind.lib.PipelineFactory and related code, schemas, tests and
documentation. (HLS)

Enhance logging of exceptions when setting a service property to a contribution (HLS)
FixesHIVEMIND-4.

Added service hivemind.lib.BeanFactoryBuilder. (HLS)

Removed the <description> element from the modul e descriptor format; descriptions are
now provided as enclosed text for element that support descriptions. (HLS)

Changed the MethodM atcher classes to use a MethodSignature rather than a Method.
(HLS)

Changed MessageFormatter to automatically convert Throwables into their message or
classname. (HLS)

Added FileResource. (HLS)

Extended hivemind.BuilderFactory to be able to set the Cl assResol ver ; for aservice
implementation, and to autowire common properties (log, messages, serviceld,
errorHandler, classResolver) if the properties are writeable and of the correct type. (HLS)
Added methods newCont r ol (), newiock(),addControl (),

replayControl s() andveri fyControl s() toH veM ndTest Case to
simplify test cases that use multiple EasyM ock mock objects. (HLS)

Changed Hi veM ndFi | t er tolog amessage after it stores the registry into the servlet
context. (HLS)

Restoretheget Conf i gur ati on() and expandSynbol s() methodsto the

Regi st ry interface. (HLS) FixesHIVEMIND-11.

SimpleDatal.anguageParser calls the ContentHandler with a null namespace argument
instead of "". That leads to some problems if you want to use transformers. (HLS) Thanks

Page 35

http://nagoya.apache.org/jira/browse/HIVEMIND-26
http://nagoya.apache.org/jira/browse/HIVEMIND-46
http://nagoya.apache.org/jira/browse/HIVEMIND-4
http://www.easymock.org
http://nagoya.apache.org/jira/browse/HIVEMIND-11

Jakarta HiveMind Project Documentation

to Dieter Bogdoll. Fixes HIVEMIND-9.

» Fix how certain translator messages are generated to avoid unit test failures. (HLS)
Thanks to Achim Higen. Fixes HIVEMIND-7.

« Modify the build files to enable debugging by default. (HLS) FixesHIVEMIND-12.

» Added validation of id attributes in module deployment descriptors (using ORO regular
expressions). (HLS)

« Fix some typos in definition of the hivemind.lib.NameL ookup service. (HLS)

« Fix amistake in the BuilderFactory's set-object element, and add integration tests. (HLS)
Thanks to Naresh Sikha. Fixes HIVEMIND-25.

1.3. Todo List

1.3.1. Release 1.1
e [lib] IMX Integration # HLS

1.4. HiveMind Downloads

HiveMind distributions are available from the Apache Mirrors. HiveMind is packaged
somewhat differently than most other Apache projects, in that the main distribution includes
binary and source, but that documentation is seperate:

« hivem nd-release. t ar . gz -- Combined binary/source distribution

e hivem nd-release. zi p -- Combined binary/source distribution (about twice the size
of the .tar.gz)

e hivem nd-release- docs. t ar. gz -- The HiveMind documentation (the same as this
site)

Each file also has a MD5 checksum file, so you can verify that what you download is valid,

and a GPG key (.asc) to further verify that there has been no tampering.

Under Internet Explorer, the .tar.gz files do not download with the correct file name. Download them, rename them to .tar.gz
and then open them using WinZip.

1.5. CVS Access

Anonymous CV S access is available as:

. pserver:anoncvs@vs. apache. org: / hone/ cvspubl i ¢/ j akart a- hi venmi nd
In addition, the CV S repository may be browsed online.

Page 36

http://nagoya.apache.org/jira/browse/HIVEMIND-9
http://nagoya.apache.org/jira/browse/HIVEMIND-7
http://nagoya.apache.org/jira/browse/HIVEMIND-12
http://nagoya.apache.org/jira/browse/HIVEMIND-25
http://cvs.apache.org/viewcvs.cgi/jakarta-hivemind/

Jakarta HiveMind Project Documentation

1.6. Tutorials and Information

1.6.1. Bootstrapping the Registry

Before you can access the configuration points and services defined in your application's
module deployment descriptors, you need a registry; here we'll describe how to construct the

registry.

The key class here is ReqgistryBuilder, which contains code for locating and parsing the
module deployment descriptors and constructing a registry from the combined data. The
descriptors are al found on the class path; they'll include the descriptors for HiveMind itself
with descriptors packaged into your application's JARS.

As HiveMind grows in popularity, we may start to see third party frameworks come bundled with HiveMind module
deployment descriptors ... but it's too soon for that, now.

Let's examine how all this comes together. The layout of the project is shown below.
[Project Layout]

1.6.1.1. Service Interfaces and | mplementations

Thefirst step is to define the service interface:

package hi vem nd. exanpl es;
public interface Adder

{
public int add(int arg0O, int argl);

Next we need an implementation for that service:

package hivem nd. exanpl es.inpl;

i mport hivem nd. exanpl es. Adder

public class Adderlnpl inplenents Adder
{

public int add(int arg0O, int argl)

return arg0 + argil,

}

Page 37

Jakarta HiveMind Project Documentation

}

The example includes three additional interfaces and matching implementations. for a
Subtracter, Multiplier, Divider, and lastly, a Calculator that combines them together:

package hi vem nd. exanpl es;

public interface Cal cul ator extends Adder, Subtracter, Miltiplier, Divider

{

}

The Calculator implementation will require some wiring; it expects that each of the other
four services (Adder, Substracter, Multiplier and Divider) will be plugged into it:

package hi vem nd. exanpl es. i npl;

i nport hi vem nd. exanpl es. Adder ;

i mport hivem nd. exanpl es. Cal cul at or;
i mport hiveni nd. exanpl es. Di vi der;

i mport hivem nd. exanpl es. Mul tiplier;
i mport hiveni nd. exanpl es. Subtracter;

public class Cal cul atorlnpl inplenents Cal cul ator
private Adder _adder;
private Subtracter _subtracter;
private Multiplier _multiplier;
private Divider _divider;
public void set Adder (Adder adder)

_adder = adder;

}
public void setDivider(Di vider divider)
{
_divider = divider;
}
public void setMultiplier(Multiplier multiplier)
{
~multiplier = multiplier;
}
public void setSubtracter(Subtracter subtracter)
{
_subtracter = subtracter;
}
public int add(int arg0O, int argl)
{

Page 38

Jakarta HiveMind Project Documentation

return _adder.add(arg0, argl);

public int subtract(int arg0, int argl)

return _subtracter.subtract(arg0, argl);

}
public int multiply(int arg0, int argl)

—~

return _nmultiplier.nmultiply(arg0, argl);

—

public int divide(int arg0O, int argl)

—~

return _divider.divide(arg0, argl);

—

}
1.6.1.2. M odule Deployment Descriptor
Finally, we need the HiveMind modul e deployment descriptor, hi venodul e. xni .

The module descriptor creates each of the services in terms of an interface, and an
implementation. In addition, each service getsits own logging interceptor.

<?xm version="1.0"7?>
<nmodul e i d="hi veni nd. exanpl es" version="1.0.0">
<servi ce-poi nt id="Adder" interface="hivem nd. exanpl es. Adder" >
<create-i nstance cl ass="hiveni nd. exanpl es. i npl . Adder | nmpl "/ >
<i nterceptor service-id="hivem nd. Loggi ngl nterceptor"/>
</ servi ce-poi nt >

<servi ce-point id="Subtracter" interface="hivem nd. exanpl es.inpl.Subtracterlnpl">
<creat e-i nstance cl ass="hiveni nd. exanpl es. i npl . Adder | mpl "/ >
<i nterceptor service-id="hivem nd. Loggi ngl nterceptor"/>

</ servi ce- poi nt >

<service-point id="Miltiplier" interface="hivem nd. exanpl es. Multipler">
<create-i nstance cl ass="hiveni nd. exanples.inpl.Miltiplierlnmpl"/>
<i nterceptor service-id="hiven nd. Loggi ngl nterceptor"/>

</ servi ce- poi nt >

<service-point id="Calculator"” interface="hivem nd. exanpl es. Cal cul at or">
<i nvoke-factory>
<I-- Autow res service properties based on interface! -->
<constuct cl ass="hi vemni nd. exanpl es. i npl. Cal cul atorl npl"/>
</invoke-factory>
<i nterceptor service-id="hiven nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >

</ nmodul e>

Page 39

Jakarta HiveMind Project Documentation

Here we've chosen to have the moduleid, hi vem nd. exanpl es, match the package name
but that is not an absol ute requirement.

The interesting part is the use of the hivemind.BuilderFactory to construct the Calculator
service and connect it to the other four services.

1.6.1.3. Building the Registry

Before your code can access any services (or configuration points), it must construct the
Reqistry. The Registry is the applications gateway into the services and configurations
managed by HiveMind.

package hi vem nd. exanpl es;

i mport org.apache. hi veni nd. Regi stry;
i mport org. apache. hi veni nd. i npl . Regi stryBui |l der

public class Min

public static void main(String[] args)

{
int argO
int argl

= Integer.parselnt(args[0]);
= Integer.parselnt(args[1]);

Regi stry registry = RegistryBuil der. construct Def aul t Regi stry();

Calculator ¢ =
(Cal cul ator) registry.getService(Cal cul ator.cl ass);

Systemout.println("lnputs " + arg0 + " and " + argl);

System out . printl n("Add : " + c.add(arg0, argl));
Systemout.println("Subtract: " + c.subtract(arg0, argl));
Systemout.printin("Miltiply: " + c.nmultiply(arg0, argl));
Systemout.printin("Divide : " + c.divide(arg0, argl));

}
}

ReqistryBuilder contains a static method for constructing a Registry, which is suitable for
most situations.

Now that we have the registry, we can use the Calculator interface as a key for finding the
Calculator implementation. In real applications, where there will often be multiple services
implementing the same interface, we would have to specify a fully qualified service id as
well.

Using the reference to the Calculator service, we can finaly invoke the add(),

Page 40

Jakarta HiveMind Project Documentation

subtract (),mul tiply() anddi vi de() methods.

1.6.1.4. Building the Example

Building and running the example using Ant isa snap; al the detailsareinthe bui | d. xmi :

<?xm version="1.0"?>
<proj ect nane="H veM nd Adder Exanple" default="jar">

<property nane="java.src.dir" value="src/java"/>

<property nane="test.src.dir" value="src/test"/>

<property nane="conf.dir" val ue="src/conf"/>

<property nanme="descriptor.dir" val ue="src/descriptor"/>

<property nane="target.dir" value="target"/>

<property name="cl asses.dir" value="${target.dir}/classes"/>

<property name="test.classes.dir" value="${target.dir}/test-cl asses"/>
<property name="exanple.jar" value="${target.dir}/hivem nd-exanples.jar"/>
<property name="lib.dir" value="1ib"/>

<property name="junit.tenmp.dir" value="${target.dir}/junit-temp"/>
<property name="junit.reports.dir" value="${target.dir}/junit-reports"/>

<path id="buil d.cl ass. path">
<fileset dir="${lib.dir}">
<i nclude name="*.jar"/>
</fileset>
</ pat h>

<path id="test.build.class. path">
<path refid="buil d.class.path"/>
<path |l ocation="%${classes.dir}"/>
</ pat h>

<pat h id="run.cl ass. pat h">
<path refid="build.class. path"/>
<pat hel enent | ocati on="$%${cl asses.dir}"/>
<pat hel ement | ocati on="${descriptor.dir}"/>
<pat hel ement | ocati on="${conf.dir}"/>

</ pat h>

<path id="test.run.class. path">

<pat h refid="run. cl ass. path"/>

<path location="%${test.classes.dir}"/>
</ pat h>

<target name="cl ean" description="Delete all derived files.">
<delete dir="${target.dir}" quiet="true"/>
</target>

<target nanme="conpile" description="Conpile all Java code.">
<nmkdir dir="%${classes.dir}"/>
<javac srcdir="${java.src.dir}" destdir="${classes.dir}" classpathref="build.cl ass.

Page 41

http://ant.apache.org/

Jakarta HiveMind Project Documentation

</target>

<target name="conpile-tests" description="Conpile test classes." depends="conpile">
<mkdir dir="${test.classes.dir}"/>
<javac srcdir="${test.src.dir}" destdir="${test.classes.dir}" classpathref="test.bu

</target>

<target name="run-tests" description="Run unit tests." depends="conpile-tests">

<nkdir dir="${junit.tenp.dir}"/>
<nmkdir dir="${junit.reports.dir}"/>

<junit haltonfailure="off" failureproperty="junit-failure" tenpdir="${junit.tenp.di
<cl asspath refid="test.run.cl ass. path"/>

<formatter type="xm"/>
<formatter type="plain"/>
<formatter type="brief" usefile="false"/>

<batchtest todir="${junit.reports.dir}">
<fileset dir="${test.classes.dir}">
<i ncl ude nane="**/Test*.cl ass"/>
</fileset>
</ bat cht est >
</junit>

<fail if="junit-failure" nessage="Sone tests failed."/>

</target>

<target name="jar" description="Construct the JAR file." depends="conpile,run-tests">
<jar destfile="${exanple.jar}">
<fileset dir="${classes.dir}"/>
<fileset dir="${descriptor.dir}"/>
</jar>
</target>

<target name="run" depends="conpile" description="Run the Adder service.">
<j ava cl assnane="hi veni nd. exanpl es. Mai n" cl asspat href ="run. cl ass. pat h" fork="true">
<arg val ue="11"/>
<arg val ue="23"/>
</java>
</target>

</ proj ect >

The important part is to package both the classes and the HiveMind module deployment
descriptor into the JAR.

The only other oddity was to add sr ¢/ conf to the runtime classpath; thisis to include the
| og4j . properti es configuration file; otherwise Log4J will write console errors about

missing configuration.

Page 42

Jakarta HiveMind Project Documentation

1.6.1.5. Running the Examples

bash-2. 05b$ ant run
Bui l dfile: build.xmn

conpi | e:
[mkdir] Created dir: C \workspace\hivem nd-exanpl e\target\cl asses
[javac] Conpiling 15 source files to C \workspace\hi vem nd- exanpl e\t arget\cl asses

run:
[java] Inputs 11 and 23
[java] Add : 34
[java] Subtract: -12
[java] Multiply: 253
[java] Divide : O

BUI LD SUCCESSFUL
Total tinme: 3 seconds

1.6.2. Inversion of Control

Seems like Inversion of Control is all the rage these days. The Avalon project is completely
based around it. Avalon uses detailed assembly descriptions to tie services together ... there's
no way an Avalon component can "look up" another component; in Avalon you explicitly
connect services together.

That's the basic concept of Inversion of Control; you don't create your objects, you describe
how they should be created. You don't directly connect your components and services
together in code, you describe which services are needed by which components, and the
container is responsible for hooking it al together. The container creates all the objects, wires
them together by setting the necessary properties, and determines when methods are invoked.

More recently, this concept has been renamed Dependency Injection.
There are three different implementation pattern types for 10C:

type-1 Services need to implement a dedicated
interface through which they are provided with
an object from which they can look up
dependencies (other services). This is the
pattern used by the earlier containers provided
by Avalon.

type-2 Services dependencies upon are assigned via
JavaBeans properties (setter methods). Both
HiveMind and Spring use this approach.

Page 43

http://www.springframework.org

Jakarta HiveMind Project Documentation

type-3 Services dependencies are provided as
constructor parameters (and are not exposed as
JavaBeans properties). This is the exclusive
approach used by PicoContainer, and is also
used in HiveMind and Spring.

HiveMind is a much looser system than Avalon. HiveMind doesn't have an explicit assembly
stage; it wires together all the modules it can find at runtime. HiveMind is responsible for
creating services (including core implementations and interceptors). It is quite possible to
create service factories that do very container-like things, including connecting services
together. hivemind.BuilderFactory does just that, instantiating an object to act as the core
service implementation, then setting properties of the object, some of which are referencesto
services and configuration point element data.

In HiveMind, you are free to mix and match type-2 (property injection) and type-3
(constructor injection), setting some (or all) dependencies via a constructor and some (or al)
via JavaBeans properties.

In addition, JavaBeans properties (for dependencies) can be write-only. You only need to
provide a setter method. The properties are properties of the core service implementation,
there is no need for the accessor methods to be part of the service interface.

HiveMind's lifecycle support is much more rudimentary than Avaon's. Your service
implementations can get hivemindcallbacks when they are first created, and when they are
discarded, by implementing certain interfaces.

Purist inversion of control, as in Avalon, may be more appropriate in well-constrained
systems containing untrusted code. HiveMind is a layer below that, not an application server,
but a microkernel. Although I can see using HiveMind as the infrastructure of an application
server, even an Avalon application server, it doesn't directly overlap otherwise.

1.6.3. HiveMind Localization

Every HiveMind module may have its own set of messages. Messages are stored alongside
the module deployment descriptor, as META- | NF/ hi venodul e. properti es (within
the module's JAR).

In actuality, the name of the properties file is created by stripping off the extension (*.xml") from the descriptor name and
appending the localization code and “.properties’. Thisis relevant only if you load your module deployment descriptors from a
non-standard location, possibly viathe <sub-module> element.

Services can gain access to localized messages, as an instance of Messages , which includes

Page 44

Jakarta HiveMind Project Documentation

methods for accessing messages and formatting messages with arguments.

In a module descriptor, within the <contribution> and <invoke-factory> elements, you can
reference a localized message in an attribute or element content ssimply by prefixing the
message key with '%'. Examples:

<contribution configuration-id=...>
<some-item <nessage="%message. key" >
%ot her . nessage. key
</ some-itenp
</contri bution>
The two keys (message. key and ot her. nessage. key) are searched for in the

contributing modul €'s messages.

HiveMind gracefully recovers from undefined messages. If a message is not in the properties
file, then HiveMind provides a substitute value by converting the key to upper-case and
adding brackets, i.e. [MESSAGE. KEY] . This alows your application to continue running,
but clearly identifies missing messages.

By adding additional files, message localization can be accomplished. For example, adding a
second file, META-1 NF/ hi venodul e_fr. properties would provide French
language localizations. Any common keys between the two files defer to the more specific
file.

1.6.3.1. Setting thelocale

When a Registry is created by the RegistryBuilder, alocale is specified. Thisis the locale for
the Registry and, by extension, for all Modules in the registry. The locale may not be
changed.

1.6.4. HiveMind Multi-Threading

HiveMind is specifically targetted for J2EE: deployment in a WAR or EAR, particularly as
part of a Tapestry application. Of course, J2EE is not a requirement, and HiveMind is quite
useful even in asimple, standalone environment.

In the world of J2EE, multi-threading is always an issue. HiveMind services are usually
singletons, and must be prepared to operate in a multi-threaded environment. That means
services should not have any specific state, much like a servlet.

1.6.4.1. Construction State
HiveMind expects that initially, work will progressin asingle startup thread. Thisisthe early

Page 45

http://jakarta.apache.org/tapestry/

Jakarta HiveMind Project Documentation

state, the construction state, where the module deployment descriptors are located and
parsed, and the contents used to assemble the registry; thisis the domain of RegistryBuilder .

The construction activities are not thread-safe. This includes the parser, and other code
(virtually al of which ishidden from your application).

The construction state ends when the Regi st ryBui | der returns the Registry from
method const r uct Regi st ry() . Theregistry isthread-safe.

1.6.4.2. Runtime State

Everything that occurs with the Registry and modules must be thread-safe. Key methods are
always synchronized. In particular, the methods that construct a service and construct
configuration point elements are thread-safe. Operations such as building the interceptor
stack, instantiating core service implementations, and converting XML to Java objects
operate in a thread-safe manner. However, different threads may be building different
services simultaneously. This means that, for example, an interceptor service implementation
must still be thread-safe, since it may be called upon to generate interceptors for two or more
different services simultaneously.

On the other hand, the Java objects constructed from XML <rules> don't need to be
thread-safe, since that construction is synchronized properly ... only a single thread will be
converting XML to Java objects for any single configuration point.

1.6.4.3. Managing Service State

When services simply must maintain state between method invocations, there are several
good options:

« Storethedatain an object passed to or returned from the service

» Make use of the hivemind.Threadl ocal Storage service to store the data in a thread-local
map.

» Make use of the threaded or pooled service models, which alow a serviceto keep its
state between service method invocations.

1.6.5. HiveMind Servlet Filter

HiveMind includes a feature to streamline the use of HiveMind within a web application: a
serviet filter that can automatically construct the HiveMind Registry and ensure that
end-of-request thread cleanup occurs.

The filter class is HiveMindFilter. It constructs a standard HiveMind Registry when
initialized, and will shutdown the Registry when the containing application is undeployed.

Page 46

Jakarta HiveMind Project Documentation

Each request will be terminated with a call to the Reqistry's cleanupThread() method, which
will cleanup any thread-local values, including service implementations that are bound to the
current thread.

The HiveMindFilter class includes a static method for accessing the Registry.

1.6.5.1. Deployment Descriptor

To make use of the filter, it must be declared inside the web deployment descriptor
(web.xml). Filters can be attached to servlets, or URL patterns, or both. Here's an example:

<filter>
<filter-name>H veM ndFilter</filter-nane>
<filter-class>org. apache. hivemi nd. servlet. H veMndFilter</filter-class>
</[filter>

<servl et >

<servl et - name>MySer vl et </ ser vl et - nane>

<servl et-class>myco. servl ets. MyServl et </ servl et-cl ass>
</servl et>

<filter-mppi ng>
<filter-name>H veM ndFilter</filter-nane>
<servl et - name>MySer vl et </ servl et - nane>
</filter-mappi ng>

1.6.6. Overriding a Service

It is not uncommon to want to override an existing service and replace it with a new
implementation. This goes beyond simply intercepting the service ... the goal is to replace the
original implementation with a new implementation. This occurs frequently in Tapestry
where frequently an existing service is replaced with a new implementation that handles
application-specific cases (and delegates most cases to the default implementation).

Plans are afoot to refactor Tapestry 3.1 to make considerable use of HiveMind. Many of the ideas represented in HiveMind
germinated in earlier Tapestry releases.

HiveMind doesn't have an explicit mechanism for accomplishing this ... that's because its
reasonabl e to replace and wrap existing services just with the mechanisms already available.

1.6.6.1. Step One: A non-overridable service

To describe this technique, welll start with a ordinary, every day service. In fact, for

Page 47

http://jakarta.apache.org/tapestry/
http://jakarta.apache.org/tapestry/

Jakarta HiveMind Project Documentation

discussion purposes, there will be two services: Consumer and Provider. Ultimately, well
show how to override Provider. Also for discussion purposes, we'll do al of thisin asingle
module, though (of course) you can as easily split it up across many modules.

To begin, we'll define the two services, and set Provider as a property of Consumer:

<nodul e i d="ex. override" version="1.0.0">
<servi ce-point id="Provider" interface="ex.override.Provider">
<create-instance cl ass="ex.override.inpl.Providerlnpl"/>
</ servi ce- poi nt >

<servi ce-poi nt id="Consunmer" interface="ex.override.Consuner">
<i nvoke-factory>
<construct class="ex.override.inpl.Consuner">
<set-service property="provider" service-id="Provider"/>
</i nvoke-factory>
</ servi ce- poi nt >
</ nodul e>

1.6.6.2. Step Two: Add someindirection

In this step, we still have just the two services ... Consumer and Provider, but they are linked
together less explicitly, by using substitution symbols.

<nodul e i d="ex. overri de" version="1.0.0">
<servi ce-point id="Provider" interface="ex.override.Provider">
<create-instance cl ass="ex.override.inpl.Providerlnpl"/>
</ servi ce- poi nt >

<contribution configuration-id="hivem nd. Fact or yDef aul t s">
<def ault synbol ="ex. overri de. Provi der" val ue="ex. override. Provi der"/>
</contri bution>

<servi ce-poi nt id="Consumer" interface="ex.override.Consumner">
<i nvoke-factory>
<construct class="ex.override.inpl.Consuner">
<set-service property="provider" service-id="${ex.override.Provider}"/>
</invoke-factory>
</ servi ce- poi nt >
</ modul e>
The indirection is in the form of the symbol ex. overri de. Provi der, which evaluates
to the serviceid ex. overri de. Provi der and the end result is the same as step one. We
needed to use a fully qualified service id because, ultimately, we don't know in which

modules the symbol will be referenced.

1.6.6.3. Step Three: Override!
The final step is to define a second service and dlip it into place. For kicks, the

Page 48

Jakarta HiveMind Project Documentation

OverrideProvider service will get areference to the original Provider service.

<nmodul e i d="ex. override" version="1.0.0">
<servi ce-point id="Provider" interface="ex.override.Provider">
<create-i nstance cl ass="ex.override.inpl.Providerlnml"/>
</ servi ce- poi nt >

<contri bution configuration-id="hivemn nd. Fact oryDef aul ts">
<default synbol ="ex.override. Provi der" val ue="ex. override. Provi der"/>
</contribution>

<servi ce-point id="OverrideProvider" interface="ex.override.Provider">
<i nvoke-factory>
<construct class="ex.override.inpl.COverrideProviderlnpl">
<set-service property="defaul t Provider" service-id="Provider"/>
</ construct >
</invoke-factory>
</ servi ce- poi nt >

<I-- ApplicationDefaults overrides FactoryDefaults -->

<contribution id="hivem nd. Appl i cati onDef aul t s">

<default symbol ="ex.override. Provider" val ue="ex.override. Overri deProvider"/>

</contri bution>
<l-- Consunmer unchanged fromstep 2 -->

<servi ce-poi nt id="Consumer" interface="ex.override.Consumner">
<i nvoke-factory>
<construct class="ex.override.inpl.Consuner">
<set-service property="provider" service-id="${ex.override.Provider}"/>
</invoke-factory>
</ servi ce- poi nt >
</ nodul e>

The new service, OverrideProvider, gets areference to the original service using itsred id. It
can't use the symbol that the Consumer service uses, because that would end up pointing it at
itself. Again, in this example it's all happening in a single module, but it could absolutely be
split up, with OverrideProvider and the configuration to hivemind.ApplicationDefaults in an
entirely different module.

hivemind.ApplicationDefaults overrides hivemind.FactoryDefaults. This means that the
Consumer will be connected to ex. overri de. Overri deProvi der.

Note that the <service-point> for the Consumer doesn't change between steps two and three.

1.6.6.4. Limitations

The main limitation to this approach is that you can only do it once for a service; there's no
way to add an EvenMoreOverridenProvider service that wraps around OverrideProvider (that

Page 49

Jakarta HiveMind Project Documentation

wraps around Provider). Making multiple contributions to the hivemind.ApplicationDefaults
configuration point with the name symbol name will result in a runtime error ... and
unpredictable results.

This could be addressed by adding another source to the hivemind.SymbolSources
configuration.

To be honest, if this kind of indirection becomes extremely frequent, then HiveMind should
change to accomidate the pattern, perhaps adding an <overri de> element, similar to a
<interceptor> element.

16.7.
1.7. Reports

1.7.1. Project License

Apache License
Version 2.0, January 2004
http://ww. apache. org/ | i censes/

TERVMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use, reproduction
and distribution as defined by Sections 1 through 9 of this docunent.

"Li censor” shall nean the copyright owner or entity authorized by
t he copyright owner that is granting the License.

"Legal Entity" shall nmean the union of the acting entity and al
other entities that control, are controlled by, or are under combn
control with that entity. For the purposes of this definition
"“control" means (i) the power, direct or indirect, to cause the
direction or nmanagenent of such entity, whether by contract or
otherwi se, or (ii) ownership of fifty percent (50% or nore of the
out st andi ng shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall nean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor making nodifications,
including but not linmted to software source code, docunentation

Page 50

Jakarta HiveMind Project Documentation

source, and configuration files.

"Cbject" formshall nean any formresulting from nmechanica
transformation or translation of a Source form including but
not limted to conpil ed object code, generated docunentation
and conversions to other nedia types.

"Wirk" shall mean the work of authorship, whether in Source or
bj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an exanpl e is provided in the Appendi x bel ow).

"Derivative Wrks" shall nean any work, whether in Source or Object
form that is based on (or derived fronm) the Wirk and for which the
editorial revisions, annotations, elaborations, or other nodifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Wrks shall not include works that remmin
separable from or nerely link (or bind by nane) to the interfaces of,
the Work and Derivative Wrks thereof.

"Contribution" shall nmean any work of authorship, including

the original version of the Wrk and any nodifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behal f of
t he copyright owner. For the purposes of this definition, "submtted"
nmeans any form of electronic, verbal, or witten comunication sent

to the Licensor or its representatives, including but not limted to
conmuni cation on electronic mailing lists, source code control systens,
and i ssue tracking systens that are managed by, or on behal f of, the
Li censor for the purpose of discussing and inproving the Wbrk, but
excl udi ng conmuni cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a Contribution."

"Contributor"” shall mean Licensor and any individual or Legal Entity
on behal f of whom a Contribution has been received by Licensor and
subsequently incorporated within the Wrk

2. Grant of Copyright License. Subject to the terns and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Wrks of,
publicly display, publicly perform sublicense, and distribute the
Work and such Derivative Wrks in Source or Cbject form

3. Grant of Patent License. Subject to the terns and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have nade,
use, offer to sell, sell, inmport, and otherw se transfer the Wrk
where such |icense applies only to those patent clains |icensable
by such Contributor that are necessarily Infringed by their
Contribution(s) alone or by conbination of their Contribution(s)
with the Wirk to which such Contribution(s) was submitted. If You

Page 51

Jakarta HiveMind Project Documentation

institute patent litigation against any entity (including a
cross-claimor counterclaimin a lawsuit) alleging that the Wrk
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent |icenses
granted to You under this License for that Wirk shall term nate
as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium with or wthout
nodi fications, and in Source or bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Wirk or
Derivative Wrks a copy of this License; and

(b) You nmust cause any nodified files to carry prom nent notices
stating that You changed the files; and

(c) You must retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source form of the Wrk
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute nust
i ncl ude a readabl e copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Wrks, in at |east one
of the follow ng places: within a NOTICE text file distributed
as part of the Derivative Wrks; within the Source form or
docunentation, if provided along with the Derivative Wrks; or
within a display generated by the Derivative Wrks, if and
wher ever such third-party notices nornmally appear. The contents
of the NOTICE file are for informational purposes only and
do not nodify the License. You may add Your own attribution
notices within Derivative Wrks that You distribute, alongside
or as an addendumto the NOTICE text fromthe Wrk, provided
that such additional attribution notices cannot be construed
as nodi fying the License.

You may add Your own copyright statement to Your nodifications and
may provide additional or different |icense terns and conditions
for use, reproduction, or distribution of Your nodifications, or
for any such Derivative Wrks as a whol e, provided Your use,
reproduction, and distribution of the Work otherwi se conplies with
the conditions stated in this License.

Submi ssion of Contributions. Unless You explicitly state otherw se,
any Contribution intentionally submtted for inclusion in the Wrk
by You to the Licensor shall be under the terns and conditions of
this License, without any additional terns or conditions.

Not wi t hst andi ng t he above, nothing herein shall supersede or nodify
the terms of any separate |icense agreenent you nmay have executed

Page 52

Jakarta HiveMind Project Documentation

wi th Licensor regarding such Contributions.

6. Trademarks. This License does not grant pernission to use the trade
nanes, trademarks, service nmarks, or product nanes of the Licensor
except as required for reasonabl e and customary use in describing the
origin of the Wrk and reproducing the content of the NOTICE file.

7. Disclainmer of Warranty. Unl ess required by applicable |aw or
agreed to in witing, Licensor provides the Wrk (and each
Contributor provides its Contributions) on an "AS I S" BASI S,
W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
implied, including, without linitation, any warranties or conditions
of TITLE, NON I NFRI NGEMENT, MERCHANTABI LI TY, or FITNESS FOR A
PARTI CULAR PURPCSE. You are solely responsible for determ ning the
appropri ateness of using or redistributing the Wrk and assune any
ri sks associated with Your exercise of perm ssions under this License.

8. Limtation of Liability. In no event and under no | egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable |law (such as deliberate and grossly
negl i gent acts) or agreed to in witing, shall any Contributor be
liable to You for damages, including any direct, indirect, special
i nci dental, or consequential danages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not Iimted to danmages for |oss of goodwll,
wor k st oppage, conputer failure or mal function, or any and al
ot her commerci al damages or | osses), even if such Contri butor
has been advi sed of the possibility of such danages.

9. Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer
and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hol d each Contributor harmess for any liability
i ncurred by, or clains asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDI TI ONS
APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the follow ng
boil erplate notice, with the fields enclosed by brackets "[]"
repl aced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
conment syntax for the file format. We al so recommend that a
file or class nane and description of purpose be included on the
sanme "printed page" as the copyright notice for easier
identification within third-party archives.

Copyri ght [yyyy] [nanme of copyright owner]

Page 53

Jakarta HiveMind Project Documentation

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at
http: //ww. apache. org/ | i censes/ LI CENSE- 2. 0
Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,
W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.

See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

1.7.2.
2. Module: hivemind
2.1. Services

2.1.1. hivemind.Builder Factory Service

The BuilderFactory service is a service implementation factory ... a service that is used to
construct other services.

The builder factory takes a single parameter element (usually with nested elements):

<construct
class="...
servi ce-id-property="..

aut owi re-servi ces="..

| og- property="..."
initialize-method="..."

error-handl er-property="..." class-resol ver-property="...">
<l og/ >

<nessages/ >

<service-id/ >

<error-handl er/>

<cl ass-resol ver/ >

<string> ... </string>

<bool ean> ... </bool ean>

<configuration> ... </configuration>

<int> ... </int>

<long> ... </long>

<resource> ... </resource>

<service> ... </service>

<object> ... </object>

<event-listener service-id="..." event-type-nane="..."/>
<set property="..." value="..."/>

Page 54

messages- property="..

Jakarta HiveMind Project Documentation

<set-configuration property="..." configuration-id="..."/>
<set-resource property="..." path="..."/>
<set-service property="..." service-id="..."/>
<set-object property="..." value="..."/>
</ construct >

The attributes of the const ruct element are used to specify the implementation class and
set common service properties. Nested elements supply the constructor parameters and
configure other specific properties of the implementation (theset - . . . elements).

BuilderFactory is a complex tool, with support for both constructor dependency injection and property dependency injection.
Many of the options are rarely used; the most general purpose and most frequently used are set, set-object and event-listener
(along with autowiring of certain properties).

2.1.1.1. construct
Attribute Required ? Description

autowire-services no If true (the default), then the
BuilderFactory will attempt to
automatically wire any services
that are not otherwise set. Any
property that is writable, and
whose type is an interface, will
be autowired. For such
properties, it is required that
there be a single service point
that implements the interface.
An error will be logged if no
service point implements the
interface, or if multiple service
points implement the interface.

class yes The fully qualified name of the
class to instantiate.

class-resolver-property no The property to receive the
module’s ClassResolver.

error-handler-property no The name of a property to
recieve the module's

ErrorHandler instance (which is
used to report recoverable
errors).

initialize-method no The name of a method (public,
no parameters) to invoke after
the service is constructed, to

Page 55

Jakarta HiveMind Project Documentation

allow it to perform any final
initializion before being put into

use.
log-property no The name of a property which
will be assigned a

or g. apache. commons. | oggi ng. Log
instance for the service. The

Log is created from the
complete service id (not the

name of the class). If ommitted,

no Log will be assigned.

messages-property no Allows the Messages for the
module to be assigned to a
property of the instance.

service-id-property no Allows the service id of the
constructed service to be
assigned to a property of the
service implementation.

The remaining elements are enclosed by the <construct> element, and are used to supply
constructor parameters and configure properties of the constructed service implementation.

2.1.1.2. Autowiring

BuilderFactory will automatically set certain common properties of the service
implementation. By using standard names (and standard types), the need to specify attributes
| og- property, error-handl er-property, etc. is avoided. Simply by having a
writable property with the correct name and type is sufficient:

Property name Property Type
classResolver ClassResolver
errorHandler ErrorHandler
log or g. apache. cormons. | oggi ng. Log
messages Messages
serviceld String

In addition, if the initialize-nethod attribute is not specified, and the service
implementation includes a public method i nitializeService() (no parameters,
returnsvoid), theni ni ti al i zeSer vi ce() will beinvoked asthe initializer.

Page 56

Jakarta HiveMind Project Documentation

2.1.1.3. Constructor Parameter Elements

The following table summarizes the elements which can be used to specify constructor
parameters for the class to instantiate. These elements can be mixed freely with the properties
configuring elements. It is important to know that the number, type, and order of the
constructor parameter elements determine the constructor that will be used to instantiate the
implementation.

Element Matched Parameter Type Passed Parameter Value
error-handler ErrorHandler The module's ErrorHandler,
user to report recoverable
errors.
log org.apache.commons.logging.LogThe Log is created from the

complete service id (not the
name of the class) of the
created service.

messages org.apache.hivemind.Messages | The Messages object of the
invoking module.

object variable As determined by the object
translator, this is decidedly
free-form. See

hivemind.ObjectProviders.

service-id java.lang.String The service id of the
constructed service.

string java.lang.String This element's content.

boolean boolean This element's content. Must be

either "true" or "false".

configuration java.util.List The List of the elements of the
configuration specified by this
element's content as a
configuration id. The id can
either by a simple id for a
configuration within the same
module as the constructed
service, or a complete id.

int int This element's content parsed
as an integer value.

long long This element's content parsed

Page 57

Jakarta HiveMind Project Documentation

as a long value.

resource org.apache.hivemind.Resource | This element's content parsed
as a path to a Resource, which
is relative to the contributing
module's deployment
descriptor. If available, a
localized version of the
Resource will be selected.

service interface corresponding to The implementation of the
specified service service with the id given in this

element's content. The id can

either be a simple id for a

service within the same module

as the constructed service, or a

complete id.
2.1.1.4. Service Property Configuring Elements
event-listener
Attribute Description
service-id The service which produces events. The service
must provide, in its service interface, the
necessary add and remove listener methods.
name The name of an event set to be registered. If not

specified, all applicable event sets are used.

If the name attribute is not specified, then BuilderFactory will register for all applicable event
sets. For each event set provided by the specified service, BuilderFactory will check to see if
the service instance being constructed implements the corresponding listener interface ... if
so, the constructed service instance is added as a listener. When the name attribute is
specified, the constructed service instance is registered as a listener of just that single type.

Event natifications go directly to the constructed service instance; they don't go through any
proxies or interceptors for the service. The service instance must implement the listener
interface, the constructed service's service interface does not have to extend the listener
interface. In other words, event notifications are "behind the scenes’, not part of the public
API of the service.

It is perfectly acceptible to include multiple <event-listener> elements for a number of
different event producing services.

Page 58

Jakarta HiveMind Project Documentation

It is not enough for the event producer service to have an add listener method (i.e.,
addPr opert yChangelLi st ener (Propert yChangelLi st ener)). To be recognized
as an event set, there must also be a corresponding remove listener method (i.e,
renovePr opert yChangelLi st ener (Propert yChangelLi st ener)), even though
BuilderFactory does not make use of the remove method. This is an offshoot of how the

JavaBeans API defines event sets.

set
Attribute
property

value

set-configuration
Attribute
property

configuration-id

set-obj ect
Attribute
property

value

Sset-resour ce
Attribute

property

Description
The name of the property to set.

A value to assigned to the property. The value
will be converted to an appropriate type for the

property.

Description
The name of the property to set.

The id of a configuration, either a simple id for a
configuration within the same module as the
constructed service, or a complete id. The
property will be assigned a List of the
elements of the configuration.

Description
The name of the property to set.

The selector used to find an object value. The
selector consists of a prefix (such as "service" or
"configuration"), a colon, and a locator whose
interpretation is defined by the prefix. For
example, service: MyServi ce. See
hivemind.ObjectProviders.

Description

The name of the property to set.

Page 59

Jakarta HiveMind Project Documentation

path The path to a Resource, relative to the
contributing module's deployment descriptor. If
available, a localized version of the Resource
will be selected.

Set-service
Attribute Description
property The name of the property to set.
service-id The id of a service, either a simple id for a

service within the same module as the
constructed service, or a complete id. The
property will be assigned the service.

2.1.2. hivemind.L oggingl nter ceptor Service
The Logginglnterceptor serviceis used to add logging capability to aservice, i.e.:

<i nterceptor service-id="hivem nd. Loggi ngl nterceptor">
<i ncl ude nethod="..."/>
<excl ude nethod="..."/>

</interceptor>

The service make take parameters (which control which methods will be logged).

The logging interceptor uses a Log derived from the service id (of the service to which
logging is being added).

The service logs, at debug level, the following events:

* Method entry (with parameters)
» Method exit (with return value, if applicable)
» Thrown exceptions (checked and runtime)

By default, the interceptor will log all methods. By supplying parameters to the interceptor,
you can control exactly which methods should be logged. The i ncl ude and excl ude
parameter elements specify methods to be included (logged) and excluded (not logged). The
nmet hod attribute is a method pattern, a string used to match methods based on name,
number of parameters, or type of parameters; see the MethodM atcher class for more details.

A method which does not match any supplied pattern will be logged.

2.1.3. hivemind.ShutdownCoordinator Service

Service implementations that need to perform any specia shutdown logic should implement

Page 60

Jakarta HiveMind Project Documentation

the RegistryShutdownL istener interface, and let thehivemind.BuilderFactory register them
for notifications.

2.1.4. hivemind.ThreadL ocal Stor age Service

The ThreadL ocal Storage service implements the Threadl ocal Storage interface. This service
acts as a kind of Map for temporary data. The map is loca to the current thread, and is
cleared at the end of the transaction.

It is your responsibility to ensure that keys are unique, typicaly by prefixing them with a
moduleid or package name.

2.2. Configurations

2.2.1. hivemind.ApplicationDefaults Configur ation

The ApplicationDefaults configuration is used to set default values for substitution symbols.
Application defaults override contributions to hivemind.FactoryDefaults. The contribution
format is the same FactoryDefaults:

<default symbol="..." value="..."/>

2.2.2. hivemind.Eager L oad Configuration

The EagerLoad configuration allows services to be constructed when the Registry is first
initialized. Normally, HiveMind goes to great lengths to ensure that services are only
constructed when they are first needed. Eager loading is appropriate during development (to
ensure that services are configured properly), and some services that are event driven may
need to be instantiated early, so that they may begin receiving event notifications even before
their first service method is invoked.

Care should be taken when using services with the pooled or threaded service models to
invoke cleanup the thread immediately after creating the Registry.

Contributions are as follows:
<| oad service-id="..."/>

2.2.3. hivemind.FactoryDefaults Configuration

The FactoryDefaults configuration is used to set default values for substitution symbols.
Contributions look like:

Page 61

Jakarta HiveMind Project Documentation

<default synbol="..." value="..."/>

Values defined here can be overiden by making a contribution to
hivemind.ApplicationDefaults.

2.2.4. hivemind.ObjectProviders Configur ation

The ObjectProviders configuration drives the obj ect trandator. Contributions define an
object provider in terms of a prefix (such as ser vi ce) and a service that implements the
(bj ect Provi der interface.

Object providers exist to support object references. Object references are a way to contribute
objects that may be references to services, or to other objects, or may even be created on the
spot. Thisis often used with the hivemind.BuilderFactory's <set-object> element.

An object reference consists of a prefix and alocator seperated by a colon. The interpretation
of the locator is different for each provider. The prefix determines which provider will be
utilized to interpret the locator.

The contribution format defines the name and class for each service model:
<provi der prefix="..." service-id="..."/>
Prefixes must be unique.

The following default prefixes are available:

Prefix Descripton Example
bean The locator is a BeanFactory bean:ValidatorFactory:string,required

locator, consisting of the id of a
BeanFactory service, a colon,
and an optional initializer for
the bean.

Provided by the HiveMind
library.

configuration The locator is the id of a configuration:MyConfiguration
configuration.

instance The locator is a fully qualified | instance:com.example.MyObject
class name, which must have a
public no arguments contructor.

service The locator is the id of a | service:MyService
service.

Page 62

Jakarta HiveMind Project Documentation

service-property The locator provides a service | service-property:MyService:activeRequest
id and a property name
(provided by that service),
seperated with a colon.

2.2.5. hivemind.ServiceM odels Configuration

The ServiceModels configuration defines the available service models. Service models
control the lifecycle of services: when they are created and when they are destroyed (often
tied to the current thread's activity).

The contribution format defines the name and class for each service model:

<servi ce-npdel name="..." class="..."/>
An instance of the specified class will be instantiated. The class must implement the

ServiceM odelFactory interface (which creates an instance of the actual service model for a
particular service extension point).

Names of service models must be unique; it is not possible to override the built-in service
model factories.

2.2.6. hivemind.Symbol Sour ces Configuration

The Symbol Sources configuration is used to define new Symbol Sources (providers of values
for substitution symbols).

Contributions are of the form:

<source nanme="..." before="..." after="..." class="..." service-id="..."/>

Sources are ordering based on the nane, before and aft er elements. bef ore and
af t er may be comma-seperated lists of other sources, may be the simple value *, or may
be omitted.

Only one of cl ass and servi ce-i d attributes should be specified. The former is the
complete name of a class (implementing the Symbol Source interface). The second is used to
contribute a service (which must also implement the interface).

2.2.7. hivemind.Trandlators Configuration

The Trandators configuration defines the translators that may be used with XML conversion
rules.

The contribution format defines the name and class for each service model:

Page 63

Jakarta HiveMind Project Documentation

<transl ator nanme="..." class="..."/>

An instance of the specified class will be instantiated. The class must implement the
Trandator interface. It should have a no-args and/or single String constructor.

Names of translators must be unique; it is not possible to override the existing service model
trandlators. A single trandator, cl ass , is hard-coded into HiveMind, the others appear as
ordinary contributions.

2.3. Ant Tasks

2.3.1. ConstructRegistry Ant Task

Reads some number of HiveMind module descriptors and assembles a single registry file
from them. The output registry consists of a <registry> element which contains one
<module> element for each module descriptor read. This registry is useful for generating
documentation.

The registry XML is only updated if it does not exist, or if any of the module deployment
descriptor is newer.

Thistask isimplemented as org.apache.hivemind.ant.ConstructReqgistry.

2.3.1.1. Parameters
Attribute Description Required

output The file to write the registry to. | Yes
2.3.1.2. Parameter s specified as nested elements

descriptors

A path-like structure, used to identify which HiveMind module descriptors
(hi venodul e. xm) should be included.

Each path element should either be a module deployment descriptor, or be a JAR containing
a deployment descriptor (in the META- | NF folder).
2.3.1.3. Examples

Create t arget/regi stry. xm from al hi venodul e. xm descriptors found inside
the sr c directory.

Page 64

Jakarta HiveMind Project Documentation

<constructregistry output="target/registry.xn">
<descri pt or s>
<fileset dir="src">
<i ncl ude nane="**/hi venodul e. xm "/ >
</fileset>
</ descri pt or s>
</ constructregi stry>

2.3.2. ManifestClassPath Ant Task

Converts a classpath into a space-separated list of items used to set the Mani f est
Cl ass- Pat h attribute.

This is highly useful when modules are packaged together inside an Enterprise Application
Archive (EAR). Library modules may be deployed inside an EAR, but (in the current J2EE
specs), there's no way for such modules to be added to the classpath in the deployment
descriptor; instead, each JAR is expected to have a Manifest Class-Path attribute identifying
the exactly list of JARs that should be in the classpath. This Task is used to generate that list.

Thistask isimplemented as org.apache.hivemind.ant.M anifestClassPath.

2.3.2.1. Parameters

Attribute Description Required
property The name of a property to set | Yes
as a result of executing the
task.
directory If specified, then the directory No

attribute does two things:

e [tactsasafilter, limiting the
results to just those elements
that are within the directory

» Itstrips off the directory asa
prefix (plus the separator),
creating results that are
relative to the directory.

2.3.2.2. Parameter s specified as nested elements

classpath
A path-like structure, used to identify what the classpath should be.

Page 65

Jakarta HiveMind Project Documentation

2.3.2.3. Examples

Generate a list of JARs inside the ${t ar get } directory as relative paths and use it to set
the Class-Path manifest attribute.

<mani f est cl asspath directory="$%${tar get
<cl asspath refid="buil d.cl ass. pat h"/

</ mani f est cl asspat h>

}" property="mani fest.cl ass. pat h">
>

<jar . . .>
<mani f est >
<attribute nane="C ass-Path" val ue="${nanifest.class. path}"/>

</ mani f est >
</jar>
2.4. Reports
24.1.
2.4.2.
3. Module: hivemind.lib

3.1. Services

3.1.1. hivemind.lib.BeanFactoryBuilder Service

The BeanFactoryBuilder services is used to construct a BeanFactory instance. An
BeanFactory will vend out instances of classes. A logical name is mapped to a particular Java
classto be instantiated.

Client code can retrieve beans via the factory's get () method. Beans are retrieved using a
locator, which consists of a name and an optional initializer seperated by commas. The
initializer is provided to the bean via an alternate constructor that takes a single string
parameter. Initializers are used, typically, to initialize properties of the bean, but the actual
implementation isinternal to the bean class.

3.1.1.1. Usage

The service takes a single parameter element:

Page 66

Jakarta HiveMind Project Documentation

<factory vend-class="..." configuration-id="..." default-cacheable="..."/>

The vend- cl ass attribute is the name of a class all vended objects must be assignable to
(asaclass or interface). Thisis used to validate contributed bean definitions. By default it is
j ava. |l ang. bj ect.

The confi guration-id istheid of the companion configuration (used to define object
classes).

The optional def aul t - cacheabl e attribute sets the default for whether instantiated
beans should be cached for reuse. By default this is true, which is appropriate for most use
cases where the vended objects are immutable.

3.1.1.2. Configuration

Each BeanFactory service must have a configuration, into which beans are contributed:
<configuration-point id="..." schenmm-id="hivem nd.lib.BeanFactoryContri bution"/>
Contributionsinto the configuration are used to specify the bean classes to instantiate, as:

<bean name="..." class="..." cacheable="..."/>
name isaunique name used to reference an instance of the class.

cl ass isthe Javaclass to instantiate.

cacheabl e determines whether instances of the class are cacheable (that is, have
immutable internal state and should be reused), or non-cacheable (presumably, because of
mutable internal state).

3.1.2. hivemind.lib.Defaultl mplementationBuilder Service

The DefaultimplementationBuilder service is used to create default implementations of
interfaces. As described in the service interface JavaDoc, methods return null, O or false
(depending on return type) and otherwise do nothing.

3.1.3. hivemind.lib.EJBProxyFactory Service

The EJBProxyFactory service is used to construct a HiveMind service that delegates to an
EJB stateless session bean. The EJB's remote interface is the service interface. When the first
service method is invoked, the fabricated proxy will perform a JNDI lookup (using the
Namel ookup service), and invokes cr eat e() on the returned home interface.

Page 67

Jakarta HiveMind Project Documentation

The single service instance will be shared by all threads.

The service expects a single parameter element:

<construct hone-interface="..." jndi-name="..." nane-| ookup-service="..."/>

The hone-i nt er f ace attribute is the complete class name for the home interface, and is
required.

Thej ndi - nane attribute is the name of the EJB's home interface, also required.

The name- | ookup- servi ce-i d attribute is optional and rarely used; it is an alternate
service implementing the Namel ookup interface to be used for INDI |ookups.

3.1.4. hivemind.lib.NameL ookup Service

The Namel ookup service is a thin wrapper around JNDI lookup. It is used by the
EJBProxyFactory service to locate EJBs.

The implementation makes use of three symbols (all of whose values default to null):
e javanaming.factory.initial

e javanaming.factory.url.pkgs

e java.naming.provider.url

By supplying overrides of these values, it is possible to configure how the NameL ookup
service generates the Initial Context used for performing the JINDI lookup.

3.1.5. hivemind.lib.Placeholder Factory Service

The PlaceholderFactory service is a service implementation factory that uses the
DefaultlmplementationBuilder service to create placeholder implementations for services.
Paceholders do nothing at all.

3.1.6. hivemind.lib.PipelineFactory Service

The PipelineFactory services is used to construct a pipeline consisting of a series of filters.
The filters implement an interface related to the service interface.

Each method of the service interface has a corresponding method in the filter interface with
an identical signature, except that an additional parameter, whose type matches the service
interface has been added.

For example, a service interface for transforming a string:

Page 68

Jakarta HiveMind Project Documentation

package nypackage;
public interface StringTransfornService
public String transform(String inputVal ue);

The corresponding filter interface:

package nypackage;

public interface StringTransfornfilter

public String transform(String inputValue, StringTransfornBService service);

The service parameter may appear at any point in the parameter list, though the convention of
listing it last is recommended.

Thefiltersin a pipeline are chained together as follows:

Pipeline Calling Sequence

The bridge objects implement the service interface (and are created dynamically at runtime).
The terminator at the end also implements the service interface. Thisis an object reference (it
can be an object or a service) if no terminator is specified, a default implementation is
created and used. Only asingle terminator is allowed.

A pipeline is always created in terms of a service and a configuration. The service defines the
service interface and identifies a configuration. The configuration conforms to the
hi vem nd. | i b. Pi pel i ne schema and is used to specify filters and the terminator.
Filters may be ordered much like <interceptor>s, using bef or e and af t er attributes. This
allows different modules to contribute filters into the service's pipeline.

3.1.6.1. Usage

The factory expects a single parameter element:

<create-pipeline filter-interface="..." configuration-id="..." termnator="..

Thefil ter-interface attributeisthe complete class name of the filter interface.
Theconfi gurati on-i distheid of the companion configuration (used to define filters).

The optional t er m nat or attribute is used to specify an object reference. A terminator
may also be contributed into the pipeline configuration.

3.1.6.2. Configuration

Page 69

||/>

Jakarta HiveMind Project Documentation

Each pipeline service must have a configuration, into which filters are contributed:

<configuration-point id="..." schema-id="hivem nd.!lib.Pipeline"/>

3.1.6.3. Contributions

Contributionsinto the configuration are used to specify the filters and the terminator.

filter

<filter name="..." before="..." after="..." object="..."/>

Contributes a filter. The optional bef or e and af t er attributes are lists of the ids of other
filters in the pipeline, used to set the ordering of the filters. They may be comma-seperated
lists of filter ids (or filter names), or ssimple * to indicate absolute positioning.

The obj ect attributeisthe filter object itself, an object reference to an object implementing
the filter interface.

terminator
<term nator object="..."/>
Specifies the terminator for the pipeline, as an object reference to an object implementing the

service interface. Only a single terminator may be specified, and the terminator service
provided in the factory parameters takes precendence over aterminator in the configuration.

3.1.7. hivemind.lib.RemoteExceptionCoor dinator Service

The RemoteExceptionCoordinator is used to propogate notifications of remote exceptions
throughout the HiveMind repository. When any individual service encounters a remote
exception, it notifies all listeners, who release all remote object proxies.

The service interface, RemoteExceptionCoordinator, allows objects that implement the
RemoteExceptionListener interface to be registered for notification, and includes a method
for firing notifications.

3.1.8. hivemind.lib.ServicePropertyFactory Service

The ServicePropertyFactory exposes a property of a service as a new service. The property's
type must the same as (or assignable to) the service interface.

On each invocation of a service method, the property is re-acquired from the property source
service, and the method reinvoked on the active value. This is useful when the value of the

Page 70

Jakarta HiveMind Project Documentation

property can change at different times ... by using this factory, and not the
servi ce- property object provider, your code will always access the current value.

This can invaluable when a small number of services use the threaded or pooled service
models. Other services can access information in those services transparently, without
themselves having to be threaded or pooled.

A single parameter element is expected:
<construct service-id="..." property="..."/>
Both attributes are required.

3.1.9. hivemind.lib.SpringL ookupFactory Service

The SpringL ookupFactory supports integration with the Spring framework, another
open-source lightweight container. SpringL ookupFactory is a service constructor that obtains
a core service implementation from a Spring BeanFact ory .

By default, the BeanFact or y is obtained from the DefaultSpringBeanFactoryHolder. Part
of your application startup code requires that you start a Spring instance and inform the
DefaultSpringBeanFactoryHolder about it.

The SpringL ookupFactory expects exactly one parameter element:

<l ookup- bean name="..." source-service-id="..."/>
The nane attribute is the name of the bean to ook for inside the Spring BeanFactory.
The optional sour ce-servi ce-i d attribute allows an alternate service to be used to

obtain the Spring BeanFactory. The identified service must implement the
SpringBeanFactorySource interface.

3.2. Reports
3.2.1

3.2.2.

4. Example Code

4.1. Calculator

Page 71

http://www.springframework.org

Jakarta HiveMind Project Documentation

The calculator example demonstrates the most basic concepts of HiveMind; the difference
between <create-instance> and <invoke-factory>, the fact that services are, by default,
created only as needed, and the ability of hivemind.BuilderFactory to automaticaly wire

servicestogether. It also demonstrates the behavior of the hivemind.L ogginglnterceptor.

After compiling the examples, you can use Ant to run them:

bash-2. 05b$ ant
bui | d. xmi

Bui |l dfi | e:

run-cal cul at or:

BUI LD SUCCESSFUL

run-cal cul at or

java] Cal culator [DEBUG Creating SingletonProxy for service exanples. Cal cul at or
java] | nputs: 28.0 and 4.75

java] Cal cul ator [DEBUG Constructing core service inplenmentation for service exa
java] Subtracter [DEBUG Creating SingletonProxy for service exanples. Subtracter
java] Cal cul ator [DEBUG Autow red service property subtracter to <Singl et onProxy
java] Divider [DEBUG Creating SingletonProxy for service exanples. D vider

java] Cal cul ator [DEBUG Autow red service property divider to <SingletonProxy fo
java] Miultiplier [DEBUF Creating SingletonProxy for service exanples.Multiplier
java] Cal cul ator [DEBUG Autow red service property nultiplier to <SingletonProxy
java] Adder [DEBUG Creating SingletonProxy for service exanpl es. Adder

java] Cal culator [DEBUG Autow red service property adder to <SingletonProxy for
java] Cal cul ator [DEBUG Applying interceptor factory hivem nd. Loggi ngl nterceptor
java] Cal cul ator [DEBUG BEQ N add(28.0, 4.75)

j ava] Adder [DEBUG Constructing core service inplenmentation for service exanpl es
j ava] Adder [DEBUG Applying interceptor factory hiveni nd. Loggi ngl nterceptor

j ava] Adder [DEBUG BEG N add(28.0, 4.75)

j ava] Adder [DEBUG END add() [32.75]

java] Cal cul ator [DEBUG END add() [32.75]

j ava] Add: 32.75

java] Cal cul ator [DEBUF BEG N subtract(28.0, 4.75)

java] Subtracter [DEBUG Constructing core service inplenmentation for service exa
java] Subtracter [DEBUG Applying interceptor factory hivem nd.Loggi ngl nterceptor
java] Subtracter [DEBUG BEQ N subtract(28.0, 4.75)

java] Subtracter [DEBUG END subtract() [23.25]

java] Cal cul ator [DEBUG END subtract() [23.25]

java] Subtract: 23.25

java] Cal culator [DEBUG BEG N nultiply(28.0, 4.75)

java] Multiplier [DEBUF Constructing core service inplenmentation for service exa
java] Multiplier [DEBUF Applying interceptor factory hivemn nd. Loggi ngl nt erceptor
java] Multiplier [DEBUJ BEG N nultiply(28.0, 4.75)

java] Multiplier [DEBUF END multiply() [133.0]

java] Calculator [DEBUF END multiply() [133.0]

java] Multiply: 133.0

java] Cal cul ator [DEBUG BEG N divide(28.0, 4.75)

java] Divider [DEBUG Constructing core service inplenmentation for service exanpl
java] Divider [DEBUG Applying interceptor factory hiveni nd. Loggi ngl nterceptor
java] Divider [DEBUG BEG N divide(28.0, 4.75)

java] Divider [DEBUG END divide() [5.894736842105263]

java] Cal cul ator [DEBUG END divide() [5.894736842105263]

java] Divide: 5.894736842105263

Page 72

Jakarta HiveMind Project Documentation

Total tinme: 3 seconds

The logging configuration enables logging for the hi vem nd logger; that and the logging
interceptors produces quite a bit of output. You can see that a proxy is created for services
initially, and that the "core service implementation” for the service is created later ... the core
service implementation consists of an instance of the service's POJO class, wrapped with any
interceptors (the logging interceptor, in this case).

The Registry is built from the following module deployment descriptor:

<?xm version="1.0"7?>
<nmodul e i d="exanpl es" versi on="1.0.0">
<servi ce-poi nt id="Adder" interface="org.apache. hiven nd. exanpl es. Adder" >
<create-i nstance cl ass="org. apache. hi vem nd. exanpl es. i npl . Adder | npl "/ >
<i nterceptor service-id="hiven nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >
<servi ce-point id="Subtracter" interface="org.apache. hivem nd. exanpl es. Subtracter">
<create-i nstance cl ass="org. apache. hi vem nd. exanpl es. i npl . Subtracterl nmpl"/>
<i nterceptor service-id="hivem nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >
<service-point id="Miltiplier" interface="org.apache. hivem nd. exanples. Mul tiplier">
<create-instance cl ass="org. apache. hi ven nd. exanpl es.inpl.Mltiplerlnmpl"/>
<i nterceptor service-id="hiven nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >
<servi ce-point id="Divider" interface="org.apache. hiveni nd. exanpl es. Di vi der" >
<creat e-i nstance cl ass="org. apache. hi venm nd. exanpl es. i npl . Di vi der | nmpl "/ >
<i nterceptor service-id="hiven nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >
<servi ce-point id="Cal culator" interface="org.apache. hivem nd. exanpl es. Cal cul ator">
<i nvoke-fact ory>
<construct class="org. apache. hi veni nd. exanpl es. i npl . Cal cul atorl nmpl"/>
</invoke-factory>
<interceptor service-id="hivem nd. Loggi ngl nterceptor"/>
</ servi ce- poi nt >
</ nodul e>

The service-point for the Calculator service is very simple ... as the comment indicates, the
BuilderFactory is capable of locating the other services (Adder, Subtracter, etc.) by their
interface, rather than requiring set - ser vi ce elements to connect properites to services
(using the target service's ids). These properties of the Calculator implementation are
autowired to the matching services. Autowriring works only because just a single service
within the entire Registry implements the specific interface. You would see errors if no
service implemented the interface, or if more than one did.

4.2. Panorama Startup

Panorama is a disguised version of WebCT's Vista application. Vistais a truly massive web
application, consisting of thousands of Java classes and JSPs and hundreds of EJBs. Vistais
organized as a large number of somewhat interrelated tools with an underlying substrate of

Page 73

http://www.webct.com/

Jakarta HiveMind Project Documentation

services. In fact, HiveMind was originally created to manage the complexity of Vista.

The redlity is that Vista, a commercial project, has continued with an older version of HiveMind. Panorama is based on
original code in Vista, but has been altered to take advantage of many features available in more recent versions of HiveMind.
Keeping the names seperate keeps us honest about the differences between a product actually in production (Vista) versus an
idealized version used for demonstration and tutorial purposes (Panorama).

With al these interrelated tools and services, the ssimple act of starting up the application was
complex. Many tools and services have startup operations, things that need to occur when
the application first starts up within the application server. For example, the help service
reads and caches help text stored within the database. The mail service creates periodic jobs
to peform database garbage collection of deleted mail items. All told, Vista had over 40
different tasks to perform at startup ... many with subtle dependencies (such as the mail tool
needing the job scheduler service to be up and running).

The legacy version of Vista startup consisted of a WebLogic startup class that invoked a
central stateless session EJB. The startup EJB was responsible for performing all 40+ startup
tasks ... typically by invoking a public static method of a class related to the tool.

This was problematic for several reasons. It created a dependency on WebL ogic to manage
startup (really, a minor consideration, but one nonetheless). More importantly, it created an
unnecessary binding between the startup EJB and all the other code in all the other tools.
These unwanted dependencies created ripple effects throughout the code base that impacted
refactored efforts, and caused deployment problems that complicated the build (requiring the
duplication of many common classes inside the startup EJB's JAR, to resolve runtime
classloader dependencies).

It's all about class loaders. The class loader that loaded the startup EJB didn't have visibility to the contents of the other EJB
JARs deployed within the Vista EAR. To satisfy WebL ogic's gbc command (EJB JAR packaging tool), and to succesfully
locate the classes at runtime, it was necessary to duplicate many classes from the other EJB JARS into the startup EJB JAR.
With HiveMind, this issue goes away, since the module deployment descriptors store the class name, and the serviet thread's
context class loader is used to resolve that name ... and it has visibility to all the classesin all the EJB JARs.

4.2.1. Enter HiveMind

HiveMind's ultimate purpose was to simplify all aspects of Vista development and create a
simpler, faster, more robust development environment. The first step on this journey, a tria
step, was to rationalize the startup process.

Each startup task would be given a unique id, a title and a set of dependencies (on other
tasks). How the task actually operated was left quite abstract ... with careful support for

Page 74

Jakarta HiveMind Project Documentation

supporting the existing legacy approach (public static methods). What would change would
be how these tasks were executed.

The advantage of HiveMind is that each module can contribute as many or as few startup
tasks as necessary into the Startup configuration point as needed. This allows the startup
logic to be properly encapsulated in the module. The startup logic can be easily changed
without affecting other modules, and without having to change any single contentious
resource (such as the legacy approach's startup EJB).

4.2.2. Startup task schema

The schema for startup tasks contributions must support the explicit ordering of execution
based on dependencies. With HiveMind, there's no telling in what order modules will be
processed, and so no telling in what order contributions will appear within a configuration
point ... so it is necessary to make ordering explicit by giving each task a unique id, and
listing dependencies (the ids of tasks that must precede, or must follow, any single task).

Special consideration was given to supporting legacy startup code in the tools and services;
code that stays in the form of a public static method. As HiveMind is adopted, these static
methods will go away, and be replaced with either HiveMind services, or smple objects. In
the very long term, much of this startup logic will become uncessary, as more of the system
will be implemented using HiveMind services, which will lazily initialize just as needed.

The schema definition (with desriptions removed, for compactness) follows:

<schema i d="Tasks">
<el enent nanme="t ask">
<attribute name="title" required="true"/>
<attribute nanme="id" required="true"/>
<attribute name="before"/>
<attribute name="after"/>
<attribute nanme="executable" required="true" translator="object"/>

<conversi on cl ass="com panor amna. startup.inpl. Task"/>
</ el ement >

<el enent nanme="static-task">
<attribute name="title" required="true"/>
<attribute name="id" required="true"/>
<attribute nanme="before"/>
<attribute nanme="after"/>
<attribute nanme="cl ass" translator="cl ass" required="true"/>
<attribute name="met hod"/>

<rul es>
<creat e-obj ect cl ass="com panorana. startup.inpl. Task"/>
<i nvoke- parent net hod="addEl ement"/>

Page 75

Jakarta HiveMind Project Documentation

<read-attribute attribute="id" property="id"/>
<read-attribute attribute="title" property="title"/>
<read-attribute attribute="before" property="before"/>
<read-attribute attribute="after" property="after"/>

<creat e-obj ect cl ass="com panorama. startup.inpl.ExecuteStatic"/>
<i nvoke- parent net hod="set Execut abl e"/ >

<read-attribute attribute="class" property="targetd ass"/>
<read-attribute attribute="nmethod" property="methodNanme"/>
</rul es>
</ el ement >
</ schema>

For more details, see the HiveDaoc for the Tasks schema.

This schema supports contributions in two formats. The first format allows an arbitrary
object or service to be contributed:

<task id="mmil" title="Mil" executable="service: Mil Startup"/>

The execut abl e attribute is converted into an object or service, here the ser vi ce:
prefix indicates that the rest of the string, Mai | St ar t up, is a service id (other prefixes are
defined by the hivemind.ObjectProviders configuration). If this task has dependencies, the
bef ore and af t er attributes can be specified as well.

To support legacy code, a second option, st at i c-t ask, isprovided:

<static-task id="di scussions" title="Discussions" after="mail" class="com panorana. di sc

Thest ati c-task element duplicatesthei d,titl e, bef ore andaft er attributes, but
replaces execut abl e with cl ass (the name of the class containing the method) and
nmet hod (the name of the method to invoke, defaulting to "init™).

4.2.3. Startup Service

The schema just defines what contributions look like and how they are converted to objects;
we need to define a Startup configuration point using the schema, and a Startup service that
uses the configuration point.

<configuration-point id="Startup" schema-id="Tasks"/>

<servi ce-point id="Startup"” interface="java.l ang. Runnabl e">
<i nvoke-factory>
<construct class="com panorama. startup.inpl. TaskExecutor">
<set-configuration property="tasks" configuration-id="Startup"/>

Page 76

Jakarta HiveMind Project Documentation

</ construct >
</i nvoke-factory>
</ servi ce- poi nt >

<contribution id="hivem nd. Startup">
<startup object="service: Startup"/>
</contri bution>

The hi vem nd. St ar t up configuration point is used to ensure that the Panorama Startup
service is executed when the Registry itself is constructed.

4.2.4. Implementation

All that remainsis the implementations of the service and task classes.

4.2.4.1. Executablejava

package com panor ama. startup;

/**
* Much like {@ink java.l ang. Runnabl e}, but allows the caller
: to handl e any exceptions thrown.
:/ @ut hor Howard Lew s Ship

public interface Executable

{

public void execute() throws Exception;

The Executable interface is implemented by tasks, and by services or other objects that need
to be executed. It t hr ows Excepti on so that exception catching and reporting can be
centralized inside the Startup service.

4.2.4.2. Task.java
package com panorana. startup.inmpl;

i mport org. apache. hi vem nd. i npl . BaseLocat abl e;
i mport com panor ama. st art up. Execut abl e;

/
An operation that may be executed. A Task exists to wap
an {@ink com panorana. startup. Execut abl e} object with
atitl

title and ordering information (id, after, before).

*
*
*
*
*
* @ut hor Howard Lew s Ship
*
/

public class Task extends Baselocat abl e i npl ements Execut abl e

private String _id;

Page 77

Jakarta HiveMind Project Documentation

private String title;

private String _after;

private String _before;

private Executabl e _executabl e;

public String getBefore()

return _before;

}
public String getld()

—~

return _id;

ublic String getAfter()

return _after;

ublic String getTitle()

return _title;

ubli ¢ voi d set Execut abl e(Execut abl e execut abl e)

_execut abl e = execut abl e;

ublic void setBefore(String string)

_before = string;

ublic void setld(String string)

_id = string;

ublic void setAfter(String string)

_after = string;

ublic void setTitle(String string)

_title = string;

—~— ~g —~ ~ -~ o~ ~ ~p -~ g —~— ~g —~ ~ —

/**
* Delegates to the { @i nk #set Execut abl e(Execut abl e) execut abl e} obj ect.
*/

public void execute() throws Exception

Page 78

Jakarta HiveMind Project Documentation

_execut abl e. execute();

}

The Task class is a wrapper around an Executable object; whether that's a service, some
arbitrary object, or a StaticTask.

4.2.4.3. ExecuteStatic.java
package com panor anma. startup.inmpl;

i mport java.l ang.refl ect. Met hod;
i nport com panor ama. st artup. Execut abl e;

/ *
Used to access the |l egacy startup code that is in the form
of a public static nmethod (usually <code>init()</code>) on sone

cl ass.

* %k X F * X

@ut hor Howard Lewi s Ship
*/
public class ExecuteStatic inplements Executable

{

private String _nethodNane = "init";
private C ass _targetd ass;

public void execute() throws Exception
Met hod m = _targetd ass. get Met hod(_net hodNanme, nul |);

m i nvoke(null, null);

/**

* Sets the name of the method to invoke; if not set, the default is <code>init</co
* The target class nmust have a public static method with that nanme taking no

* paraneters.

*/

public void set Met hodName(String string)

_met hodNanme = string;

/**

* Sets the class to invoke the nmethod on.
*/
public void setTargetC ass(C ass targetC ass)

_targetd ass = targetd ass;

Page 79

Jakarta HiveMind Project Documentation

ExecuteStatic uses Java reflection to invoke a public static method of a particular class.

4.2.4.4. TaskExecutor.java
package com panor ana. startup.inmpl;

import java.util.lterator;
i mport java.util.List;

i mport org.apache. commons. | oggi ng. Log;

i mport org. apache. hi vem nd. Err or Handl er
i mport org.apache. hi venm nd. Messages;

i mport org.apache. hi vem nd. order. Or derer

/**

* A service that executes a series of {@ink com panorama. startup.inpl.Task}s. Tasks h
* an ordering based on pre- and post-requisites.

*

* @ut hor Howard Lew s Ship
*/
public class TaskExecutor inplenments Runnable

private ErrorHandl er _errorHandl er
private Log _|og;

private List _tasks;

private Messages _nessages;

/**

* Orders the {@ink #set Tasks(List) tasks} into an execution order, and executes

* each in turn. Logs the elapsed tinme, nunber of tasks, and the nunber of failure
*/

public void run()

{
long startTime = SystemcurrentTimeMI1is();
Orderer orderer = new Orderer(_log, _errorHandler, task());

= tasks.iterator();

Iterator i
ile (i.hasNext())

wh
{ Task t = (Task) i.next();

orderer.add(t, t.getld(), t.getAfter(), t.getBefore());
}

Li st orderedTasks = orderer.get OrderedCbjects();
int failures = 0;

i = orderedTasks.iterator();
while (i.hasNext())

Task t = (Task) i.next();

Page 80

Jakarta HiveMind Project Documentation

if (!execute(t))
failures++

}
| ong el apsedTinme = SystemcurrentTimeM | 1is() - startTine;

if (failures ==
_log.info(success(orderedTasks. size(), elapsedTine));
el se
_log.info(failure(failures, orderedTasks.size(), elapsedTine));

}
/**

* Execute a single task.

*

: @eturn true on success, false on failure
pr{vate bool ean execut e(Task t)
_log.info(executingTask(t));
try
{
t.execute();
return true
catch (Exception ex)
{ _errorHandl er.error(_Il og, exceptionlnTask(t, ex), t.getLocation(), ex);
return false;
}
private String task()

return _nessages. get Message("task");

}

private String executingTask(Task t)

—~

return _nmessages.format ("executing-task", t.getTitle());

rivate String exceptionlnTask(Task t, Throwabl e cause)

return _nessages.format("exception-in-task", t.getTitle(), cause);

rivate String success(int count, |long el apsedTineMIlis)

~0 -~ o~ —

return _messages. format("success”, new Integer(count), new Long(el apsedTi neM ||

Page 81

Jakarta HiveMind Project Documentation

}

private String failure(int failureCount, int total Count, |ong el apsedTimeMIIis)

return _nessages. format (
"failure",
new | nt eger (fail ureCount),
new | nt eger (total Count),
new Long(el apsedTimeM I1is));

}
public voi d setErrorHandl er (ErrorHandl er handl er)
{
_errorHandl er = handl er;
}
public void setLog(Log | og)
{
_log = | og;
}
public void set Messages(Messages messages)
{
_nessages = nessages;
}
public void setTasks(List |ist)
{
_tasks = list;
}
}
This class is where it al comes together; it is the core service implementation for the
panor ama. startup. Startup service. It is constructed by the

hivemind.BuilderFactory, which autowires the error Handl er, | og and nessages
properties, as well asthet asks property (which is explicitly set in the module deployment
descriptor).

Most of the r un() method is concerned with ordering the contributed tasks into execution
order and reporting the results.

4.2.5. Unit Testing

Unit testing in HiveMind is accomplished by acting like the container; that is, your code is
responsible for instantiating the core service implementation and setting its properties. In
many cases, you will set the properties to mock objects ... HiveMind uses EasyMock
extensively, and provides a base class, H veM ndTest Case, that contains much support
for creating Mock controls and objects.

Page 82

http://www.easymock.org/

Jakarta HiveMind Project Documentation

4.2.5.1. TestTaskExcecutor.java
package com panor ana. startup.inmpl;

i mport java.util.Arraylist;

i mport java.util.Collections;
i mport java.util.List;

i mport java.util.Local e;

i mport org. apache. commons. | oggi ng. Log;

i mport org. apache. hi vem nd. Appl i cati onRunti meExcepti on;
i mport org.apache. hi vem nd. Err or Handl er;

i mport org. apache. hi vem nd. Messages;

i mport org.apache. hi ven nd. Resour ce;

i nport org. apache. hi vem nd. i npl . Messagesl| npl ;

i mport org.apache. hi vemi nd. t est. Excepti onAwar eAr gunent sivat cher ;
i mport org. apache. hi veni nd. t est. H veM ndTest Case;

i mport org. apache. hi veni nd. t est. RegexpAr gunent shat cher ;
i mport org.apache. hivemind. util.Fil eResource;

i mport org.easynock. MockControl ;

i mport com panor ama. st art up. Execut abl e;

* %
/: Tests for the {@ink com panorama. startup.inpl. TaskExecutor} service.
: @ut hor Howard Lew s Ship
pu{al i c class Test TaskExecutor extends Hi veM ndTest Case
{ private static List _tokens = new ArraylList();
protected void setUp()

_tokens.clear();

}
protected voi d tear Down()
{
_tokens.clear();
}
public static void addToken(String token)
{
_tokens. add(t oken);
}
public Messages get Messages()
{
}

public void testSuccess()

Page 83

Jakarta HiveMind Project Documentation

Execut abl eFi xture f1 = new Execut abl eFi xture("f1");
Task t1 = new Task();

. set Execut abl e(f1);
.setld("first");

.set After("second");
.setTitle("Fixture #1");

~ ~ — —t
RPRRR

Execut abl eFi xture f2 = new Execut abl eFi xture("f2");

Task t2 = new Task();

t 2. set Execut abl e(f 2);
t2.setld("second");
t2.setTitle("Fixture #2");

Li st tasks = new ArrayList();
tasks. add(t1);
t asks. add(t 2);

MockControl [ogControl = newControl (Log.class);
Log log = (Log) | ogControl.getMck();

TaskExecut or e = new TaskExecutor () ;
ErrorHandl er errorHandl er = (ErrorHandl er) newMbck(Error Handl er. cl ass);

e. set Error Handl er (error Handl er) ;
e.setLog(l og);

e. set Messages(get Messages()) ;

e. set Tasks(tasks);

/ Note the ordering; explicitly set, to check that ordering does
/ take place.

0g. i nfo("Executing task Fixture #2.)

og. i nfo("Executing task Fixture #1.

og. i nfo("Executed 2 tasks \\(in \\d+ n1ll|seconds\\)\\ ");

ogCont rol . set Mat cher (new RegexpAr gunent siat cher ());

/
/
I
I
I
I
repl ayControl s();

e.run();

assertListskEqual (new String[] { "f2", "f1" }, _tokens);

verifyControl s();

}

In this listing (which is a paired down version of the rea class), you can see how mock
objects, including EasyMock objects, are used. The ExecutableFixture classes will invoke the
addToken() method; the point is to provide, in the tasks List, those fixtures wrapped in

Page 84

Jakarta HiveMind Project Documentation

Task objects and see that they are invoked in the correct order.

We create a Mock Log object, and check that the correct messages are logged in the correct
order. Once we have set the expectations for all the EasyMock controls, we invoke
repl ayControl s() and continue with our test. The verifyControl s() method
ensures that all mock objects have had all expected methods invoked on them.

That's just unit testing; you always want to supplement that with integration testing ... to
ensure, at the very least, that your schema is valid, the conversion rules work, and the
contributions are correct. However, as the code coverage report shows, you can reach very
high levels of code coverage (and code confidence) using unit tests.

4.3. Creating a Logging I nter ceptor

One of the most powerful features of HiveMind is the ability to create interceptors for
services. Interceptors provide additional behavior to a service, often a cross-cutting concern
such as logging or transaction management. Interceptors can be thought of as "aspect
oriented programming lite".

This example shows how easy it can be to create an interceptor; it creates a simplified
version of the standard hivemind.L ogginglnterceptor.

The real logging interceptor uses the Javassist bytecode enhancement framework to create a
new class at runtime. This has some minor advantages in terms of runtime performance, but
is much more complicated to implement and test than this example, which uses JDK
Dynamic Proxies.

4.3.1. TheInterceptor Factory

Interceptors are created by interceptor factories, which are themselves HiveMind services.
Interceptor factories implement the Servicel nterceptorFactory interface.

Our implementation is very simple:
package org. apache. hi vem nd. exanpl es. i npl ;

i mport java.lang.reflect.I|nvocati onHandl er
i nport java.lang.reflect. Proxy;
i mport java.util.List;

i mport org.apache. cormons. | oggi ng. Log;

i mport org.apache. hi veni nd. | nt er cept or St ack

i mport org.apache. hi vem nd. Servi cel nt ercept or Fact ory;
i mport org. apache. hi vemi nd. i nt ernal . Modul e;

public class ProxyLoggi nglnterceptorFactory inplenents ServicelnterceptorFactory

Page 85

http://www.jboss.org/products/javassist

Jakarta HiveMind Project Documentation

public void createlnterceptor(lnterceptorStack stack, Mdul e i nvoki nghdul e,

Log | og = stack. get ServicelLog();

List p

I nvocat i onHandl er handl er = new ProxyLoggi ngl nvocat i onHandl er (1 og, stack. peek()

bj ect interceptor =
Pr oxy. newPr oxyl nst ance(
i nvoki nghbodul e. get C assResol ver (). get C assLoader (),
new Cl ass[] { stack.getServicelnterface()},
handl er) ;

st ack. push(interceptor);

}

The cr eat el nt er cept or () method is passed the InterceptorStack, the Module of the
invoking module (the module containing the service being created), and any parameters
passed to the interceptor (from inside the <interceptor> element). This example does not
make use of parameters, but the real logging interceptor uses parameters to control which
methods are, and are not, logged.

An interceptor's job is to peek() at the top object on the stack and create a new object,
wrapped around the top object, that provides new behavior. The top object on the stack may
be the core service implementation, or it may be another interceptor ... al that's known for
sureisthat it implements the service interface defined by the <service-point>.

The interceptor in this case is a dynamic proxy, provided by
Proxy. newPr oxyl nst ance(). The key here is the invocation handler, and object
(described shortly) that is notified any time a method on the interceptor proxy isinvoked.

Once the interceptor is created, it is pushed onto the stack. More interceptors may build upon
it, adding yet more behavior.

In HiveMind, a single Log instance is used when constructing a service as well as by any
interceptors created for the service. In other words, by enabling logging for a particular
service id, you will see log events for every aspect of the construction of that particular
service. If you add a logging interceptor, you'll also see method invocations. To ensure that
logging takes place using the single logging instance, neither the class nor the interceptor
factory is responsible for creating the logging instance ... that's the responsibility of
HiveMind. The logging instance to use is provided by the get Ser vi ceLog() method of
the InterceptorStack instance provided to the interceptor factory.

4.3.2. Invocation Handler

Page 86

Jakarta HiveMind Project Documentation

The invocation handler is where the intercepting really takes place; it isinvoked every time a
method of the proxy object isinvoked and has a chance to add behavior before, and after (or
even instead of!) invoking a method on the next object in the stack. What is the "next
object"? It's the next object in the interceptor stack, and may be another interceptor instance,
or may be the core service implementation.

package org. apache. hi vem nd. exanpl es. i npl ;

i mport java.lang.reflect.Invocati onHandl er

i mport java.lang.refl ect.|nvocati onTar get Excepti on
i mport java.lang.reflect. Method;

i mport org.apache. cormons. | oggi ng. Log;
i mport org.apache. hi verm nd. service.inpl.Loggi ngltils;

public class ProxyLoggi ngl nvocati onHandl er inplenents |nvocati onHandl er

private Log | og;
private Qbject _inner;

publ i ¢ ProxyLoggi ngl nvocati onHandl er (Log | og, Object inner)
{

_log = log;

_inner = inner;
}
public Object invoke(Object proxy, Method method, Object[] args) throws Throwabl e
{

bool ean debug = _| og.isDebugEnabl ed();

i f (debug)

Loggi ngUtils.entry(_l og, nethod. get Name(), args);
try
{ oj ect result = method.invoke(_inner, args);
i f (debug)
i f (method. get ReturnType() == void.cl ass)

Loggi ngUti | s. voi dExi t (_| og, nethod. get Nanme());
el se

Loggi ngUtils.exit(_log, nethod.getName(), result);
}

return result;
catch (I nvocationTarget Excepti on ex)
Throwabl e t arget Excepti on = ex. get Tar get Excepti on();

i f (debug)
Loggi ngUti |l s. exception(_l og, method. get Name(), target Exception);

Page 87

Jakarta HiveMind Project Documentation

t hrow t ar get Excepti on;

}

The i nvoke() method is the key. Using the remembered Log instance, and the
remembered inner object (the next inner object on the interceptor stack ... the object that was
peek() -ed). The code for actually generating the logging output is inside static methods of
theLoggi ngUti | s utility class-- in thisway the output from this interceptor isidentical to
the output when using hivemind.L ogginglnterceptor.

Thei nvoke() method isinvoked for all methods that can be invoked on the proxy ... this
includes the methods of the service interface, but also includes j ava. | ang. Obj ect
methods such ashashCode() ort oStri ng().

The hivemind.L ogginglnterceptor will typically add its own implementation of t oSt ri ng(), to assist in debugging (it
clearly identifies itself as an interceptor object, and identifies the service id and service interface). This proxy-based
implementation does not, so invokingt oSt ri ng() on the proxy will end up invoking the method on the next object.

4.3.3. Declaring the inter ceptor factory

Like any other service, an service interceptor factory must appear inside a HiveMind module
deployment descriptor:

<servi ce-poi nt id="ProxyLoggi nglnterceptor"” interface="org.apache. hiveni nd. Servi cel nter
<creat e-i nstance cl ass="org. apache. hi veni nd. exanpl es. i npl . ProxyLoggi ngl nt er cept or Fact
</ servi ce- poi nt >

4.3.4. Using the inter ceptor
Using the interceptor is the same as using any other interceptor; the <interceptor> element
simply hasto point at the correct service:

<service-point id="Target" interface="org.apache. hi vem nd. exanpl es. Tar get Servi ce">
<creat e-i nstance cl ass="org. apache. hi vem nd. exanpl es. i npl . Tar get Servi cel npl "/ >

<i nterceptor service-id="ProxylLoggi nglnterceptor"/>

</ servi ce- poi nt >

The Tar get Ser vi ce interface defines three methods used to demonstrate the logging
interceptor:

package org. apache. hi vem nd. exanpl es;

Page 88

Jakarta HiveMind Project Documentation

i mport java.util.List;

public interface TargetService
public void voi dMet hod(String string);
public List buildList(String string, int count);
public void exceptionThrower();

The implementation classis equally inspiring:

package org. apache. hi vem nd. exanpl es. i nmpl ;

i mport java.util.ArraylList;
i mport java.util.List;

i mport org. apache. hi veni nd. Appl i cati onRunt i meExcepti on
i mport org. apache. hi vem nd. exanpl es. Tar get Ser vi ce;

public class Target Servicel npl inplenents Target Service

public void voi dMet hod(String string)
{

}
public List buildList(String string, int count)
Li st result = new ArrayList();

for (int i =0; i < count; i++)
result.add(string);

return result;

public void exceptionThrower ()
t hrow new Appl i cati onRunti meExcepti on(" Some application exception.");
}
4.3.5. Running the examples

From the exanpl es directory, run ant conpile, then run ant -enmacs
run-1| oggi ng:

bash-2. 05b$ ant -enmcs run-Ioggi ng
Buil dfile: build.xm

Page 89

Jakarta HiveMind Project Documentation

run-1| oggi ng:
[DEBUG Creating SingletonProxy for service exanpl es. Tar get

Tar get

*** \oid nethod (no return val ue):

Tar get
Tar get

DEBUG Constructing core service inplenmentation for service exanpl es. Tar get
DEBUG Applying interceptor factory exanpl es. ProxyLoggi ngl ntercept or

ProxyLoggi ngl nterceptor [DEBUF Creating SingletonProxy for service exanpl es. ProxylLogg

Pr oxyLo

Tar get
Tar get

* %k % 0

Tar get
Tar get

ggi ngl nterceptor [DEBUG Constructing core service inplenmentation for service ex
DEBUG BEG N voi dMet hod(Hel | 0)
DEBUG END voi divet hod()

dinary nethod (returns a List):

DEBUG BEG N bui | dLi st (H veM nd, 4)
DEBUG END bui | dLi st () [[Hi veM nd, H veM nd, H veM nd, H veM nd]]

*** Exception nethod (throws an exception):

Tar get
Tar get

at
at
at
at
at
at
at
at
at

DEBUG BEG N excepti onThrower ()
DEBUG EXCEPTI ON excepti onThrower () -- org. apache. hi veni nd. Appl i cati onRunt i meEx
or g. apache.

hi vem nd. Appl i cati onRunti meExcepti on: Some application exception

or g. apache. hi veni nd. exanpl es. i npl . Tar get Servi cel npl . excepti onThr ower (Tar get S
sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . java: 39
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | nmpl
java. |l ang. refl ect. Met hod. i nvoke(Met hod. j ava: 324)

or g. apache. hi vem nd. exanpl es. i npl . ProxyLoggi ngl nvocat i onHandl er. i nvoke(Proxy
$Proxy0. excepti onThr ower (Unknown Sour ce)

$Si ngl et onProxy_f e67f 7e0ae_12. excepti onThr ower ($Si ngl et onProxy_f e67f 7efae_12
or g. apache. hi veni nd. exanpl es. Loggi ngMai n. mai n(Loggi nhghai n. j ava: 27)

sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | mpl . j ava: 39
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | np

java.l ang. refl ect.Method. i nvoke(Met hod. j ava: 324)

org. apache. tool s. ant . t askdef s. Execut eJava. run(Execut eJava. j ava: 193)

org. apache. tool s. ant . t askdef s. Execut eJava. execut e(Execut eJava. j ava: 130)

org. apache. tool s. ant . t askdef s. Java. run(Java. j ava: 705)

org. apache. tool s. ant . t askdef s. Java. execut eJava(Java. j ava: 177)

org. apache. tool s. ant . t askdef s. Java. execut e(Java. j ava: 83)

or g. apache. t ool s. ant . UnknownEl enment . execut e(UnknownEl enent . j ava: 275)

or g. apache. t ool s. ant . Task. perf or m{ Task. j ava: 364)

or g. apache. tool s. ant . Tar get . execut e(Tar get . j ava: 341)

org. apache. tool s. ant. Tar get . per f or niTasks(Tar get . j ava: 369)

org. apache.tool s. ant. Proj ect. execut eTar get (Proj ect.java: 1214)

or g. apache. tool s. ant. Proj ect . execut eTarget s(Proj ect.java: 1062)

org. apache. tool s. ant. Mai n. runBui | d(Mai n. j ava: 673)

org. apache. tool s. ant. Mai n. start Ant (Mai n. j ava: 188)

or g. apache. tool s. ant. | aunch. Launcher. run(Launcher.java: 196)

org. apache. tool s. ant. | aunch. Launcher . mai n(Launcher. j ava: 55)

BUI LD SUCCESSFUL
time: 3 seconds

Tot al

Page 90

Jakarta HiveMind Project Documentation

The |l og4j . properti es file for the examples has enabled debug logging for the entire
module; thus we see some output about the construction of the
ProxyLoggi ngl nt er cept or service as it is employed to construct the interceptor for
the Tar get service.

4.3.6. Conclusion

Implementing a basic interceptor using HiveMind is very simple when using JDK Dynamic
Proxies. You can easily provide code that dlips right into the calling sequence for the
methods of your services with surprisingly little code. In addition, the APIs do not force you
to use any single approach; you can use JDK proxies as here, use Javassist, or use any
approach that works for you. And because interceptor factories are themselves HiveMind
services, you have access to the entire HiveMind environment to implement your interceptor
factories.

4.4. Reports
44.1.

4.4.2.

4.43.

5. Other Resour ces
6. Complete Site

7. Related Projects

Page 91

	1 HiveMind Project
	1.1 Reference
	1.1.1 HiveMind Services
	1.1.1.1 Defining Services
	1.1.1.2 Extending Services
	1.1.1.2.1 Service Constructors
	1.1.1.2.2 Implementation Factories
	1.1.1.2.3 Interceptor Contributions

	1.1.1.3 A short example
	1.1.1.4 Primitive Service Model
	1.1.1.5 Singleton Service Model
	1.1.1.6 Threaded Service Model
	1.1.1.7 Pooled Service Model
	1.1.1.8 Service Lifecycle
	1.1.1.9 Services and Events
	1.1.1.10 Frequently Asked Questions

	1.1.2 Configuration Points
	1.1.2.1 Defining a Configuration Point
	1.1.2.1.1 Defining the Contribution Format

	1.1.2.2 Accessing Configuration Points
	1.1.2.3 Lazy Loading
	1.1.2.4 Substitution Symbols
	1.1.2.4.1 Symbol Sources

	1.1.2.5 Frequently Asked Questions

	1.1.3 HiveDoc
	1.1.4 HiveMind Module Descriptor
	1.1.4.1 attribute
	1.1.4.2 configuration-point
	1.1.4.3 contribution
	1.1.4.4 conversion
	1.1.4.5 create-instance
	1.1.4.6 element
	1.1.4.7 implementation
	1.1.4.8 interceptor
	1.1.4.9 invoke-factory
	1.1.4.10 map
	1.1.4.11 module
	1.1.4.12 parameters-schema
	1.1.4.13 rules
	1.1.4.14 schema
	1.1.4.15 service-point
	1.1.4.16 sub-module

	1.1.5 Contribution Processing Rules
	1.1.5.1 Rules
	1.1.5.1.1 create-object
	1.1.5.1.2 custom
	1.1.5.1.3 invoke-parent
	1.1.5.1.4 push-attribute
	1.1.5.1.5 read-attribute
	1.1.5.1.6 read-content
	1.1.5.1.7 set-module
	1.1.5.1.8 set-parent
	1.1.5.1.9 set-property

	1.1.5.2 Translators
	1.1.5.2.1 bean
	1.1.5.2.2 boolean
	1.1.5.2.3 class
	1.1.5.2.4 configuration
	1.1.5.2.5 double
	1.1.5.2.6 enumeration
	1.1.5.2.7 id-list
	1.1.5.2.8 instance
	1.1.5.2.9 int
	1.1.5.2.10 long
	1.1.5.2.11 object
	1.1.5.2.12 qualified-id
	1.1.5.2.13 resource
	1.1.5.2.14 service
	1.1.5.2.15 service-point
	1.1.5.2.16 smart

	1.1.6 Library Dependencies

	1.2 History of Changes
	1.2.1 Version 1.0-rc-2 (Sep 11 2004)
	1.2.2 Version 1.0-rc-1 (Aug 25 2004)
	1.2.3 Version 1.0-beta-2 (Aug 1 2004)
	1.2.4 Version 1.0-beta-1 (Jun 26 2004)

	1.3 Todo List
	1.3.1 Release 1.1

	1.4 HiveMind Downloads
	1.5 CVS Access
	1.6 Tutorials and Information
	1.6.1 Bootstrapping the Registry
	1.6.1.1 Service Interfaces and Implementations
	1.6.1.2 Module Deployment Descriptor
	1.6.1.3 Building the Registry
	1.6.1.4 Building the Example
	1.6.1.5 Running the Examples

	1.6.2 Inversion of Control
	1.6.3 HiveMind Localization
	1.6.3.1 Setting the locale

	1.6.4 HiveMind Multi-Threading
	1.6.4.1 Construction State
	1.6.4.2 Runtime State
	1.6.4.3 Managing Service State

	1.6.5 HiveMind Servlet Filter
	1.6.5.1 Deployment Descriptor

	1.6.6 Overriding a Service
	1.6.6.1 Step One: A non-overridable service
	1.6.6.2 Step Two: Add some indirection
	1.6.6.3 Step Three: Override!
	1.6.6.4 Limitations

	1.6.7

	1.7 Reports
	1.7.1 Project License
	1.7.2

	2 Module: hivemind
	2.1 Services
	2.1.1 hivemind.BuilderFactory Service
	2.1.1.1 construct
	2.1.1.2 Autowiring
	2.1.1.3 Constructor Parameter Elements
	2.1.1.4 Service Property Configuring Elements
	2.1.1.4.1 event-listener
	2.1.1.4.2 set
	2.1.1.4.3 set-configuration
	2.1.1.4.4 set-object
	2.1.1.4.5 set-resource
	2.1.1.4.6 set-service

	2.1.2 hivemind.LoggingInterceptor Service
	2.1.3 hivemind.ShutdownCoordinator Service
	2.1.4 hivemind.ThreadLocalStorage Service

	2.2 Configurations
	2.2.1 hivemind.ApplicationDefaults Configuration
	2.2.2 hivemind.EagerLoad Configuration
	2.2.3 hivemind.FactoryDefaults Configuration
	2.2.4 hivemind.ObjectProviders Configuration
	2.2.5 hivemind.ServiceModels Configuration
	2.2.6 hivemind.SymbolSources Configuration
	2.2.7 hivemind.Translators Configuration

	2.3 Ant Tasks
	2.3.1 ConstructRegistry Ant Task
	2.3.1.1 Parameters
	2.3.1.2 Parameters specified as nested elements
	2.3.1.2.1 descriptors

	2.3.1.3 Examples

	2.3.2 ManifestClassPath Ant Task
	2.3.2.1 Parameters
	2.3.2.2 Parameters specified as nested elements
	2.3.2.2.1 classpath

	2.3.2.3 Examples

	2.4 Reports
	2.4.1
	2.4.2

	3 Module: hivemind.lib
	3.1 Services
	3.1.1 hivemind.lib.BeanFactoryBuilder Service
	3.1.1.1 Usage
	3.1.1.2 Configuration

	3.1.2 hivemind.lib.DefaultImplementationBuilder Service
	3.1.3 hivemind.lib.EJBProxyFactory Service
	3.1.4 hivemind.lib.NameLookup Service
	3.1.5 hivemind.lib.PlaceholderFactory Service
	3.1.6 hivemind.lib.PipelineFactory Service
	3.1.6.1 Usage
	3.1.6.2 Configuration
	3.1.6.3 Contributions
	3.1.6.3.1 filter
	3.1.6.3.2 terminator

	3.1.7 hivemind.lib.RemoteExceptionCoordinator Service
	3.1.8 hivemind.lib.ServicePropertyFactory Service
	3.1.9 hivemind.lib.SpringLookupFactory Service

	3.2 Reports
	3.2.1
	3.2.2

	4 Example Code
	4.1 Calculator
	4.2 Panorama Startup
	4.2.1 Enter HiveMind
	4.2.2 Startup task schema
	4.2.3 Startup Service
	4.2.4 Implementation
	4.2.4.1 Executable.java
	4.2.4.2 Task.java
	4.2.4.3 ExecuteStatic.java
	4.2.4.4 TaskExecutor.java

	4.2.5 Unit Testing
	4.2.5.1 TestTaskExcecutor.java

	4.3 Creating a Logging Interceptor
	4.3.1 The Interceptor Factory
	4.3.2 Invocation Handler
	4.3.3 Declaring the interceptor factory
	4.3.4 Using the interceptor
	4.3.5 Running the examples
	4.3.6 Conclusion

	4.4 Reports
	4.4.1
	4.4.2
	4.4.3

	5 Other Resources
	6 Complete Site
	7 Related Projects

