HPSF HOW-TO

by Rainer Klute

1. How To Usethe HPSF API

This HOW-TO is organized in four sections. Y ou should read them sequentially because the
later sections build upon the earlier ones.

1.

The first section explains how to read the most important standard properties of a
Microsoft Office document. Standard properties are things like title, author, creation date
etc. It isquitelikely that you will find here what you need and don't have to read the
other sections.

The second section goes a small step further and focusses on reading additional standard
properties. It also talks about exceptions that may be thrown when dealing with HPSF
and shows how you can read properties of embedded objects.

The third section tells how to read non-standard properties. Non-standard properties are
application-specific triples consisting of an ID, atype, and avalue.

The fourth section tells you how to write property set streams. At this time HPSF
provides low-level methods only for writing properties. Therefore you have to understand
the third section before you should think about writing properties. Check the Javadoc API
documentation to find out about the details! Please note: HPSF's writing functionality is
not present in POI releases up to and including 2.5. In order to write properties you have
to download alater POI release (when available) or retrieve the POl development version
from the CV S repository.

1.1. Reading Standard Properties

This section explains how to read the most important standard properties of a Microsoft Office document. Standard properties
arethings like title, author, creation date etc. Chances are that you will find here what you need and don't have to read the other
sections.

The first thing you should understand is that properties are stored in separate documents
inside the POI filesystem. (If you don't know what a POI filesystem is, read the POIES
documentation.) A document in a POI filesystem is also called a stream.

Page 1

../poifs/index.html
../poifs/index.html

HPSF HOW-TO

The following example shows how to read a POI filesystem's "title" property. Reading other
properties IS similar. Consider the API documentation of
or g. apache. poi . hpsf. Sunmaryl nformati on to learn which methods are
availablel

The standard properties this section focusses on can be found in a document called
\0O5Summarylnformation located in the root of the POI filesystem. The notation \005 in the
document's name means the character with the decimal value of 5. In order to read the title,
an application has to perform the following steps:

1. Open the document \OO5SSummaryl nformation located in the root of the POI filesystem.
2. Create an instance of the class Sunmar yl nf or mat i on from that document.
3. Cadl the Summar yl nf or mat i on instance'sget Ti t | e() method.

Sounds easy, doesn't it? Here are the steps in detail.

1.1.1. Open the document \OO5Summaryl nformation in the r oot of the POI filesystem

An application that wants to open a document in a POI filesystem (POIFS) proceeds as
shown by the following code fragment. (The full source code of the sample application is
available in the examples section of the POI source tree as ReadTitle.java.

i mport java.io.?*;

i mport org. apache. poi . hpsf.*;

i mport org.apache. poi . poifs.eventfil esystem *;
I

public static void main(String[] args)
t hrows | OExcepti on
{

final String filenane = args[O0];

PO FSReader r = new PO FSReader () ;

r.registerlListener(new MyPO FSReader Li st ener (),
"\ 005Sunmar yl nf or mati on") ;

r.read(new Fil el nput Stream(fil enane));

Thefirst interesting statement is
PO FSReader r = new PO FSReader () ;

It creates a or g. apache. poi . poi fs. eventfil esystem PO FSReader instance
which we shall need to read the POI filesystem. Before the application actually opens the
POI filesystem we have to tell the PO FSReader which documents we are interested in. In
this case the application should do something with the document \OO5Summaryl nfor mation.

r.registerlListener(new MyPO FSReader Li st ener (),

Page 2

HPSF HOW-TO

"\ 005Sunmar yl nf or mati on") ;

This method cal registers a
or g. apache. poi . poi fs. eventfil esystem PO FSReader Li st ener with the
PO FSReader. The PO FSReader Li stener interface specifies the method
processPO FSReader Event which processes a document. The class
MyPO FSReader Li st ener implements the PO FSReader Li st ener and thus the
processPO FSReader Event method. The eventing POI filesystem calls this method
when it finds the \0O5Summarylnformation document. In the sample application
MyPO FSReader Li st ener isadtatic classin the ReadTitle,java sourcefile.

Now everything is prepared and reading the POI filesystem can start:
r.read(new Fil el nput Stream(fil enane));
The following source code fragment shows the MyPO FSReader Li st ener classand how

it retrievesthetitle.
static class MyPO FSReader Li st ener i npl enents PO FSReader Li st ener

public void processPO FSReader Event (PO FSReader Event event)
{

Sunmar yl nf ormation si = null;
try
{ , ,

si = (Summaryl nf ormati on)

PropertySet Factory. creat e(event.getStream));
catch (Exception ex)

t hrow new Runti neExcepti on
("Property set stream\"" +
event.getPath() + event.getName() + "\": " + ex);

| String title = si.getTitle();

title !'= null)

Systemout.printIn("Title: \"" + title + "\"");
el se

System out. println("Docunment has no title.");

1.
fina
if (

}
}

Theline

Sunmar yl nf ormation si = null;

declares a Summar yl nf or mat i on variable and initializes it with nul | . We need an
instance of this classto access thetitle. Theinstanceis created in at r y block:

si = (Sumaryl nf or mati on)
PropertySet Factory. create(event.getStrean());

The expression event . get St r ean() returns the input stream containing the bytes of the

Page 3

HPSF HOW-TO

property set stream named \OO5Summarylnformation. This stream is passed into thecr eat e
method of the factory class or g. apache. poi . hpsf. PropertySet Fact ory which
returns a or g. apache. poi . hpsf. PropertySet instance. It is more or less safe to
cast this result to Summaryl nf ormati on, a convenience class with methods like
getTitle(),get Aut hor () etc.

The PropertySet Fact ory. cr eat e method may throw all sorts of exceptions. Well
deal with them in the next sections. For now we just catch all exceptions and throw a
Runt i meExcept i on containing the message text of the origin exception.

If all goes well, the sample application retrieves the title and prints it to the standard output.
As you can see you must be prepared for the case that the POI filesystem does not have a
title.
final String title = si.getTitle();
if (title !'= null)

I Systemout.printin("Title: \"" + title + "\"");
el se

System out. println("Docunment has no title.");

Please note that a Microsoft Office document does not necessarily contain the
\005Summarylnformation stream. The documents created by the Microsoft Office suite have
one, as far as | know. However, an Excel spreadsheet exported from StarOffice 5.2 won't
have a \0OO5Summarylnformation stream. In this case the applications won't throw an
exception but simply does not call the pr ocessPO FSReader Event method. You have
been warned!

1.2. Additional Standard Properties, Exceptions And Embedded Objects

This section focusses on reading additional standard properties. It also talks about exceptions that may be thrown when dealing
with HPSF and shows how you can read properties of embedded objects.

A couple of additional standard properties ae not contained in the
\005Summarylnformation stream explained above, for example a document's category or the
number of multimedia clips in a PowerPoint presentation. Microsoft has invented an
additional stream named \005DocumentSummarylnformation to hold these properties. With
two minor exceptions you can proceed exactly as described above to read the properties
stored in \O0O5DocumentSummaryl nformation:

» Instead of \OO5SSummarylnfor mation use \OO5DocumentSummaryl nformation as the
stream's hame.

» Replace al occurrences of the class Sunmmar yI nf or mat i on by
Docunent Summar yl nf or mati on.

Page 4

HPSF HOW-TO

And of course you cannot call getTitle() because
Docunment Sumrar yl nf or mat i on has different query methods. See the Javadoc API
documentation for the details!

In the previous section the application simply caught al exceptions and was in no way
interested in any details. However, a real application will likely want to know what went
wrong and act appropriately. Besides any 10 exceptions there are three HPSF resp. POI
specific exceptions you should know abouit:

NoPr opert ySet St r eanmExcepti on:

This exception is thrown if the application tries to create a Pr opert ySet
instance from a stream that is not a property set stream.

(Summar yl nf or mat i on and Docunent Summar yl nf or mat i on are subclasses
of Propert ySet .) A faulty property set stream counts as not being a property
set stream at all. An application should be prepared to deal with this case even if
it opens streams named \005Summarylnformation or
\005DocumentSummaryinformation only. These are just names. A stream's
name by itself does not ensure that the stream contains the expected contents
and that this contents is correct.

Unexpect edPr opert ySet TypeExcepti on

This exception is thrown if a certain type of property set is expected somewhere
(e.g. a Summar yl nf or mat i on or Docunent Sunmar yl nf or mat i on) but the
provided property set is not of that type.

Mar kUnsuppor t edExcepti on

This exception is thrown if an input stream that is to be parsed into a property set
does not support the | nput St ream mar k(i nt) operation. The POI filesystem
uses the Docunent | nput St r eamclass which does support this operation, so
you are safe here. However, if you read a property set stream from another kind
of input stream things may be different.

Many Microsoft Office documents contain embedded objects, for example an Excel sheet
on a page in a Word document. Embedded objects may have property sets of their own. An
application can open these property set streams as described above. The only difference is
that they are not located in the POI filesystem's root but in a nested directory instead. Just
register a PO FSReader Li st ener for the property set streams you are interested in. For
example, the POIBrowser application in the contrib section tries to open each and every
document in a POI filesystem as a property set stream. If this operation was successful it
displays the properties.

1.3. Reading Non-Standard Properties

Page 5

HPSF HOW-TO

This section tells how to read non-standard properties. Non-standard properties are application-specific | D/type/value triples.

1.3.1. Overview

Now comes the real hardcode stuff. As mentioned above, Sunmar yl nf or mat i on and
Document Summar yl nf or mat i on are just special cases of the general concept of a
property set. This concept says that a property set consists of properties and that each
property isan entity with an 1D, atype, and avalue.

Okay, that was still rather easy. However, to make things more complicated, Microsoft in its
infinite wisdom decided that a property set shalt be broken into one or more sections. Each
section holds a bunch of properties. But since that's still not complicated enough, a section
may have an optiona dictionary that maps property 1Ds to property names - we'll explain
later what that means.

The procedure to get to the properties is the following:

1. UsethePr opertySet Fact ory classto createaPr opert ySet object froma
property set stream. If you don't know whether an input stream is a property set stream,
justtry tocall PropertySet Factory. create(java.io. |l nputStrean):
You'll either get aPr opert ySet instance returned or an exception is thrown.

2. Cadl thePr opert ySet 'smethod get Secti ons() to get the sections contained in the
property set. Each section is an instance of the Sect i on class.

3. Each section hasaformat ID. The format ID of the first section in a property set
determines the property set's type. For example, the first (and only) section of the
summary information property set has aformat 1D of
F29F85E0- 4FF9- 1068- AB- 91- 08- 00- 2B- 27- B3- D9. Y ou can get the format
ID with Sect i on. get Format | I() .

4. The properties contained inaSect i on can be retrieved with
Section. get Properties().Theresultisanarray of Property instances.

5. A property has aname, atype, and avalue. The Pr oper t y class has methods to retrieve
them.

1.3.2. A Sample Application

Let's have alook at a sample Java application that dumps all property set streams contained
in a POl file syssem. The full source code of this program can be found as
ReadCustomPropertySets.java in the examples area of the POI source code tree. Here are the
key sections:

i mport java.io.?*;

Page 6

HPSF HOW-TO

i mport java.util.?*;

i mport org.apache. poi . hpsf.*;

i mport org.apache. poi . poifs.eventfil esystem *;

i mport org.apache. poi . util . HexDunp;

The most important package the application needs is or g. apache. poi . hpsf. *. This
package contains the HPSF classes. Most classes named below are from the HPSF package.
Of course we also need the POIFS event file system's classesand j ava. i 0. * since we are
dealing with POI I/O. From the j ava. uti | package we use the Li st and | t er at or
class. The class or g. apache. poi . uti | . HexDunp provides a methods to dump byte
arrays as nicely formatted strings.

public static void main(String[] args)
t hrows | OExcepti on

{
final String filenane = args[O0];
PO FSReader r = new PO FSReader () ;
/* Register a listener for *all* docunents. */
r.registerlListener(new MyPO FSReader Li st ener());
r.read(new Fil el nput Stream(fil enane));

}

The PO FSReader is set up in a way that the listener MyPO FSReader Li st ener is
called on every filein the POI file system.

1.3.3. The Property Set

The listener class tries to create a PropertySet from each stream using the
PropertySet Fact ory. creat e() method:

static class MyPO FSReader Li st ener inpl enents PO FSReader Li st ener
public void processPO FSReader Event (PO FSReader Event event)
{

PropertySet ps = null;
try

{
ps = PropertySet Factory. create(event.getStream));

}
cat ch (NoPropertySet StreanExcepti on ex)
out ("No property set stream \"" + event.getPath() +
event.getName() + "\"");
return;
catch (Exception ex)
t hrow new Runti neExcepti on

("Property set stream\"" +
event.getPath() + event.getNanme() + "\": " + ex);

Page 7

HPSF HOW-TO

/[* Print the name of the property set stream */
out ("Property set stream\"" + event.getPath() +
event.getName() + "\":");

Creating the Pr opert ySet isdoneinat ry block, because not each stream in the POI file
system contains a property set. If it is some other file, the
PropertySet Factory. creat e() throws a NoPropertySet StreanExcepti on,
which is caught and logged. Then the program continues with the next stream. However, all
other types of exceptions cause the program to terminate by throwing a runtime exception. If
all went well, we can print the name of the property set stream.

1.3.4. The Sections

The next step isto print the number of sections followed by the sections themselves:

/[* Print the number of sections: */
final long sectionCount = ps.getSectionCount();
out (" No. of sections: " + sectionCount);

/* Print the list of sections: */

Li st sections = ps.getSections();

int nr = 0;

for (lterator i = sections.iterator(); i.hasNext();)

/* Print a single section: */
Section sec = (Section) i.next();

/1 See below for the conplete | oop body.

The Pr opert ySet 'smethod get Sect i onCount () returns the number of sections.

To retrieve the sections, use the get Secti ons() method. This method returns a
java. util . Li st containing instances of the Sect i on classin their proper order.

The sample code shows a loop that retrieves the Sect i on objects one by one and prints
some information about each one. Here is the complete body of the loop:

/* Print a single section: */
Section sec = (Section) i.next();
out (" Section " + nr++ + ":");
String s = hex(sec.getFormatl D(). getBytes());
s = s.substring(0, s.length() - 1)

out (" Format ID: " + s);

/[* Print the number of properties in this section. */
i nt propertyCount = sec.getPropertyCount();
out (" No. of properties: " + propertyCount);

/* Print the properties: */
Property[] properties = sec.getProperties();

Page 8

HPSF HOW-TO

for (int i2 =0; i2 < properties.length; i2++)
{
/* Print a single property: */
Property p = properties[i?2];
int id=p.getlX);
long type = p.getType();
nj ect val ue = p. get Val ue();
out (" Property ID: " +id + ", type: " + type +
", value: " + value);

}
1.3.5. The Section'sFormat 1D

The first method called on the Secti on instance is get Format 1 D() . As explained
above, the format ID of the first section in a property set determines the type of the property
set. ItstypeisCl assl Dwhich is essentially a sequence of 16 bytes. A real application using
its own type of a custom property set should have defined a unique format 1D and, when
reading a property set stream, should check the format ID is equal to that unique format ID.
The sample program just prints the format ID it finds in a section:

String s = hex(sec.getFormat| D(). getBytes());
s = s.substring(0, s.length() - 1);

out (" Format ID: " + s);

As you can see, the get Format | () method returns a Cl assl D object. An array
containing the bytes can be retrieved with Cl assl| D. get Byt es() . In order to get anicely
formatted printout, the sample program uses the hex () helper method which in turn uses the
POI utility class HexDunp in the or g. apache. poi . uti | package. Another helper
method isout () which just savestyping System out . printl n().

1.3.6. The Properties

Before getting the properties, it is possible to find out how many properties are available in
the section via the Sect i on. get Pr opert yCount (). The sample application uses this
method to print the number of properties to the standard output:

i nt propertyCount = sec.getPropertyCount();

out (" No. of properties: " + propertyCount);

Now its time to get to the properties themselves. Y ou can retrieve a section's properties with
the method Sect i on. get Properties():

Property[] properties = sec.getProperties();

As you can see the result is an array of Pr oper ty objects. This class has three methods to
retrieve a property's ID, its type, and its value. The following code snippet shows how to call
them:

for (int i2 =0; i2 < properties.length; i2++)

{
/* Print a single property: */

Page 9

HPSF HOW-TO

Property p = properties[i?2];

int id=p.getlX);

| ong type = p.get Type();

bj ect val ue = p. get Val ue();

out (" Property ID. " +id + ", type: " + type +
", value: " + value);

}
1.3.7. Sample Output

The output of the sample program might look like the following. It shows the summary
information and the document summary information property sets of a Microsoft Word
document. However, unlike the first and second section of this HOW-TO the application
does not have any code which is specific to the Summaryl nformati on and
Docunent Sunmar yl nf or mat i on classes.

Property set stream "/ Summaryl nformati on"
No. of sections: 1
Section O:
Format | D. 00000000 F2 9F 85 EO 4F F9 10 68 AB 91 08 00 2B 27 B3 D9QO .h...
No. of properties: 17

Property ID: 1, type: 2, value: 1252

Property ID: 2, type: 30, value: Titel

Property ID: 3, type: 30, value: Thena

Property ID: 4, type: 30, value: Rainer Kl ute (Autor)

Property ID: 5, type: 30, value: Test (Stichwbrter)

Property ID: 6, type: 30, value: This is a docunent for testing HPSF
Property ID:. 7, type: 30, value: Nornal.dot

Property ID: 8, type: 30, value: Unknown User

Property ID: 9, type: 30, value: 3

Property ID: 18, type: 30, value: Mcrosoft Wrd 9.0

Property ID: 12, type: 64, value: Mn Jan 01 00:59:25 CET 1601
Property ID: 13, type: 64, value: Thu Jul 18 16:22: 00 CEST 2002
Property 1D 14, type: 3, value: 1

Property ID: 15, type: 3, value: 20

Property ID: 16, type: 3, value: 93

Property ID: 19, type: 3, value: 0O

Property ID 17, type: 71 val ue: [B@n3582d

Property set stream' /EbcunentSunnarylnfornatlon
No. of sections: 2
Section O:
Format | D. 00000000 D5 CD D5 02 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE
No. of properties: 14

Property ID: 1, type: 2, value: 1252

Property ID. 2, type: 30, value: Test

Property ID: 14, type: 30, value: Rainer Klute (Manager)

Property ID: 15, type: 30, value: Rainer Klute |IT-Consulting GrH
Property ID: 5, type: 3, value: 3

Property ID: 6, type: 3, value: 2

Property ID 17, type: 3, value: 111

Property ID: 23, type: 3, value: 592636

Property ID: 11, type: 11, value: false

Property ID: 16, type: 11, value: false

Page 10

HPSF HOW-TO

Property ID: 19, type: 11, value: false
Property ID: 22, type: 11, value: false
Property ID: 13, type: 4126, value: [B@®6a499
Property ID: 12, type: 4108, value: [B@®06411
Section 1:
Format | D: 00000000 D5 CD D5 05 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE +
No. of properties: 7
Property ID: 0, type: 0, value: {6=Test-JaNein, 5=Test-Zahl, 4=Test-Datum 3=Test
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 65, value: [B@9ba38
Property ID: 3, type: 30, value: This is sonme text.
Property ID: 4, type: 64, value: Wed Jul 17 00: 00: 00 CEST 2002
Property ID: 5, type: 3, value: 27
Property I D 6, type' 11, value: true

No property set stream /vordDocunent
No property set stream "/ConpChj"
No property set stream "/1Table"

There are some interesting items to note:

» Thefirst property set (summary information) consists of a single section, the second
property set (document summary information) consists of two sections.

» Each section type (identified by its format ID) has its own domain of property ID. For
example, in the second property set the properties with ID 2 have different meaningsin
the two section. By the way, the format 1Ds of these sections are not equal, but you have
to look hard to find the difference.

» The properties are not in any particular order in the section, although they dlightly tend to
be sorted by their IDs.

1.3.8. Property I Ds

Properties in the same section are distinguished by their IDs. Thisis similar to variablesin a
programming language like Java, which are distinguished by their names. But unlike variable
names, property 1Ds are simple integral numbers. There is another similarity, however. Just
like a Java variable has a certain scope (e.g. a member variables in a class), a property 1D
also hasiits scope of validity: the section.

Two property IDs in sections with different section format 1Ds don't have the same meaning
even though their IDs might be equal. For example, ID 4 in the first (and only) section of a
summary information property set denotes the document's author, while ID 4 in the first
section of the document summary information property set means the document's byte count.
The sample output above does not show a property with an ID of 4 in the first section of the
document summary information property set. That means that the document does not have a
byte count. However, there is a property with an ID of 4 in the second section: This is a
user-defined property 1D - well get to that topic in a minute.

So, how can you find out what the meaning of a certain property ID in the summary

Page 11

HPSF HOW-TO

information and the document summary information property set is? The standard property
sets as such don't have any hints about the meanings of their property I1Ds. For example,
the summary information property set does not tell you that the property 1D 4 stands for the
document's author. This is external knowledge. Microsoft defined standard meanings for
some of the property IDs in the summary information and the document summary
information property sets. As a help to the Java and POl programmer, the class
Propertyl DMap in the org. apache. poi. hpsf.wel | known package defines
constants for the "well-known" property IDs. For example, thereisthe definition

public final static int PID AUTHOR = 4;
These definitions allow you to use symbolic names instead of numbers.

In order to provide support for the other way, too, - i.e. to map property IDs to property

names - the <class PropertylDVap defines two dsatic methods:
get Sunmar yl nf or mat i onPr operties() and
get Docunent Sumrmar yl nf or mat i onProperties(). Both return
java. util . Map objects which map property IDs to strings. Such a string gives a hint
about the property's meaning. For example,

Propertyl DMap. get Summar yl nf or mat i onProperties().get(4) returns the
string "PID_AUTHOR". An application could use this string as a key to a localized string
which is displayed to the user, e.g. "Author” in English or "Verfasser" in German. HPSF
might provide such language-dependend ("localized") mappingsin alater release.

Usualy you won't have to dea with those two maps. Instead you should cal the
Section.getPIDString(int) method. It returns the string associated with the
specified property ID in the context of the Sect i on object.

Above you learned that property IDs have a meaning in the scope of a section only.
However, there are two exceptions to the rule: The property IDs 0 and 1 have a fixed
meaning in all sections:

Property ID Meaning

0 The property's value is a dictionary, i.e. a
mapping from property IDs to strings.

1 The property's value is the number of a
codepage, i.e. a mapping from character codes
to characters. All strings in the section
containing this property must be interpreted
using this codepage. Typical property values are
1252 (8-bit "western" characters, 1SO-8859-1),
1200 (16-bit Unicode characters, UFT-16), or
65001 (8-bit Unicode characters, UFT-8).

Page 12

HPSF HOW-TO

1.3.9. Property types

A property is nothing without its value. It is stored in a property set stream as a sequence of
bytes. You must know the property's type in order to properly interpret those bytes and
reasonably handle the value. A property's type is one of the so-called Microsoft-defined
"variant types'. When you call Property. get Type() youll get al ong value which
denoting the property's variant type. The class Var i ant inthe or g. apache. poi . hpsf
package holds most of those | ong values as named constants. For example, the constant
VT 14 = 3 means a signed integer value of four bytes. Examples of other types are
VT_LPSTR = 30 meaning a null-terminated string of 8-bit characters, VT_LPWSTR =
31 which means a null-terminated Unicode string, or VT_BOOL = 11 denoting a boolean
value.

In most cases you won't need a property's type because HPSF does all the work for you.

1.3.10. Property values

When an application wants to retrieve a property's vaue and cals
Property. get Val ue(), HPSF has to interpret the bytes making out the value according
to the property's type. The type determines how many bytes the value consists of and what to
do with them. For example, if the type is VT _| 4, HPSF knows that the value is four bytes
long and that these bytes comprise a signed integer value in the little-endian format. Thisis
quite different from e.g. a type of VI_LPWSTR. In this case HPSF has to scan the value
bytes for a Unicode null character and collect everything from the beginning to that null
character as a Unicode string.

The good new is that HPSF does another job for you, too: It maps the variant type to an
adequate Java type.

Variant type: Java type:
VT_I2 java.lang.Integer
VT_l4 java.lang.Long
VT_FILETIME java.util.Date
VT_LPSTR java.lang.String
VT_LPWSTR java.lang.String
VT_CF byte[]
VT_BOOL java.lang.Boolean

Page 13

HPSF HOW-TO

The bad news is that there are still a couple of variant types HPSF does not yet support. If it
encounters one of these types it returns the property's value as a byte array and leavesit to be
interpreted by the application.

An application retrieves a property's value by caling the Property. get Val ue()
method. This method's return type is the abstract Obj ect class. The get Val ue() method
looks up the property's variant type, reads the property's value bytes, creates an instance of an
adequate Java type, assigns it the property's value and returns it. Primitive types like i nt or
| ong will be returned as the corresponding class, e.g. | nt eger or Long.

1.3.11. Dictionaries

The property with ID 0 has a very special meaning: It is adictionary mapping property IDs
to property names. We have seen aready that the meanings of standard properties in the
summary information and the document summary information property sets have been
defined by Microsoft. The advantage is that the labels of properties like "Author" or "Title"
don't have to be stored in the property set. However, a user can define custom fields in, say,
Microsoft Word. For each field the user has to specify a name, atype, and avalue.

The names of the custom-defined fields (i.e. the property names) are stored in the document
summary information second section's dictionary. The dictionary is a map which associates
property |Ds with property names.

The method Section.getPIDString(int) not only returns with the well-known
property names of the summary information and document summary information property
sets, but with self-defined properties, too. It should also work with self-defined propertiesin
self-defined sections.

1.3.12. Codepage support

The property with ID 1 holds the number of the codepage which was used to encode the
strings in this section. If this property is not available in a section, the platform's default
character encoding will be used. Thisworks fine as long as the document being read has been
written on a platform with the same default character encoding. However, if you receive a
document from another region of the world and the codepage is undefined, you are in
trouble.

HPSF's codepage support is only as good as the character encoding support of the Java
Virtual Machine (JVM) the application runs on. If HPSF encounters a codepage number it
assumes that the VM has a character encoding with a corresponding name. For example, if
the codepage is 1252, HPSF uses the character encoding "cp1252" to read or write strings. If
the JVM does not have that character encoding installed or if the codepage number isillegal,

Page 14

HPSF HOW-TO

an UnsupportedEncodingException will be thrown. This works quite well with Java 2
Standard Edition (J2SE) versions since 1.4. However, under J2SE 1.3 or lower you are out of
luck. Y ou should install a newer J2SE version to process codepages with HPSF.

There are some exceptions to the rule saying that a character encoding's name is derived from
the codepage number by prepending the string "cp"” to it:

Codepage 932

is mapped to the character encoding "SJIS".
Codepage 1200

is mapped to the character encoding "UTF-16".
Codepage 65001

is mapped to the character encoding "UTF-8".

Probably there will be a need to add more mappings between codepage numbers and
character encoding names. They should be added to the method codepageToEncodi ng
in the class org. apache. poi . hpsf. Vari ant Support. The HPSF author will
appreciate any advices for mappings to be added.

1.4. Writing Properties
This section describes how to write properties.

1.4.1. Overview of Writing Properties

Writing propertiesis possible at alow level only at the moment. Y ou have to deal with things
like property I1Ds and variant types to write properties. There are no convenience classes or
convenience methods for dealing with summary information and document summary
information streams yet. Therefore you should have read section 3 to understand what
followsin this section.

HPSF's writing capabilities come with the classes Mt abl ePropertySet,
Mut abl eSect i on, Mut abl ePr operty, and some helper classes. The "mutable” classes
extend their respective superclasses PropertySet, Section, and Property and
provide "set" and "write" methods, following the Decorator pattern.

When you are going to write a property set stream your application has to perform the
following steps:

1. CreateaMut abl ePr opertySet instance.
2. Get hold of aMut abl eSect i on. You can either retrieve the one that is always present

Page 15

http://en.wikipedia.org/wiki/Decorator_pattern

HPSF HOW-TO

inanew Mut abl ePr oper t ySet , or you have to create anew Mut abl eSect i on
and add it to the Mut abl ePr opert ySet .

3. Setany Sect i on fieldsasyou like.

4. Create as many Mut abl ePr oper t y objects as you need. Set each property's ID, type,
and value. Add the Mut abl ePr oper t y objectsto the Mut abl eSect i on.

5. Create further Mut abl eSect i onsif you need them.

6. Eventually retrieve the property set as a byte stream using
Mut abl ePr opertySet .t ol nput St rean() andwriteit to a POIFS document.

1.4.2. Low-level Writing FunctionsIn Details

Writing properties is introduced by an artificial but simple example: a program creating a
new document (aka POI file system) which contains only a single document: a summary
information property set stream. The latter will hold the document's title only. This is
artificial in that it does not contain any Word, Excel or other kind of useful application
document data. A document containing just a property set is without any practical use.
However, it is perfectly fine for an example because it make it very simple and easy to
understand, and you will get used to writing propertiesin real applications quickly.

The application expects the name of the POI file system to be written on the command line.
Thetitle property it writesis " Sample title".

Here's the application’s source code. Y ou can also find it in the "examples' section of the POI
source code distribution. Explanations are following below.

package org. apache. poi . hpsf. exanpl es;

i mport java.io.FileCutputStream
i mport java.io. | OException;
i mport java.io. | nputStream

i mport org. apache. poi . hpsf. Mut abl eProperty;

i mport org.apache. poi . hpsf. Miut abl ePropertySet ;

i nport org. apache. poi . hpsf. Mut abl eSecti on;

i mport org.apache. poi . hpsf. Summar yl nf or mat i on;

i mport org.apache. poi . hpsf. Vari ant;

i mport org.apache. poi . hpsf. Wi ti ngNot Support edExcepti on;
i mport org. apache. poi . hpsf. wel | known. Pr opertyl DVap;

i mport org.apache. poi . hpsf.wel | known. Secti onl DVap;

i mport org. apache. poi . poifs.filesystem PO FSFi | eSystem

/

*

<p>This class is a sinple sanple application showing howto create a property
set and wite it to disk.</p>

@ut hor Rai ner Kl ute
@i nce 2003-09-12

* %k X X X X F

~

Page 16

HPSF HOW-TO

public class WiteTitle
{

/**

* <p>Runs the exanpl e program </ p>

* @aram args Command-|ine argunments. The first and only command-|ine
* argunent is the name of the PO file systemto create.
* @hrows | OException if any I/ O exception occurs.
* @hrows WitingNotSupportedException if HPSF does not (yet) support
* witing a certain property type.
*
/
public static void main(final String[] args)
Ehrows Wi ti ngNot Support edException, | OException

/* Check whether we have exactly one conmmand-|ine argunment. */
if (args.length !'= 1)

Systemerr.println("Usage: " + WiteTitle.class.getNanme() +
"destinati onPA FS") ;
Systemexit(1);

final String fileNane = args[O0];

/* Create a nmutable property set. Initially it contains a single section
* with no properties. */
final Mitabl ePropertySet nps = new Mut abl ePropertySet();

/* Retrieve the section the property set already contains. */
final Mitabl eSection ms = (Mitabl eSection) nps.get Sections().get(0);

/* Turn the property set into a sunmary information property. This is
* done by setting the format ID of its first section to
* Sectionl DMap. SUMVARY_| NFORVATI ONLI D. */

nms. set For mat | D(Sect i onl DVap. SUMVARY_| NFORMATI ON_I D) ;

/* Create an enpty property. */
final Mitabl eProperty p = new Mitabl eProperty();

/* Fill the property with appropriate settings so that it specifies the
* docunent's title. */

p. set | D(Propertyl DMvap. PI D_TI TLE) ;

p. set Type(Vari ant. VT_LPWSTR) ;

p. set Val ue("Sanple title");

/* Place the property into the section. */
ns. set Property(p);

/* Create the PO file systemthe property set is to be witten to. */
final PO FSFil eSystem pol Fs = new PO FSFi | eSysten() ;

/* For witing the property set into a PO file systemit has to be
* handed over to the PO FS. createDocunent () nethod as an i nput stream
* which produces the bytes naking out the property set stream */

Page 17

HPSF HOW-TO

final InputStreamis = nps.tolnputStream);

/* Create the sunmary informati on property set in the PO file

* system It is given the default nane nost (if not all) summary
* information property sets have. */

poi Fs. creat eDocunent (i s, Sunmmaryl nformati on. DEFAULT_STREAM NAME) ;

/* Wite the whole PO file systemto a disk file. */
poi Fs. witeFil esysten(new Fil eCut put Strean(fil eNane));

}

The application first checks that there is exactly one single argument on the command line:
the name of the file to write. If this single argument is present, the application storesit in the
fi |l eName variable. It will be used in the end when the POI file system is written to a disk
file.

if (args.length = 1)

Systemerr.println("Usage: " + WiteTitle.class.getNanme() +
"destinati onPA FS") ;

Systemexit(1);
}
final String fileNane = args[O0];
Let's create a property set now. We cannot use the PropertySet class, because it is
read-only. It does not have a constructor creating an empty property set, and it does not have
any methods to modify its contents, i.e. to write sections containing propertiesinto it.

The class to use is Mut abl ePropertySet. It is a subclass of PropertySet. The
sample application calls its no-args constructor in order to establish an empty property set:

final Mitabl ePropertySet nps = new Mut abl ePropertySet ();
As said, we have an empty property set now. Later we will put some contents into it.

By the way, the Mut abl ePropertySet class has another constructor taking a
Pr opert ySet asparameter. It creates a mutable deep copy of the property set given toit.

The Mut abl ePr opert ySet created by the no-args constructor is not really empty: It
contains a single section without properties. We can either retrieve that section and fill it with
properties or we can replace it by another section. We can also add further sections to the
property set. The sample application decides to retrieve the section being already there:

final Mitabl eSection ns = (Mitabl eSection) nps.getSections().get(0);

Theget Sect i ons() method returns the property set's sections as alist, i.e. an instance of
java.util. List. Caling get (0) returns the list's first (or zeroth, if you prefer)
element. The Sect i on returned isaMut abl eSect i on: asubclass of Sect i on you can
modify.

Page 18

HPSF HOW-TO

The aternative to retrieving the Mut abl eSect i on being aready there would have been to
create an new Mut abl eSect i on like this:

Mut abl eSecti on s = new Mut abl eSecti on();

There is also a constructor which takes a Sect i on as parameter and creates a mutable deep
copy of it.

The Mut abl eSecti on the sample application retrieved from the
Mut abl ePr opert ySet isstill empty. It contains no properties and does not have a format
ID. Asyou have read above the format ID of the first section in a property set determines the
property set's type. Since our property set should become a Summarylnformation property set
we have to set the format ID of its firse (and only) section to
F29F85E0- 4FF9- 1068- AB- 91- 08- 00- 2B- 27- B3- D9. However, you won't have to
remember that ID: HPSF has it defined as the well-known constant
Sect i onl DMap. SUMVARY | NFORVATI ON_I D. The sample application writes it to the
section using the set For mat | D(byt e[]) method:

ns. set For mat | D(Sect i onl DMap. SUMMARY _| NFORVATI ON I D) ;

Now it is time to create a property. As you might expect there is a subclass of Pr operty
called Mut abl ePr oper t y with ano-args constructor:

final Mitabl eProperty p = new Mitabl eProperty();

A Mut abl ePr operty object must have an ID, atype, and a value (see above for details).
The class provides methods to set these attributes:

p. set | D(Propertyl Dvap. PI D_TI TLE) ;

p. set Type(Vari ant. VT _LPWSTR) ;

p. set Val ue("Sanple title");

The Mut abl ePr operty class has a constructor which you can use to pass in al three
attributes in asingle call. See the Javadoc API documentation for details!

The sample property set is complete now. We have a Mut abl ePr opert ySet containing a
Mut abl eSect i on containing a Mut abl ePr operty. Of course we could have added
more sections to the property set and more properties to the sections but we wanted to keep
things simple.

The property set has to be written to a POI file system. The following statement creates it.
final PO FSFil eSystem poi Fs = new PO FSFi | eSysten() ;
Writing the property set includes the step of converting it into a sequence of bytes. The

Mut abl ePr opertySet class has the method t ol nput St r ean() for this purpose. It
returns the bytes making out the property set stream asan | nput St r eam

final InputStreamis = nps.tolnputStream);

If you'd read from this input stream you'd receive all the property set's bytes. However, it is
very likely that you'll never do that. Instead you'll pass the input stream to the

Page 19

HPSF HOW-TO

PO FSFi | eSyst em cr eat eDocunent () method, like this:
poi Fs. creat eDocunent (i s, Sunmaryl nf or mati on. DEFAULT_STREAM NAME) ;

Besides the | nput St r eamcr eat eDocunent () takes a second parameter: the name of
the document to be created. For a SummaryInformation property set stream the default name
isavailable as the constant Summar yI nf or mat i on. DEFAULT _STREAM NANME.

The last step isto write the POI file system to adisk file:
poi Fs. witeFi | esystenmnew Fil eCut put Strean(fil eNane));

1.5. Further Reading

There are still some aspects of HSPF left which are not covered by this HOW-TO. You
should dig into the Javadoc APl documentation to learn further details. Since you've
struggled through this document up to this point, you are well prepared.

Page 20

	1 How To Use the HPSF API
	1.1 Reading Standard Properties
	1.1.1 Open the document \005SummaryInformation in the root of the
 POI filesystem

	1.2 Additional Standard Properties, Exceptions And Embedded
 Objects
	1.3 Reading Non-Standard Properties
	1.3.1 Overview
	1.3.2 A Sample Application
	1.3.3 The Property Set
	1.3.4 The Sections
	1.3.5 The Section's Format ID
	1.3.6 The Properties
	1.3.7 Sample Output
	1.3.8 Property IDs
	1.3.9 Property types
	1.3.10 Property values
	1.3.11 Dictionaries
	1.3.12 Codepage support

	1.4 Writing Properties
	1.4.1 Overview of Writing Properties
	1.4.2 Low-level Writing Functions In Details

	1.5 Further Reading

