Apache jUDDI Client and GUI Guide

Kurt T Stam, Red Hat, Inc.
Alex O'Ree, Apache Software Foundation (ASF), http://juddi.apache.org

Apache jUDDI Client and GUI Guide

by Kurt T Stam and Alex O'Ree
Copyright © 2003-2014 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Dedication

We'd like to dedicate this guide to Steve Viens and Andy Cutright who started this project back
in 2003.

g (=] = o1 <Y Vii

1. Simple Publishing Using the JUDDI APlcoouiiii e e 1
1.1. UDDI Data MOEIueeiiiiiiee ettt e e et e e e e e an s 1
1.2. jUDDI Additions t0 the MOAElociiuiiiiiii e 2
1.3. UDDI @nd JUDDI AP ..ottt e e e 2
1.4, Getting StAMEAcovniiii i 3

1.4.1. Simple Publishing EXamPpPlec..uiiiiiiiiiiiiii e 3
1.4.2. About UDDI ENtity KEYS ...iiiiiiiiiiiiiiee it e e e e e et e e eeeens 8
1.5. A few tips on adding Binding TEMPIALESccouuuiiiiiiiiiiiiii e 9
T o] o Tod U= o o PP 9

2. JUDDI Client Configuration GUIEoviiiiiiiiiiiii e 11
2% I 1 1 £ To 11 T3 1o) o IR PP 11
2.2, ClENE SEINGS .. iiiiiieeiiit ettt e e et e e et e ee e e e aaa e e eanans 11
22 T N\ o T [PSPPI 11

2.3.1. TranSpPOrt OPLIONSoiiieiieeiiii ettt 12
S O 1= 4 PP 12
T 1 =T 1 P 12
2.6. Digital SIgNAtUIESccuuiiiiei e e e e e e e e e 13
2.7. SUDSCHIPtioN CaAllDACKScceeiiiiii et 14
b S T € 10)11 =T | PSP 14
2.9. Embedded JUDDI SEIVETuuiiiiiiiieiei ettt et 14
b I T = = To (U1 =11 0= o £ 14
2.9.2. Changes in configuration compared to non-embeddedccceeevennnne. 14

3. Key Format TEMPIALEScieiiiiii i e e e e e e e e aaaas 17
3.1. UDDIV3 KEY TOIMALeiiiiiieeiiii et e eea e 17
3.2. JUDDI key format temMPIatesccovuiiiiiiiei e 17

3.2.1. Advantages of using a templateccooeeiiiiiiiiii 17
3.2.2. Default UDDIKeyConvention Key Templatesc.ccceveviiieiiiieiiiieeieeeannn, 17
3.2.3. How to use the templates?cooiiiiiiiiiii e 17
3.2.4. Where to define to PropertieS?cvcvuieiiiiiiii e 18

4, USING the JUDDI GUI ..ouuuiiiiiii e e e e e e e e e e e e e 19
o N = L= U114 =T o 41T) 19
A 1= T 19

0 O o TU [g 153 A= o | 1o T o N 19
e T I o oI V1T o U =T P 23
4.4, Logging in t0 UDDI SEIVICESuuiiiiiieiiiieiii et e e e e e e e e e e 23
A5, LOGUING OUL ..ottt et e et e et 24
4.6. DiscoVEr (Browse UDDI)cuuiiiiiiiiii e e e e e et e e e e e 24
4.6.1. BUSINESS BIOWSEN ...uuiiiiiiiiiieiiieeeiite et e et e et e e e e s e et s e e e e et e eanneeaneees 24
4.6.2. SEIVICE BIOWSEN ..oovtuieiiiiiiieeiiiii e ettt e et e e e e e et e e e e et e e e eate e e e eetenaeaees 26
4.6.3. tMOAE] BIOWSETuneeeieiiiee e e e e e e et e e e e eanns 27
A.6.4. SEAICH ...t 28
4.7. Creating NEW ENLILIESo.uuiiiiiiiieii e et 30
4.7.1. Create @ tMOUEIcoouiiiii e 30

Apache

juDDI
Client
4.7.2. Create a tModek Key Genergjg (Partition)ccoeeviiiiiiiiiiiiiinieeees 30
4.7.3. Create a Business G- vvererernnnnnnen e 31
4.7.4. Create a Service GHE@: -+ rvrerreeererrreriiin e 33
4.7.5. Tmport from WSDL Or WADL ...t e e e e e ens 35
4.8. CUSLOAY TTaNSTEIS ...t 36
4.9, PUDIISNEr ASSEITIONSiiiiiiiiiiiii e 36
4.10. SUDSCHPLONS ..oettiieiiiii ettt et e e e e e et e e bt e e e 37
4.10.1. Create a new SUDSCHPLONco.uiiiiiiiii e 37
4.10.2. View MY SUDSCIIPHONSiiiiiiiieiiii e 41
4.10.3. View the NEWS FEEAiiiiiiii e 42
4.11. Using Digital Signatures in juddi-guic..oieiiiiiiiiiie e 42
4.11.1. Sign a Business, Service or tModelccoveiiiiiiiiiiiiici e 42
4.11.2. Verify a signed UDDI €NtitYcooiiiuiiiiiiiiieiiii e 44
2 o] oo [0 = 11T I 46
4.13. LANQUAGE COUES .. .oietiiieiiiii ettt ettt 46
4,14, SWItChING NOUESciiiiiii e e e e e aaaas 47
4.15. Adding Additional Language Translationscoocoeiiniiiiiiiniciiiecc e 48
5. Mapping WSDL and WSDL t0 UDDIiiiiiiiiiiiciie e e e 51
LS 00 1o o 18 o3 1T o I PP 51
5.2. USE CASE - WSDL ...t 51
5.2.1. SAMPIE COUER ...ooiiiiiiiee e 51
5.2.2. Links t0 SAMPIE PrOJECL ...euuiiiiiiiii e 52
5.3, USE CaSE - WADL ..ot 52
5.3.1. SAMPIE COUE ..uiiiiiii e 52
5.3.2. Links t0 SAMPIE PrOJECE ...oovuiiiiiiii e 53
6. USING UDDI ANNOTALIONS .uuiiitiiiiii i e e e e e e e e e et e e et e eeanaeees 55
6.1. UDDI Service ANNOLALIONcouuuiiiiiieiiiee e e e e e e e e e e e ean s 55
6.2. UDDIServiceBinding ANNOLALIONoeiuiiiiiiiiiii e e 56
6.2.1. Java Web Service EXampleoiiiiiiiiiiiiiiiicei e 56
6.2.2. Wiring it all tOgELNETciiii i 57
6.3. .NET Web Service EXample ... 58
6.3.1. Wiring it all tOgEtherccvii i 58
6.4. CategoryBag ALIHDULEiiii e 58
6.5. Considerations for clustered or load balanced web servers and automated
(=10 IS =1 1T o PSPPI 59
7. Using the UDDI v2 Services and Adapterscooovviieiiiiiiiiecie e e e 61
4% 1o o 18X 1T o P 61
7.2. Accessing UDDI v2 services using the jJUDDI v3 Clientccooveviiiiiiiiiiineeiis 61
7.3. Accessing UDDI v2 services using UDDI V2 APISccouiiiiiiiiniiiiiiieeecee e 61
7.4. Accessing jUDDI v3 services from an existing UDDI v2 based client, plugin or toal. 62
7.5. Additional INfOrmMationoiiiiiii e 62
8. UDDI Migration and Backup TOOIiiiiiiii e 63
8.1. USING the 1001iiiiiiiii e e e e 63
B.1. 1. Gt NIP e 63

Apache

juDDI
Client

8.1.2. Use case: basic import and ggprt ... 64

8.1.3. Use case: Import and Exportathile preserving ownership information 64

9. Using the jUDDI REST Services GUIEIE -+ oeerererrrrrnn e e 67
9.1. URL Patterns and methodso e 67
9.1.1. ENAPOINES ...ttt et e 67

9.1.2. MENOAS ...uiiiiiiii e 67

9.2, EXAMPIE OULPUL «.eeueeeii ettt et e et e e 69
9.2, XML ittt e e e et e e et e a e 69

LS N 11 | PRSP 69

9.3, MOTe INFOMMALIONceiiii e e et e e et e e e e 72

10. JUDDI Clent for NET ..oiiiiiiiiiiiiii e e e a e e e e e e et e e e e et e e e eabanaeaaaes 73
00 O = o To o [PP 73

11. Using the UDDI Technology Compatibility Kitcccoiiiiiiiiiii e, 75
11.1. Using the TCK RUNNET ...ttt e e e aa s 75
11.2.1. CoNfIQUIALIONceeeiiieeeii e 75

11.1.2. Running the TCK RUNNETciiiiiiiei e e e e 76

11.2. Analyzing the RESUILSuuiiiiiii e 77
1o = PP 79

Vi

Preface

The jUDDI client framework facilitates interaction with any UDDI v3 compliant registry. In addition
to providing a client framework for both Java and .NET, it also provides a self proclaimed Technical
Compatilibity Test (TCK) Suite. The jUDDI community encourages collabration of other vendors
on the TCK or on the client framework in general.

Vii

viii

Chapter 1. Simple Publishing Using
the JUDDI API

One of the most common requests we get on the message board is "How do | publish a service
using jJUDDI?" This question holds a wide berth, as it can result anywhere from not understanding
the UDDI data model, to confusion around how jUDDI is set up, to the order of steps required
to publish artifacts in the registry, to general use of the API - and everything in between. This
article will attempt to answer this "loaded" question and, while not going into too much detail, will
hopefully clear some of the confusion about publishing into the jUDDI registry.

1.1. UDDI Data Model

Before you begin publishing artifacts, you need to know exactly how to break down your data into
the UDDI model. This topic is covered extensively in the specification, particularly in section 3, so
| only want to gloss over some for details. Readers interested in more extensive coverage should
most definitely take a look at the UDDI specification.

Below is a great diagram of the UDDI data model (taken directly from the specification): http://
juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif As you can see,
data is organized into a hierarchical pattern. Business Entities are at the top of the pyramid, they
contain Business Services and those services in turn contain Binding Templates. TModels (or
technical models) are a catch-all structure that can do anything from categorize one of the main
entities, describe the technical details of a binding (ex. protocols, transports, etc), to registering
a key partition. TModels won't be covered too much in this article as | want to focus on the three
main UDDI entities.

The hierarchy defined in the diagram is self-explanatory. You must first have a Business Entity
before you can publish any services. And you must have a Business Service before you can
publish a Binding Template. There is no getting around this structure; this is the way UDDI works.

Business Entities describe the organizational unit responsible for the services it publishes. It
generally consist of a description and contact information. How one chooses to use the Business
Entity is really dependent on the particular case. If you're one small company, you will likely just
have one Business Entity. If you are a larger company with multiple departments, you may want
to have a Business Entity per department. (The question may arise if you can have one uber-
Business Entity and multiple child Business Entities representing the departments. The answer
is yes, you can relate Business Entities using Publisher Assertions, but that is beyond the scope
of this article.)

Business Services are the cogs of the SOA landscape. They represent units of functionality that
are consumed by clients. In UDDI, there’s not much to a service structure; mainly descriptive
information like name, description and categories. The meat of the technical details about the
service is contained in its child Binding Templates.

http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif
http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif

juDDI
Additions

to
Binding Templates, as mentioned above, give g details about the technical specification of the

service. This can be as simple as just providinghgeervice’s access point, to providing the location
of the service WSDL to more complicated scenarios to breaking down the technical details of the
WSDL (when used in concert with tModels). Once again, getting into these scenarios is beyond
the scope of this article but may be the subject of future articles.

1.2. jUDDI Additions to the Model

Out of the box, jUDDI provides some additional structure to the data model described in the
specification. Primarily, this is the concept of the Publisher.

The UDDI specification talks about ownership of the entities that are published within the registry,
but makes no mention about how ownership should be handled. Basically, it is left up to the
particular implementation to decide how to handle "users" that have publishing rights in the
registry.

Enter the jUDDI Publisher. The Publisher is essentially an out-of-the-box implementation of an
identity management system. Per the specification, before assets can be published into the
registry, a "publisher" must authenticate with the registry by retrieving an authorization token. This
authorization token is then attached to future publish calls to assign ownership to the published
entities.

jUDDI’'s Publisher concept is really quite simple, particularly when using the default authentication.
You can save a Publisher to the registry using jUDDI’s custom API and then use that Publisher
to publish your assets into the registry. jUDDI allows for integration into your own identity
management system, circumventing the Publisher entirely if desired. This is discussed in more
detail in the documentation, but for purposes of this article, we will be using the simple out-of-
the-box Publisher solution.

Tip

In UDDI, ownership is essentially assigned to a given registry entity by using its
"authorizedName" field. The "authorizedName" field is defined in the specification
in the operationallnfo structure which keeps track of operational info for each entity.
In jUDDI, the authorizedName field translates to the person’s username, also know
as the publisher id,

1.3. UDDI and jUuDDI API

Knowing the UDDI data model is all well and good. But to truly interact with the registry, you need
to know how the UDDI API is structured and how jUDDI implements this APIl. The UDDI API is
covered in great detail in chapter 5 of the specification but will be summarized here.

UDDI divides their API into several "sets" - each representing a specific area of functionality. The
API sets are listed below:

Getting
Started

 Inquiry - deals with querying the registry to return details on entities within

 Publication - handles publishing entities into the registry

» Security - open-ended specification that handles authentication

» Custody and Ownership Transfer - deals with transferring ownership and custody of entities

e Subscription - allows clients to retrieve information on entities in a timely manner using a
subscription format

» Subscription Listener - client API that accepts subscription results

* Value Set (Validation and Caching)- validates keyed reference values (not implemented by
jubDI)

» Replication - deals with federation of data between registry nodes (not implemented by jUDDI)
The most commonly used APIs are the Inquiry, Publication and Security APIs. These APIs
provide the standard functions for interacting with the registry.

The jUDDI server implements each of these API sets as a JAX-WS compliant web service and
each method defined in the API set is simply a method in the corresponding web service. The
client module provided by jUDDI uses a "transport” class that defines how the call is to be made.
The default transport uses JAX-WS but there are several alternative ways to make calls to the
API. Please refer to the documentation for more information.

One final note, jUDDI defines its own API set. This API set contains methods that deal with
handling Publishers as well as other useful maintenance functions (mostly related to jUDDI’s
subscription model). This API set is obviously proprietary to jJUDDI and therefore doesn’t conform
to the UDDI specification.

1.4. Getting Started

Now that we've covered the basics of the data model and API sets, it's time to get started
with the publishing sample. The first thing that must happen is to get the jUDDI server up and
running. Please refer to this http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-
v3.html article that explains how to start the jUDDI server.

1.4.1. Simple Publishing Example

We will now go over the "simple-publish" examples. These examples expand upon the HelloWorld
example in that after retrieving an authentication token, a BusinessEntity and BusinessService
are published to the registry. There are two examples:

 simple-publish-portal - This is how to perform the publish operations in a way that's portable,
meaning that the code logic should apply to any UDDIv3 client application library.

http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html

Simple
Publishing

Example
» simple-publish-clerk - This shows you how to perform the same actions using the helper

functions in jUDDI’s Client library, which greatly reduces the code required and makes things
simple. This uses the UDDIClerk’s functions.

1.4.1.1. Simple Publishing using Portable Code

The complete source for this example can be found here: - Portable http://svn.apache.org/repos/
asf/juddi/trunk/juddi-examples/simple-publish-portable/

publ i c Si npl ePubl i shPortabl e() {

try {

/Il create a client and read the config in the
ar chi ve;

/'l you can use your config file name

UDDI i ent uddi Cient = new UDDI Client("META-1 NF/
uddi . xm ") ;

/1 a UddiClient can be a client to rmultiple UDDI
nodes, so

/1 supply the nodeNane (defined in your uddi.xnl.
/1l The transport can be W5, inVM RM etc which is
defined in the uddi.xmn
Transport transport =
uddi Cl i ent.get Transport ("defaul t");
/1 Now you create a reference to the UDDI API
security = transport.get UDDI SecurityService();
publish = transport.get UDDI Publ i shService();
} catch (Exception e) {
e.printStackTrace();

The constructor uses the jUDDI client API to retrieve the transport from the default node. You can
refer to the documentation if you're confused about how clerks and nodes work. Suffice it to say,
we are simply retrieving the default client transport class which is designed to make UDDI calls
out using JAX-WS web services.

Once the transport is instantiated, we grab the two API sets we need for this demo: 1) the Security
API set so we can get authorization tokens and 2) the Publication API set so we can actually
publish entities to the registry.

All the magic happens in the publish method. We will look at that next.

Here are the first few lines of the publish method:

/1 Login aka retrieve its authentication token
Get Aut hToken get Aut hTokenMyPub = new Cet Aut hToken();
get Aut hTokenMyPub. set User | D(" bob") ;

[/'your username

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/

Simple
Publishing

Example
get Aut hTokenMyPub. set Cred(" bob") ;

/' your password

Aut hToken myPubAut hToken =

security. get Aut hToken(get Aut hTokenMyPub) ;

System out . printl n(get Aut hTokenM/Pub. get User I D() +

"'s AUTHTOKEN = " + "**x**x* peyer | og auth tokens!");

Important

Don’t log authentication tokens. In addition, whenever you're done with it, it should
be discarded. Think of it as a logout function.

This code simply gets the authorization token for the bob user.

Tip

juDDI includes two reserved usernames, uddi and root. Root acts as the
"administrator" for jUDDI API calls. Additionally, the root user is the owning
publisher for all the initial services installed with jUDDI. You may be wondering
what those "initial services" are. Well, since the UDDI API sets are all implemented
as web services by jUDDI, every jUDDI node actually registers those services
inside itself. This is done per the specification. The user uddi owns the remaining
preinstalled data.

Now that we have Bob’s authorization, we can start publishing.

servi ce.

Tip

You'll note that no credentials have been set on both authorization calls. This is

because we're using the default authenticator (which is for testing purposes doesn’t
require credentials). Most UDDI servers will require authentication.

/1 Creating the parent business entity that will contain our

Busi nessEntity nyBusEntity = new Busi nessEntity();
Nanme nmyBusNane = new Nane();

myBusNane. set Val ue(" My Busi ness");

myBusEntity. get Nane() . add(myBusNane) ;

/1 Addi ng the business entity to the "save" structure, using our

publ i sher's authentication info

/1 and savi ng away.
SaveBusi ness sb = new SaveBusi ness();

Simple

Publishing

Example
sb. get Busi nessEntity().add(nyBusEntity);
sb. set Aut hl nf o(myPubAut hToken. get Aut hl nfo());
Busi nessDetai | bd = publish. saveBusi ness(sb);
String myBusKey =

bd. get Busi nessEntity().get(0). getBusi nessKey();

System out . println("nyBusi ness key: " + nyBusKey);

/1 Creating a service to save. Only adding the m ni nrum dat a:
the parent business key retrieved

//from saving the busi ness above and a single nane.

Busi nessServi ce nmyServi ce = new Busi nessService();

mySer vi ce. set Busi nessKey(myBusKey) ;

Narme myServNanme = new Nane();

mySer vNane. set Val ue("My Service");

mySer vi ce. get Nanme() . add(nySer vNane) ;

/1 Add binding tenplates, etc...

/'l <snip> W renpved sone stuff here to make the exanpl e
shorter, check out the source for nore info</snip>

/1 Adding the service to the "save" structure, using our
publ i sher's authentication info and

/1 saving away.

SaveServi ce ss = new SaveService();

ss. get Busi nessServi ce() . add(myServi ce);

ss. set Aut hl nf o(nyPubAut hToken. get Aut hl nfo());

Servi ceDetail sd = publish. saveService(ss);

String myServKey =
sd. get Busi nessSer vi ce() . get (0). get Servi ceKey();

System out. println("nyService key:

+ nySer vKey) ;

//and we're done, don't forget to | ogout!
security. di scar dAut hToken(new
Di scar dAut hToken(nyPubAut hToken. get Aut hl nfo()));

To summarize, here we have created and saved a BusinessEntity and then created and saved a
BusinessService. We've just added the bare minimum data to each entity. Obviously, you would
want to fill out each structure with greater information, particularly with services. However, this is
beyond the scope of this article, which aims to simply show you how to programmatically publish
entities.

1.4.1.2. Simple Publishing using Clerks

The complete source for this example can be found here: - Clerk http://svn.apache.org/repos/asf/
juddi/trunk/juddi-examples/simple-publish-clerk/

The sample consists of only one class: SimplePublishPortable. Let's start by taking a look at the
constructor:

public Sinpl ePublishderk() {

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/

Simple

Publishing
Example
try {
/'l create a client and read the config in the
ar chi ve;
/'l you can use your config file name
UDDI i ent uddi Cient = new UDDI Client("META-1 NF/
uddi . xm ") ;

/lget the clerk
clerk = uddiCient.getd erk("default");
if (clerk==null)
throw new Exception("the clerk wasn't found,
check the config file!");
} catch (Exception e) {
e. printStackTrace();

Notice that this is already much more streamlined than the previous example. In this scenario, all
configuration settings and credentials are stored in "META-INF/uddi.xml".

Tip

The configuration file used by clients can be overridden via the system
property "uddi.client.xml". E.g. java -Duddi.client.xml=/usr/local/uddi.xml -jar
MyCoolProgram.jar

UDDIClient’s job is to read the configuration file and initialize the data structures for working with 1
or more UDDI nodes (or servers). It also handles automatic registration of endpoints using WSDL
documents or using class annotations. UDDIClerk’s job is to manage credentials and to perform
a number of common tasks. Feel free to use them in your programs and help you simplify things.

The UDDIClerk also handle credentials and authentication to UDDI for you. If you didn’t want to
store credentials (it can be encrypted) then you can specify them at runtime very easily.

Moving on, the next function is Publish. Here’s the short short version.

public void publish() {
try {

/'l Creating the parent business entity that wll
contain our service.

Busi nessEntity myBusEntity = new Busi nessEntity();

Narme myBusNanme = new Nane();

myBusNane. set Val ue(" My Busi ness");

myBusEnti ty. get Nane() . add(myBusNane) ;

/'l <sni p>we renmoved a bunch of useful stuff here, see
the full exanple for the rest of it</snip>

About
UDDI
Entity
/lregister the business, if the return value is
nul I, sonething went wr ong!
Busi nessEntity register =
clerk.register(myBusEntity);
//don't forget to | og out!
cl erk. di scar dAut hToken() ;
if (register == null) {
System out. println("Save failed! ");
System exit(1);
}

/1 Now you have a business and service via
/1 the jUDDI API!
Systemout. println("Success!");

} catch (Exception e) {
e.printStackTrace();

The UDDIClerk has a register and unregister function for nearly everything for UDDI. Between the
UDDICIlient and UDDIClerk, there’s enough helper functions to significantly reduce the amount of
code needed to work with UDDI. Here’s a quick list of things they can do for you:

* Create a tModel Partition, also know as a Key Generator

* Resolve endpoints from WSDLs, Hosting directors, and other binding template references from
Access Points http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385

* Get Bindings by Version

* Add REST or SOAP tModels to a binding template

» Setup asynchronous callbacks for subscriptions

» Compare the values of a tModel Instance Info, such as Quality of Service Metrics
« Create and register services using a WADL or WSDL document

* And more...

We're also looking for the next thing to add to the client library. Have an idea? Please open a
ticket on jJUDDI’s Issue Tracker at https://issues.apache.org/jira/browse/JUDDI.

1.4.2. About UDDI Entity Keys

There are a couple important notes regarding the use of entity keys. Version 3 of the specification
allows for publishers to create their own keys but also instructs implementers to have a default
method. Here we have gone with the default implementation by leaving each entity’s "key" field
blank in the save call. jJUDDI's default key generator simply takes the node’s partition and appends
a GUID. In a default installation, it will look something like this:

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385
https://issues.apache.org/jira/browse/JUDDI

A
few
tips

uddi:juddi.apache.org:(generated GUID/UUID) gn

)) addin . .
You can, of course, customize all of this, butéPnaéilr?Ieft for another article. The second important
point is that when the BusinessService is sal_ved, th have to explicitly set its parent business key
. . . emplates . . L

saved in an independent call like this. Otherwise you would get an error because jUDDI won't know
where to find the parent entity. | could have added this service to the BusinessEntity’s service
collection and saved it with the call to saveBusiness. In that scenario we would not have to set
the parent business key.

1.5. A few tips on adding Binding Templates

Arguably, the most useful useful part of UDDI is advertising your services similar to a phone book
or directory. The important part really isn’t that Bob’s Business exists (BusinessEntity), it's that Bob
provides a service (BusinessService) and it's located at this address. This is where the Binding
Template comes it. It identifies an instance of a service, its location and any other metadata
associated with the endpoint that someone may want to know.

This article skips the binding Template data because it can be lengthy, but the full source for these
examples shows you exactly how to build and add binding templates.

1.6. Conclusion

Hopefully this added clarity to the question, "How do | publish a service using jUDDI?".

10

Chapter 2. JUDDI Client
Configuration Guide

2.1. Introduction

The jUDDI Java and .NET clients use an XML configuration file that dictates settings and
behaviors. This guide provides an overview of the settings. Both .NET and jUDDI use the same
configuration file schema. This schema is located within the source tree and with the client
distribution packages of jUDDI.

2.2. Client Settings
The root XML node for the jUDDI client configuration file is always "uddi".

<I-- applies to Java clients only -->
uddi / r el oadDel ay

Multiple clients can be defined in each configuration file.

uddi / cl i ent @ane="sonmeNane"

2.3. Nodes

At least one node is required per client. A node represents a one logical UDDI server (or cluster of
servers). Each UDDI node should host at least the inquiry service. A client using the jUDDI client
package can be configured to access multiple nodes at the same time.

<I-- if isHonmeJUDDI is true, then this node is |oaded by default, when no
node is specified in client code -->
uddi / cl i ent/ nodes[]/ node@ sHonmeJUDDI =t r ue/ f al se

<!-- the nane of the node is referenced in client code -->

uddi / cl i ent/ nodes[]/ node/ nane

<I-- the description of the node -->

uddi / cl i ent/ nodes[]/ node/ descri ption

<I-- the properties section defines HITP style credentials and a runtine

t okeni zer for URLs -->

uddi / cl i ent/ nodes[]/ node/ properties

<I-- The transport represents the class nane of the transport nmechani smt hat
the client will use to connect

to the UDDI node. The nbst commonly used is

org. apache.juddi .v3.client.transport.JAXWSTransport, however

RM Transport, |nVMIransport and JAXWSv2Transl ati onTransport are al so defined

s

11

Transport
Options

uddi / cl i ent/ nodes[]/ node/ pr oxyTr anspor t

<!-- endpoint URLs -->

uddi / cl i ent/ nodes[]/ node/ cust odyTr ansf er Ur |

uddi / cl i ent/ nodes[]/ node/i nqui ryUrl

uddi / cl i ent/ nodes[]/ node/ publ i shUr |

uddi / cl i ent/ nodes[]/ node/ securityUrl

uddi / cl i ent/ nodes[]/ node/ subscri ptionUrl

uddi / cl i ent/ nodes[]/ node/ subscri pti onLi st ener Ur |

<I-- note: this is for jUDDI v3.x servers only and is not part of the UDDI
standard -->

uddi / cl i ent/ nodes[]/ node/ j uddi Api Ur |

2.3.1. Transport Options

The Proxy Transport defines which mechanism is used for on the wire transport of the UDDI
XML messages. JAXWS Transport is the most commonly used and assumes SOAP messaging
protocol over HTTP transport layer.

RMI Transport using the Java Remote Method Invocation for transport. It's more commonly used
for communicating within a J2EE container, but could be used in other cases. It's not required by
the UDDI specification and is considered a jUDDI add on.

INVM Transport is for hosting jUDDI services without a J2EE container.

JAXWSv2TranslationTransport is a bridge for accessing UDDIv2 web services using the UDDIv3
data structures and APIs. Only the Inquiry and Publish services are required and they must point
to SOAP/HTTP endpoints for a UDDI v2 node.

2.4. Clerks

Clerks are responsible for mapping stored user credentials to a Node and for automated
registration.

<I-- if true, the contents of the child node xregister are registered
when the UDDI Client object is created, using the credential and node
ref erence. -->

uddi /client/clerks/regi sterOnStartup=true/false

2.5. Clerk

Clerks store credentials and map to a specific node.

<I-- the nane is a reference to the Node that these credentials apply to-->
uddi/client/clerks[]/clerk@ode - This is reference to uddi/client/node/
nane, it nust exist

uddi/client/clerks[]/clerk@anme - This is a unique identifier of the clerk

12

Digital
Signatures

uddi /client/clerks[]/clerk@ublisher - This is the usernane
uddi /client/clerks[]/clerk@assword

uddi /client/clerks[]/cl erk@ sPasswor dEncrypt ed=true/fal se

uddi /client/clerks[]/clerk@ryptoProvi der=(see Crypto providers)

Credentials can be encrypted using the included batch/bash scripts and then appended to the
configuration. Example with encryption:

<cl erk nane="defaul t" node="defaul t" publisher="root" password="(cipher text
renoved) "
i sPasswor dEncrypt ed="true"
crypt oProvi der =" or g. apache. juddi . v3. cl i ent. cryptor. AES128Cryptor" />

Clerks also have settings for the automated cross registration of Businesses and Services on
start up.

uddi /client/clerks[]/xregister/service@i ndi ngkey
uddi /client/clerks[]/xregister/service@ronCl erk
uddi /client/clerks[]/xregister/service@od erk

2.6. Digital Signatures

The Signature section contains settings that map to the Digital Signature Utility that makes working
with UDDI digital signatures simple. The section contains all of the settings for both signing and
validating signatures.

uddi / cl i ent/ si gnat ur e/ si gni ngKeySt or ePat h

uddi / cl i ent/ si gnat ur e/ si gni ngKeySt or eFi | ePasswor d

uddi / cl i ent/ si gnat ur e/ si gni ngKey St or eFi | ePasswor d@ sPasswor dEncr ypt ed
uddi / cl i ent/ si gnat ur e/ si gni ngKey St or eFi | ePasswor d@r ypt oPr ovi der

uddi / cl i ent/ si gnat ur e/ si gni ngkeyPasswor d

uddi / cl i ent/ si gnat ur e/ si gni ngKeyPasswor d@ sPasswor dEncr ypt ed

uddi / cl i ent/ si gnat ur e/ si gni ngKeyPasswor d@r ypt oPr ovi der

uddi / cl i ent/ si gnat ur e/ si gni ngKeyAl i as

uddi / cl i ent/ si gnat ur e/ canoni cal i zat i onMet hod

uddi / cl i ent/ si gnat ur e/ si gnat ur eMet hod=(def aul t RSA SHA1)

uddi / cl i ent/signature/ XM_._DI GSI G NS=(default http://ww. w3. org/ 2000/ 09/
xm dsi g#)

uddi / cl i ent/signature/trustStorePath

uddi / cl i ent/signature/trustStoreType

uddi / cl i ent/si gnature/trust St orePassword

uddi / cl i ent/si gnat ure/trust St orePasswor d@ sPasswor dEncr ypt ed

uddi / cl i ent/signature/trustStorePassword@rypt oProvi der

<I-- checks signing certificates for tinestanp validity -->
uddi / cl i ent/ si gnat ur e/ checkTi mest anps
<I'-- checks signing certificates for trust worthiness -->

uddi / cl i ent/ si gnat ur e/ checkTr ust

13

Subscription
Callbacks

<!'-- checks signing certificates for revocation -->

uddi / cl i ent/ si gnat ur e/ checkRevocat i onCRL

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onSubj ect DN

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onSeri a

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onBase64Publ i cKey

<I-- default is http://ww. w3. org/ 2000/ 09/ xm dsi g#shal -->
uddi / cl i ent/ si gnat ur e/ di gest Met hod

2.7. Subscription Callbacks

The subscriptionCallbacks section defines settings uses by the subscription callback API. This
enables developers to create capabilities that need to be notified immediately when something in
UDDI changes through the use of subscriptions.

uddi / cl i ent/subscri ptionCal | backs/ keyDomai n

uddi / cl i ent/subscri ptionCal | backs/listenU|l this is the URL that is used for
cal | backs, should be externally resol vabl e

uddi / cl i ent/subscri ptionCal | backs/ aut oRegi st er Bi ndi ngTenpl at e=true/ f al se

uddi / cl i ent/subscri ptionCal | backs/ aut oRegi st er Busi nessSer vi ceKey=(key)
append cal | back endpoint to this service

uddi / cl i ent/subscri ptionCal | backs/

si gnat ur eBehavi or =(Abor t | f Si gned, Si gn, DoNot hi ng, Si gnOnl yI f Par ent | snt Si gned) ,
default DoNot hi ng. Applies when auto registering the endpoint to a business
or service that is already signed.

2.8. Xtowsd|

XtoWsdl represents configuration parameters for importing WSDL or WADL files. Currently, the
only setting is for ignoring SSL errors when fetching remote WSDL or WADL files.

uddi / cl i ent/ Xt oWsdl / | gnor eSSLErrors=true or fal se

2.9. Embedded jUDDI server

jUDDI has the ability to run in embedded mode. This means that the jUDDI services can operate
without a web servlet container, such as Tomcat or JBoss. Typically, this is something that
application developers would use for more advanced scenarios and for operation without network
connectivity.

2.9.1. Requirements

A database server, if one is not available, the embedded Derby engine can be used.

2.9.2. Changes in configuration compared to non-embedded

* META-INF/embedded-uddi.xml needs to contain the connection settings for InVmTransport.

14

Changes
in
configuration

<l-- In VM Transport Settings -->

<pr oxyTransport >or g. apache. juddi . v3. client.transport.|nVMIransport </
proxyTransport >

<cust odyTr ansf er Ur | >or g. apache. j uddi . api . i npl . UDDI Cust odyTr ansf er | npl </
cust odyTransferUr| >

<i nqui ryUr| >or g. apache. j uddi . api . i npl . UDDI | nqui ryl npl </i nqui ryUr | >

<publ i shUr| >or g. apache. j uddi . api . i npl . UDDI Publ i cati onl npl </ publ i shUr| >

<securityUrl >org. apache. juddi . api.inpl.UDDl Securitylnpl </securityUrl >

<subscri pti onUrl >or g. apache. j uddi . api . i npl . UDDI Subscri pti onl npl </
subscri ptionUr| >

<subscri pti onLi st ener Ur | >or g. apache. j uddi . api . i npl . UDDI Subscri pti onLi st ener | npl </
subscri ptionLi stenerUr | >
<j uddi Api Ur | >or g. apache. j uddi . api . i npl . JUDDI Api | npl </j uddi Api Ur| >

» The serverside config file juddiv3.xml needs to be added to the classpath.
* A META-INF/persistence.xml needs to be added.

« Add the juddi-core (UDDI server) and derby (Embedded Database) dependencies to the pom.
Use the juddi-core-openjpa jar for OpenJPA.

See also the hello-world-embedded example.

15

16

Chapter 3. Key Format Templates

3.1. UDDIv3 key format

The UDDI v3 keys are formatted such that they are human readable. The short story is that UDDI
v3 keys are formatted like: uddi:<domain>:name. For example, if you wanted a tModel defined
as "uddi:www.mycompany.com:serviceauthenticationmethod", you would first have to create a
tModel key generator with value "uddi:www.mycompany.com:keygenerator".

3.2. jUDDI key format templates

The jUDDI client has taken the key format approach one step further so the name part of the key
actually helps you understand what the key is for, or even better in the case of a binding template
what server registered the key.

3.2.1. Advantages of using a template

Using a binding Key with format uddi: ${keyDonsi n}: bi ndi ng_${server Nane}_
${servi ceNanme} _${port Name} _${serverPort} contains valuable information for two reasons -
you can tell from the bindingKey what server registered it. This is helpful information if you want
to debug connectivity issues between a client and the UDDI server. - if a server goes to register a
bindingTemplate it registered before it won't create a second bindingTemplate, so it won't leave
behind dead or duplicate bindingTemplates.

3.2.2. Default UDDIKeyConvention Key Templates

The default templates setup by the jJUDDI client are:

uddi : ${ keyDomai n} : busi ness_${ busi nessNane}

uddi : ${ keyDonmi n}: servi ce_${servi ceNane}

uddi : ${ keyDonmi n}: servi ce_cache_${ser ver Nane}

uddi : ${ keyDomai n}: bi ndi ng_${server Nane} ${servi ceNane} ${port Nane} _
${serverPort}

where tokens are expressed using ${}. The templates are defined in the UDDIKeyConvention
class.

3.2.3. How to use the templates?

At runtime a serviceKey can be obtained using

String servi ceKey = UDDI KeyConventi on. get Servi ceKey(properties,
servi ceNane) ;

17

Where
to

define
The serviceName can be specified in as a propggy in the first argument, or it can explicitly passed

as the second argument. Using the secondrﬁ@gﬂg{gfpverrides what'’s specified in the properties.
By default it will use the service template uddi : ${ keyDon=i n}: servi ce_${ser vi ceNane}, but if
you wish to use a different template you can simple specify that as a property, for example

String myCustonServi ceFormat = "uddi: ${ keyDonmi n}:s_${servi ceNane}"
properties. add(Property. SERVI CE_ KEY_FORVAT, myCust onServi ceFormat);
String myCust onfor matt edSer vi ceKey =

UDDI KeyConvent i on. get Servi ceKey(properties, serviceNane);

3.2.4. Where to define to properties?

You can define the properties in your code, or you can obtain and pass in the properties defined
in your uddi . xm . For an exmaple of this you can check out the META- | NF/ wsdl 2uddi - uddi . xm
of the wsdl 2uddi example where for the def aul t node we set

<nodes>
<node>

<nanme>def aul t </ nane>

<properties>
<property nanme="server Nane" val ue="I| ocal host"/>
<property name="serverPort" val ue="8080"/>
<property nanme="keyDomai n"

val ue="uddi . j oepubl i sher. conl'/ >

<property nanme="busi nessNane" val ue="WSDL- Busi ness"/ >

</ properties>

</ node>
</ nodes>
and you can obtain the properties like
UDDI Client uddi Client = new UDDI Cient (" META-I NF/ wsdl 2uddi - uddi . xm ") ;

Properties properties =
uddi Cli ent.getCientConfig().getUDD Node("default").getProperties();

This is exactly what the WSDL2UDDI implementation does, and it the reason the class requires
the properties in the constructor.

18

Chapter 4. Using the jUDDI GUI

Starting with jUDDI v3.2, a nearly full featured UDDI v3 compliant web user interface is included
called the jUDDI Graphical User Interface, or jUDDI GULI. Itis also referred to as the jUDDI Console,
or jUDDI User Console. The jJUDDI GUI is a web application that can run in most web servlet
containers, such as Tomcat and can be deployed along side of the jUDDI Web Services war
(juddiv3d.war). From the jUDDI GUI, users can browse, search, create, update, digitally sign and
delete most UDDI entities, as well as preform custody transfers, configure subscriptions.

As of version 3.2, the jUuDDI GUI supports the complete functionality of the following UDDI services

* Inquiry

* Publish

e Security

e Custody Transfer

* Subscription

4.1. Requirements

The jUDDI GUI needs two things in order to operate.

« UDDI v3 compliant services
» A J2EE application server, such as Tomcat, Jboss, Jetty or maybe even in Winstone

« Optionally, a container level authentication mechanism that supports role based authentication
(for remote configuration)

4.2. Tasks

The following sections detail how to perform basic tasks using the jUDDI GUI. Hopefully, the user
interface is intuitive enough that thorough guidance isn't necessary.

4.2.1. Your first sign on

Typically, the jUDDI GUI is accessed via a URL in a web browser, such as this: http://
localhost:8080/juddi-gui. This URL will probably be different from this if someone else set up jUDDI
GUI for you (such as a system administrator), in which case, you'll want to ask them for the correct
URL. Once loading the page, you should see something similiar to this.

19

http://localhost:8080/juddi-gui
http://localhost:8080/juddi-gui

Your
first
sign

Welcome to jUDDI

/| Remember my decision

We welcome help internationalizing jUDDI!

Figure 4.1. Welcome to jUDDI, Please select a language.

Select a language, then click the button labeled "Go".

Tip

Would you like to see the jUDDI-GUI in a different language that the one’s listed
and want to offer some translation help? Please contact us!

Important

The juddi-gui stores your language preference as a cookie. No personally
identifiable information is stored there.

After clicking on "Go", you should see something similar to the next two screen shots.

20

Your
first
sign

Tip

Why would it be different? The jUDDI GUI is based on the Twitter Bootstrap APl and
is designed to automatically rearrange the user interface based on screen size and
resolution. Small form factor devices, such as tablets and smart phones generally
function as normal, except that the upper navigation bar becomes condensed into
a single button.

JUCDH (prencunced “Judy™) 15 an open souncs Jave implementation of the Unbeersal Description. Discovery

v, Bind infasgration (VDD

o b

v) spacification for (Web) Senvices. Thank of UDDI a3 the _.C- e f-\:';li"'.- of tha phone book Bor web senvices
Leam Mo =
Browse Search About UDDI

Figure 4.2. Full menu bar for computers or large displays.

21

Your
first
sign

JUDDI

Home
C'LDiscwer
. P
& Lreate

£* settings

© Help

jUDDI

jUDDI (pronounced "Judy") is an open source
Java implementation of the Universal

Description, Discovery, and Integration (UDDI
v3) specification for (Web) Services. Think of

UDDI as the yellow pages of the phone book for

web services.
Figure 4.3. Tablet/Mobile menu bar for small displays.

Learn More »

The
Menu

Bar
For now, let’s just focus on the menu or navigation bar.

4.3. The Menu Bar

Figure 4.4. The Menu Bar.

The menu bar is designed to make navigation simple and intuitive.

* Home - This sub-menu contains links towards information that is tailored towards you, such as
all the businesses you own, subscriptions, custody transfer, and publisher assertion (business
relationships)

« Browse - This sub-menu makes it simple to find stuff in UDDI by letting you flip the pages of
the directory.

» Create - This sub-menu makes it simple to create new UDDI entities, such as businesses,
services, tModels, import from WSDL/WADL and some advanced operations.

« Settings - This page is typically access controlled and enables administrators to remotely
configure the juddi-gui.

» Help - Contains links to the Internet for more help with jUDDI and source code access

» Login/Logout - many registries require authentication. These buttons support both HTTP and
UDDI Auth Token style of authentication.

4.4. Logging in to UDDI Services

Assuming that your UDDI services require authentication, you'll probably want to login with your
username and password. This is done using the Login/Logout section the Menu bar (top right of
the screen).

Figure 4.5. Login Warning.

Caution

If you happen to notice that a warning symbol next to the Login button, use caution!
Your password may be exposed if you proceed.

23

Logging
Out

Tip

The Warning symbol on the Login portion of the Menu bar will be present unless
the following conditions are met: Communication from your browser to juddi-gui
is encrypted using SSL/TLS AND the communication from juddi-gui to the UDDI
services is encrypted using SSL/TLS.

4.5. Logging Out

Once logged in, just "Welcome <username>" button to log out.

4.6. Discover (Browse UDDI)

All of the Browse pages support pagination, that is you can flip through the pages of the database,
as if it were a phone book.

In addition, search results can be filtered by language. On each Discover page, you will see the
following

Total records: 7
Records Returned: 7
Offset : 0

Language: Click to edit

oCoO
R
Figure 4.6. Browse Options.

Click on "Click to Edit", enter your desired language code, then either press enter, or click "Ok"
and the results will be filtered automatically. See "Language Codes" for more information.

4.6.1. Business Browser

To browse for a UDDI Business, simply click on the word Discover from the top navigation bar
and select Businesses.

24

Business
Browser

lpmml
Businesses
Q2O
show? ©

Figure 4.7. Browse Business.

When clicking on "Show XX" (XX is the number of services that business has)

25

Service

Browser
lpmnl
Businesses

E A i 's] o s o
Heddords Returned

~freaf - f
Qffsel - 0

Language: Click to edit
F |
OO
Hame Service

show7? &

BETA - v3 2 0 SNARPSHOT 13 The & & Software |

Figure 4.8. Browse Business Zoomed in.

The (+) Plus button will enable you to add a new service that belongs to the business on the same
table row.

4.6.2. Service Browser
To browse for a UDDI Service, simply click on the word Discover from the top navigation bar and

select Services. Clicking on the Name of the service, will bring you to the Service Editor page.
Click on the owning Business key to bring you to the Business Editor page.

26

tModel
Browser

Services

oC0

Figure 4.9. Service Browser.

4.6.3. tModel Browser

To browse for a UDDI tModel simply click on the word Discover from the top navigation bar and
select tModel. Clicking on the Key of the tModel, will bring you to the tModel Editor page.

27

Search

tModel Browser

Figure 4.10. tModel Browser.

4.6.4. Search

Searching UDDI provides you with the capabilities to make both simple and complex queries. To
search, simply click on the word Discover from the top navigation bar and select Search.

28

Search

L P e G g s Gan I

Search

Figure 4.11. Search.

You first need to select what you’re looking for. You can either search a Business, Service, Binding
Template, or tModel.

Tip

Not all combinations are valid. For instance, you can’t search for a Binding
Template by Name because UDDI’s binding templates do not have names.

Important
UDDI offers a wider, richer search capability. The juddi-gui’s search page is in

comparison, limited. If you have the need for more complex searches, you'll
probably have to write some code to do so.

Tip

When using the wildcards (%, ?), you have to add the find qualifier,
approximateMatch.

29

Creating
new
Entities

4.7. Creating new Entities

The jUDDI GUI has the ability to create and register new UDDI entities.

4.7.1. Create a tModel

From the menu, select Create, then tModel. For tModels, the only required item is the Name
element.

4.7.2. Create a tModek Key Generator (Partition)

Important

If you want to create your own UDDI keys (recommended) rather than use the not
so user friendly server generated GUID values, then you'll have to make a Key
Generator first! Read on!

A tModel Key Generator is a special kind of tModel that enables you to define your own keys
(for anything in UDDI) for your own "domain". A "domain" is similar to the Domain Name
System used by the Internet to resolve user friendly names, such as www.apache.org, to an
IP address. This effectively allows you to define any arbitrary UDDI key prefix that you want.
For example, if you wanted a UDDI key defined as "uddi:www.mycompany.com:salesbusiness1”,
you would first have to create a tModel key generator (partition) with the value of
"uddi:www.mycompany.com:keygenerator". TModel keys must start with "uddi:" and end with
":keygenerator". This is part of the UDDI specification and acts as a governance mechanism. You
can also create a tModel Key Generator by using the Create tModel menu option and by adding
the appropriate settings (assuming you know the secret sauce) or you can simply click on the
word Create from the top navigation bar and select tModel Partition (Key Generator).

30

Create
a
Business

JUDDI = - I =

tModel Key Generators (Partitions)

Tip

You can also use nested partitions such as
"uddi:www.mycompany.com:keygenerator" and
"uddi:www.mycompany.com:sales:keygenerator". UDDI uses the colon ":" as a
separator for partitions. This will enable you to make UDDI keys such as
"uddi:www.mycompany.com:biz1" and "uddi:www.mycompany.com:sales:biz2".

Tip

UDDI key names can be at MOST 255 characters long!

4.7.3. Create a Business

The UDDI Business entity enables you to define and advertise your business with a variety of
ways. To create a new business, simply click on the word Create from the top navigation bar and
select Business.

Tip

The "Create", "Business" page is als