
Apache Karaf
Version 2.2.1

Apache Karaf
Users' Guide

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Copyright 2011 The Apache Software Foundation

2

Table of contents

Overview
Quick Start
Users Guide
Developers Guide

3

Overview

4 OVERVIEW

Karaf Overview

Apache Karaf is a small OSGi based runtime which provides a lightweight
container onto which various components and applications can be deployed.

Here is a short list of features supported by the Karaf:
• Hot deployment: Karaf supports hot deployment of OSGi bundles

by monitoring jar files inside the [home]/deploy directory. Each time
a jar is copied in this folder, it will be installed inside the runtime. You
can then update or delete it and changes will be handled
automatically. In addition, the Karaf also supports exploded bundles
and custom deployers (blueprint and spring ones are included by
default).

• Dynamic configuration: Services are usually configured through
the ConfigurationAdmin OSGi service. Such configuration can be
defined in Karaf using property files inside the [home]/etc directory.
These configurations are monitored and changes on the properties
files will be propagated to the services.

• Logging System: using a centralized logging back end supported by
Log4J, Karaf supports a number of different APIs (JDK 1.4, JCL, SLF4J,
Avalon, Tomcat, OSGi)

• Provisioning: Provisioning of libraries or applications can be done
through a number of different ways, by which they will be
downloaded locally, installed and started.

• Native OS integration: Karaf can be integrated into your own
Operating System as a service so that the lifecycle will be bound to
your Operating System.

• Extensible Shell console: Karaf features a nice text console where
you can manage the services, install new applications or libraries and
manage their state. This shell is easily extensible by deploying new
commands dynamically along with new features or applications.

• Remote access: use any SSH client to connect to Karaf and issue
commands in the console

• Security framework based on JAAS
• Managing instances: Karaf provides simple commands for

managing multiple instances. You can easily create, delete, start and
stop instances of Karaf through the console.

• Supports the latest OSGi 4.2 containers: Apache Felix Framework 3.0
and Eclipse Equinox 3.6

KARAF OVERVIEW 5

Quick Start

6 QUICK START

1. Quick Start

If you are in a hurry to have Apache Karaf up and running right away, this
section will provide you with some basic steps for downloading, building
(when needed) and running the server in no time. This is clearly not a
complete guide so you may want to check other sections of this guide for
further information.

All you need is 5 to 10 minutes and to follow these basic steps.
• Background
• Getting the software
• Start the server
• Deploy a sample application

BACKGROUND
Apache Karaf is a small and lightweight OSGi based runtime. This provides a
small lightweight container onto which various bundles can be deployed.

Apache Karaf started life as the Apache ServiceMix kernel and then moved
as a Apache Felix subproject before becoming a top level project.

GETTING THE SOFTWARE
At this time you have one option to get the software. The fastest and easiest
way is to get the binary directly from the Apache site. Since this article is
intended to help you to have Apache Karaf up and running in the fastest way
only the binary download will be covered at this time.

Prerequisites
Although this installation path is the fastest one, still you will need to install
some software before installing Karaf.

Karaf requires a Java SE 5 environment to run. Refer to
http://www.oracle.com/technetwork/java/javase/ for details on how to
download and install Java SE 1.5 or greater.

1. QUICK START 7

http://servicemix.apache.org
http://felix.apache.org
http://www.oracle.com/technetwork/java/javase/

Download binaries
Depending on the platform you plan to install and run Karaf you will select
the appropriate installation image. Open a Web browser and access the
following URL, there you will find the available packages for download
(binaries and source code).

http://karaf.apache.org/index/community/download.html
Select the file compression format compatible with your system (zip for

windows, tar.gz for unixes) by clicking directly on the link, download it and
expand the binary to your hard drive in a new directory; for example in
z:\karaf - from now on this directory will be referenced as <KARAF_HOME>.
Please remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

The installation of Karaf is as simple as uncompressing the .zip or .tar files.
The next step is to start the server.

START THE SERVER
With Karaf already installed, open a command line console and change
directory to <KARAF_HOME>. To start the server, run the following command
in Windows:

bin\karaf.bat

respectively on Unix:

bin/karaf

You should see the following informations on the command line console:
You can now run your first command. Simply type the <tab> key in the

console.

karaf@root>

admin:change-port admin:connect
admin:create admin:destroy
admin:list admin:start
admin:stop config:cancel
config:edit config:list
config:propappend config:propdel
config:proplist config:propset
config:update dev:dynamic-import
dev:framework dev:print-stack-traces

8 1. QUICK START

http://karaf.apache.org/index/community/download.html

dev:show-tree features:addUrl
features:info features:install
features:list features:listUrl
features:refreshUrl features:removeUrl
features:uninstall log:display
log:display-exception log:get
log:set osgi:bundle-level
osgi:headers osgi:install
osgi:list osgi:ls
osgi:refresh osgi:resolve
osgi:restart osgi:shutdown
osgi:start osgi:start-level
osgi:stop osgi:uninstall
osgi:update packages:exports
packages:imports shell:cat
shell:clear shell:each
shell:echo shell:exec
shell:grep shell:history
shell:if shell:info
shell:java shell:logout
shell:new shell:printf
shell:sleep shell:sort
shell:tac ssh:ssh
ssh:sshd cat
clear each
echo exec
grep history
if info
java logout
new printf
sleep sort
tac bundle-level
headers install
list ls
refresh resolve
restart shutdown
start start-level
stop uninstall update
karaf@root>

You can then grab more specific help for a given command using the --help
option for this command:

1. QUICK START 9

karaf@root> admin:create --help
DESCRIPTION

admin:create

Create a new instance.

SYNTAX
admin:create [options] name

ARGUMENTS
name

The name of the new container instance

OPTIONS
--help

Display this help message
-f, --feature

Initial features. This option can be specified
multiple times to enable multiple initial

features
-p, --port

Port number for remote shell connection
-l, --location

Location of the new container instance in the
file system

-furl, --featureURL
Additional feature descriptor URLs. This option

can be specified multiple times to add
multiple URLs

karaf@root>

Note that the console supports tab completion, so you just need to enter ad
<tab> cr <tab> instead of admin:create.

DEPLOY A SAMPLE APPLICATION
While you will learn in the remainder of this guide how to use and leverage
Apache Karaf, we will just use the pre-built packaging for now.

In the console, run the following commands:

10 1. QUICK START

features:addurl mvn:org.apache.camel/camel-example-osgi/2.7.0/
xml/features
features:install camel-example-osgi

The example installed is using Camel to start a timer every 2 seconds and
output a message on the console.
The previous commands download the Camel features descriptor and install
the example feature.

>>>> SpringDSL set body: Fri Jan 07 11:59:51 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:53 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:55 CET 2011

Stopping and uninstalling the sample application
To stop this demo, run the following command:

features:uninstall camel-example-osgi

Common Problems
1. Launching Karaf can result in a deadlock in Felix during module

dependency resolution. This is often a result of sending a SIGINT
(control-C) to the process when it will not cleanly exit. This can
corrupt the caches and cause startup problems in the very next
launch. It is fixed by emptying the component cache:

rm -rf data/cache/*

STOPPING KARAF
To stop Karaf from the console, enter ^D in the console:

^D

Alternatively, you can also run the following command:

osgi:shutdown

1. QUICK START 11

http://camel.apache.org

SUMMARY
This document showed you how simple it is to have Apache Karaf up and
running. The overall time for getting the server running should be less than
five minutes if you have the prerequisite (Java 1.5) already installed.
Additionally, this article also showed you how to deploy and test a simple
Apache Camel application in less than five minutes.

12 1. QUICK START

http://camel.apache.org

Users Guide

USERS GUIDE 13

Installation

This chapter describes how to install Apache Karaf for both Unix and
Windows' platforms.
Here you will find information about what are pre requisite software, where to
download Karaf from and how to install it.

PRE-INSTALLATION REQUIREMENTS
Hardware:

• 20 MB of free disk space for the Apache Karaf x.y binary distribution.
Operating Systems:

• Windows: Windows Vista, Windows XP SP2, Windows 2000.
• Unix: Ubuntu Linux, Powerdog Linux, MacOS, AIX, HP-UX, Solaris, any

Unix platform that supports Java.
Environment:

• Java SE 1.5.x or greater (http://www.oracle.com/technetwork/java/
javase/).

• The JAVA_HOME environment variable must be set to the directory
where the Java runtime is installed, e.g., c:\Program
Files\jdk.1.5.0_06. To accomplish that, press Windows key and
Break key together, switch to "Advanced" tab and click on
"Environment Variables". Here, check for the variable and, if
necessary, add it.

BUILDING FROM SOURCES
If you intend to build Karaf from the sources, the requirements are a bit
different:

Hardware:
• 200 MB of free disk space for the Apache Karaf x.y source

distributions or SVN checkout, the Maven build and the dependencies
Maven downloads.

Environment:
• Java SE Developement Kit 1.5.x or greater (http://www.oracle.com/

technetwork/java/javase/).
• Apache Maven 2.2.1 (http://maven.apache.org/download.html).

14 INSTALLATION

http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://maven.apache.org/download.html

Building on Windows
This procedure explains how to download and install the source distribution
on a Windows system. NOTE: Karaf requires Java 5 is compile, build and run.

1. From a browser, navigate to http://karaf.apache.org/index/
community/download.html.

2. Scroll down to the "Apache Karaf" section and select the desired
distribution.
For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.zip.

3. Extract Karaf from the ZIP file into a directory of your choice. Please
remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

4. Build Karaf using Maven 2.2.1 or greater and Java 5.
The recommended method of building Karaf is the following:

cd [karaf_install_dir]\src

where [karaf_install_dir] is the directory in which Karaf was
installed.

mvn

Both steps take around 10 to 15 minutes.
5. Unzip the distribution using your favorite zip tool. The windows

distribution is available at

[karaf_install_dir]\assembly\target\apache-karaf-x.y.zip

6. Proceed to the Starting Karaf chapter.

Building on Unix
This procedure explains how to download and install the source distribution
on a Unix system. This procedure assumes the Unix machine has a browser.
Please see the previous Unix Binary Installation section for ideas on how to
install Karaf without a browser. NOTE: Karaf requires Java 5 to compile, build
and run.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.tar.gz.

3. Extract the files from the ZIP file into a directory of your choice. For
example:

INSTALLATION 15

http://karaf.apache.org/index/community/download.html
http://karaf.apache.org/index/community/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
http://karaf.apache.org/download.html

gunzip apache-karaf-x.y-src.tar.gz
tar xvf apache-karaf-x.y-src.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Build Karaf using Maven:
The preferred method of building Karaf is the following:

cd [karaf_install_dir]/src

where [karaf_install_dir] is the directory in which Karaf was installed.

mvn

5. Uncompress the distribution that has just been created

cd [karaf_install_dir]/assembly/target
gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

6. Proceed to the Starting Karaf chapter.

INSTALLATION PROCEDURE FOR WINDOWS
This procedure explains how to download and install the binary distribution
on a Windows system.

1. From a browser, navigate to http://karaf.apache.org/index/
community/download.html.

2. Scroll down to the "Apache Karaf" section and select the desired
distribution.
For a binary distribution, the filename will be similar to: apache-
karaf-x.y.zip.

3. Extract the files from the ZIP file into a directory of your choice.
Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Proceed to the Starting Karaf chapter.
5. Optional: see enabling Colorized Console Output On Windows

Handy Hint
In case you have to install Karaf into a very deep path or a path

containing illegal characters for Java paths, e.g. !, % etc., you may
add a bat file to start \-> startup that executes

16 INSTALLATION

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
http://karaf.apache.org/index/community/download.html
http://karaf.apache.org/index/community/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/colorized-console.html

subst S: "C:\your very % problematic path!\KARAF"

so your Karaf root directory is S: - which works for sure and is short
to type.

INSTALLATION PROCEDURE FOR UNIX
This procedure explains how to download and install the binary distribution
on a Unix system.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a binary Unix distribution, the filename will be similar to: apache-
karaf-x.y.tar.gz.

3. Extract the files from the gzip file into a directory of your choice. For
example:

gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Proceed to the Starting Karaf chapter.

POST-INSTALLATION STEPS
Thought it is not always required, it is strongly advised to set up the
JAVA_HOME environment property to point to the JDK you want Karaf to use
before starting it.
This property is used to locate the java executable and should be configured
to point to the home directory of the Java SE 5 or 6 installation.

INSTALLATION 17

http://karaf.apache.org/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html

Starting and Stopping Karaf

This chapter describes how to start and stop Apache Karaf and the various
options that are available.

STARTING KARAF

On Windows
From a console window, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf_install_dir]

where karaf_install_dir is the directory in which Karaf was installed, e.g.,
c:\Program Files\apache-karaf-x.y.

Then type:

bin\karaf.bat

On Unix
From a command shell, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf_install_dir]

where karaf_install_dir is the directory in which Karaf was installed, e.g.,
/usr/local/apache-karaf-x.y.

Then type:

bin/karaf

Warning
Do NOT close the console or shell in which Karaf was started, as

that will terminate Karaf (unless Karaf was started with nohup).

18 STARTING AND STOPPING KARAF

STARTING KARAF WITHOUT CONSOLE
Karaf can be started without the console if you don't intend to use it (one can
always connect using the remote ssh access) using the following command:

bin\karaf.bat server

or, on Unix:

bin\karaf server

STARTING KARAF IN THE BACKGROUND
Karaf can be easily started as a background process using the following
command:

bin\start.bat

or, on Unix:

bin\start

STARTING KARAF FROM CLEAN
Karaf can be reset to a clean state by simply deleting the
[karaf_install_dir]/data folder.
For convenience, a parameter on the karaf and start scripts is available:

bin/start clean

STOPPING KARAF
For both Windows and Unix installations, you can perform a clean shutdown
of Karaf by using the following command when inside a Karaf console:

osgi:shutdown

or simply:

shutdown

If you're running from the main console, exiting the shell using logout or
Ctrl+D will also terminate the Karaf instance.

STARTING AND STOPPING KARAF 19

From a command shell, you can run the following command:

bin\stop.bat

or, on Unix:

bin/stop

20 STARTING AND STOPPING KARAF

Configuration

The files in the etc directory are used to set the startup configuration.
For dynamic configuration, Karaf provides a suite of command to

administer the configuration service grouped under config. To learn about all
currently supported configuration commands type:
Command Description
cancel Change the changes to the configuration being edited.
edit Create or edit a configuration.
list List existing configurations.
propdel Delete a property from the edited configuration.
proplist List properties from the edited configuration.
propset Set a property on the edited configuration.

update Save and propagate changes from the configuration being
edited.

EDITING

Select Configuration To Edit
For example to edit configuration foo.bar:

karaf@root> config:edit foo.bar

Modify Properties
Use:

* config:proplist to list existing properties
* config:propdel to delete existing properties
* config:propset to set a new value for a property

Any number of properties can be modified within a single editing session.

Commit Or Rollback Changes
Use

CONFIGURATION 21

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-cancel.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-edit.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-list.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-propdel.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-proplist.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-propset.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-update.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-proplist.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-propdel.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-propset.html

* config:update to commit all changes made in the current session
* config:cancel to roll back any changes made in the current session

22 CONFIGURATION

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-update.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/config-cancel.html

Using the console

VIEWVING AVAILABLE COMMANDS
To see a list of the available commands in the console press the <tab> key at
the prompt.

root@root> <tab>Display all 182 possibilities? (y or n)
*:help
addurl admin:change-opts
admin:change-rmi-registry-port
admin:change-ssh-port admin:connect
admin:create
admin:destroy admin:list
admin:rename
admin:start admin:stop
bundle-level
cancel cat
change-opts
change-rmi-registry-port change-ssh-port
clear
commandlist config:cancel
config:edit
config:list config:propappend
config:propdel
config:proplist config:propset
config:update
connect create
create-dump
destroy dev:create-dump
dev:dynamic-import
dev:framework dev:print-stack-traces
dev:restart
dev:show-tree dev:watch
display
display-exception dynamic-import
each
echo edit
exec
exports features:addurl

USING THE CONSOLE 23

features:info
features:install features:list
features:listrepositories
features:listurl features:listversions
features:refreshurl
features:removerepository features:removeurl
features:uninstall
framework get
grep
head headers
help
history if
imports
info install
jaas:cancel
jaas:commandlist jaas:list
jaas:manage
jaas:roleadd jaas:roledel
jaas:update
jaas:useradd jaas:userdel
jaas:userlist
java list
listrepositories
listurl listversions
log:clear
log:display log:display-exception
log:get
log:set log:tail
logout
ls manage
more
new osgi:bundle-level
osgi:headers
osgi:info osgi:install
osgi:list
osgi:ls osgi:refresh
osgi:resolve
osgi:restart osgi:shutdown
osgi:start
osgi:start-level osgi:stop
osgi:uninstall
osgi:update packages:exports
packages:imports

24 USING THE CONSOLE

print-stack-traces printf
propappend
propdel proplist
propset
refresh refreshurl
removerepository
removeurl rename
resolve
restart roleadd
roledel
set shell:cat
shell:clear
shell:each shell:echo
shell:exec
shell:grep shell:head
shell:history
shell:if shell:info
shell:java
shell:logout shell:more
shell:new
shell:printf shell:sleep
shell:sort
shell:tac shell:tail
show-tree
shutdown sleep
sort
ssh ssh:ssh
ssh:sshd
sshd start
start-level
stop tac
tail
uninstall update
useradd
userdel userlist
watch
root@root>

The <tab> key toggles completion anywhere on the line, so if you want to
see the commands in the osgi group, type the first letters and hit <tab>.
Depending on the commands, completion may be available on options and
arguments too.

USING THE CONSOLE 25

GETTING HELP ON A COMMAND
To view help on a particular command, type the command followed by --
help or use the help command followed by the name of the command:

karaf@root> features:list --help
DESCRIPTION

features:list

Lists all existing features available from the defined
repositories.

SYNTAX
features:list [options]

OPTIONS
--help

Display this help message
-i, --installed

Display a list of all installed features
only

MORE...
The list of all available commands and their usage is also available in a
dedicated section.

You'll find a more in depth guide to the shell syntax in the developers
guide.

The console can also be easily extended by creating new commands as
explained in the developers guide.

26 USING THE CONSOLE

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/commands.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/shell-syntax.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/shell-syntax.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/extending-console.html

Enabling Colorized Console
on Windows

The default Karaf installation does not produce colorized console output on
Windows like it does on Unix based systems. To enable it, you must install
LGPL licensed library JNA. This can be done using a few simple commands in
the Karaf console:

You first need to install the JNA library:

osgi:install wrap:mvn:http://download.java.net/maven/
2!net.java.dev.jna/jna/3.1.0

Next you need either restart karaf or you run the following Karaf commands
to refresh the Karaf Console:

osgi:list | grep "Apache Karaf :: Shell Console"

Take note of the ID of the bundle, in my case it was 14 and then run:

osgi:refresh 14

TODO: refactor that using a nicer script to find the correct bundle

ENABLING COLORIZED CONSOLE ON WINDOWS 27

https://jna.dev.java.net/

Web console

The Karaf web console provides a graphical overview of the runtime.
You can use it to:

• install and uninstall features
• start, stop, install bundles
• create child instances
• configure Karaf
• view logging informations

INSTALLING THE WEB CONSOLE
The web console is not installed by default. To install it, run the following
command from the Karaf prompt:

root@karaf> features:install webconsole

ACCESSING THE WEB CONSOLE
To access the console for an instance of Karaf running locally, enter the
following address in your web browser:

http://localhost:8181/system/console

Log in with the username karaf and the password karaf. If you have
changed the default user or password, use the one you have configured.

CHANGING THE WEB CONSOLE PORT NUMBER
By default, the console runs on port 8181. You can change the port number
by creating the properties file, etc/org.ops4j.pax.web.cfg, and adding the
following property setting (changing the port number to whatever value you
want):

org.osgi.service.http.port=8181

28 WEB CONSOLE

Using remote instances

CONFIGURING REMOTE INSTANCES
It does not always make sense to manage an instance of Karaf using its local
console. You can manage Karaf remotely using a remote console.

When you start Karaf, it enables a remote console that can be accessed
over SSH from any other Karaf conolse or plain SSH client. The remote
console provides all the features of the local console and gives a remote user
complete control over the container and services running inside of it.

The SSH hostname and port number is configured in the
[karaf_install_dir]/etc/org.apache.karaf.shell.cfg configuration file
with the following defaults values:

sshPort=8101
sshHost=0.0.0.0
sshRealm=karaf
hostKey=${karaf.base}/etc/host.key

You can change this configuration using the config commands or by editing
the above file, but you need to restart the ssh console in order for it to use
the new parameters.

define helper functions
bundle-by-sn = { bm = new java.util.HashMap ; each (bundles) {
$bm put ($it symbolicName) $it } ; $bm get $1 }
bundle-id-by-sn = { b = (bundle-by-sn $1) ; if { $b } { $b
bundleId } { -1 } }
edit config
config:edit org.apache.karaf.shell
config:propset sshPort 8102
config:update
force a restart
osgi:restart --force (bundle-id-by-sn
org.apache.karaf.shell.ssh)

USING REMOTE INSTANCES 29

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/configuration.html

CONNECTING AND DISCONNECTING REMOTELY

Using the ssh:ssh command
You can connect to a remote Karaf's console using the ssh:ssh command.

karaf@root> ssh:ssh -l karaf -P karaf -p 8101 hostname

The default password is karaf but we recommend to change it. See
the security section for more informations.

To confirm that you have connected to the correct Karaf instance, type
shell:info at the karaf> prompt. Information about the currently
connected instance is returned, as shown.

Karaf
Karaf home /local/apache-karaf-2.0.0
Karaf base /local/apache-karaf-2.0.0
OSGi Framework org.eclipse.osgi -

3.5.1.R35x_v20090827
JVM

Java Virtual Machine Java HotSpot(TM) Server VM
version 14.1-b02

...

Using the karaf client
The Karaf client allows you to securely connect to a remote Karaf instance
without having to launch a Karaf instance locally.

For example, to quickly connect to a Karaf instance running in server
mode on the same machine, run the following command from the karaf-
install-dir directory:

bin/client

More usually, you would provide a hostname, port, username and password
to connect to a remote instance. And, if you were using the client within a
larger script, you could append console commands as follows:

bin/client -a 8101 -h hostname -u karaf -p karaf
features:install wrapper

To display the available options for the client, type:

30 USING REMOTE INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/ssh-ssh.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/security.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/shell-info.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

> bin/client --help
Apache Karaf client

-a [port] specify the port to connect to
-h [host] specify the host to connect to
-u [user] specify the user name
-p [password] specify the password
--help shows this help message
-v raise verbosity
-r [attempts] retry connection establishment (up to attempts

times)
-d [delay] intra-retry delay (defaults to 2 seconds)
[commands] commands to run

If no commands are specified, the client will be put in an
interactive mode

Using a plain SSH client
You can also connect using a plain SSH client from your *nix system or
Windows SSH client like Putty.

~$ ssh -p 8101 karaf@localhost
karaf@localhost's password:

Disconnecting from a remote console
To disconnect from a remote console, press Ctrl+D, shell:logout or simply
logout at the Karaf prompt.

STOPPING A REMOTE INSTANCE

Using the remote console
If you have connected to a remote console using the ssh:ssh command or
the Karaf client, you can stop the remote instance using the osgi:shutdown
command.

Pressing Ctrl+D in a remote console simply closes the remote
connection and returns you to the local shell.

USING REMOTE INSTANCES 31

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/ssh-ssh.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/osgi-shutdown.html

Using the karaf client
To stop a remote instance using the Karaf client, run the following from the
karaf-install-dir/lib directory:

bin/client -u karaf -p karaf -a 8101 hostname osgi:shutdown

32 USING REMOTE INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

Deployer

The following picture describes the architecture of the deployer.

SPRING DEPLOYER
Karaf includes a deployer that is able to deploy plain blueprint or spring-dm
configuration files.
The deployer will transform on the fly any spring configuration file dropped
into the deploy folder into a valid OSGi bundle.

The generated OSGi manifest will contain the following headers:

Manifest-Version: 2
Bundle-SymbolicName: [name of the file]
Bundle-Version: [version of the file]
Spring-Context:
*;publish-context:=false;create-asynchronously:=true
Import-Package: [required packages]
DynamicImport-Package: *

The name and version of the file are extracted using a heuristic that will
match common patterns. For example my-config-1.0.1.xml will lead to
name = my-config and version = 1.0.1.
The default imported packages are extracted from the spring file definition
and includes all classes referenced directly.

If you need to customize the generated manifest, you can do so by
including an xml element in your spring configuration:

<spring:beans ...>
<manifest>

Require-Bundle= my-bundle
</manifest>

FEATURES DEPLOYER
To be able to hot deploy features from the deploy folder, you can just drop a
feature descriptor on that folder. A bundle will be created and its installation
(automatic) will trigger the installation of all features contained in the

DEPLOYER 33

descriptor. Removing the file from the deploy folder will uninstall the
features.
If you want to install a single feature, you can do so by writing a feature
descriptor like the following:

<features>
<repository>mvn:org.apache.servicemix.nmr/

apache-servicemix-nmr/1.0.0/xml/features</repository>
<feature name="nmr-only">

<feature>nmr</feature>
</feature>

</features>

For more informations about features, see the provisioning section.

WAR DEPLOYER
To be able to hot deploy web application (war) from the deploy folder, you
have to install the war feature:

karaf@root> features:install war

NB: you can use the -v or --verbose option to see exactly what is performed
by the feature deployer.

karaf@root> features:install -v war
Installing feature war 2.1.99-SNAPSHOT
Installing feature http 2.1.99-SNAPSHOT
Installing feature jetty 7.2.2.v20101205
Installing bundle mvn:org.apache.geronimo.specs/
geronimo-servlet_2.5_spec/1.1.2
Found installed bundle: org.apache.servicemix.bundles.asm [9]
Installing bundle mvn:org.eclipse.jetty/jetty-util/
7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-io/7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-http/
7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-continuation/
7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-server/
7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-security/
7.2.2.v20101205

34 DEPLOYER

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/provisioning.html

Installing bundle mvn:org.eclipse.jetty/jetty-servlet/
7.2.2.v20101205
Installing bundle mvn:org.eclipse.jetty/jetty-xml/
7.2.2.v20101205
Checking configuration file mvn:org.apache.karaf/apache-karaf/
2.1.99-SNAPSHOT/xml/jettyconfig
Installing bundle mvn:org.ops4j.pax.web/pax-web-api/1.0.0
Installing bundle mvn:org.ops4j.pax.web/pax-web-spi/1.0.0
Installing bundle mvn:org.ops4j.pax.web/pax-web-runtime/1.0.0
Installing bundle mvn:org.ops4j.pax.web/pax-web-jetty/1.0.0
Installing bundle mvn:org.apache.karaf.shell/
org.apache.karaf.shell.web/2.1.99-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-jsp/1.0.0
Installing bundle mvn:org.ops4j.pax.web/pax-web-extender-war/
1.0.0
Installing bundle mvn:org.ops4j.pax.web/
pax-web-extender-whiteboard/1.0.0
Installing bundle mvn:org.ops4j.pax.web/pax-web-deployer/1.0.0
Installing bundle mvn:org.ops4j.pax.url/pax-url-war/1.2.5

As you can see, the war feature uses PAX Web as war deployer.
You should now be able to see the PAX Web war deployer:

karaf@root> osgi:list |grep -i war
[57] [Active] [] [60] OPS4J Pax Web -
Extender - WAR (1.0.0)
[60] [Active] [] [60] OPS4J Pax Url -
war:, war-i: (1.2.5)

You can deploy a web application packaged in war or exploded in a directory.
Your web application should at least contain a WEB-INF/web.xml file.

WRAP DEPLOYER
The wrap deployer allows you to hot deploy non-OSGi jar files ("classical" jar
files) from the deploy folder.

It's a standard deployer (you don't need to install additional Karaf
features):

karaf@root> la|grep -i wrap
[1] [Active] [] [5] OPS4J Pax Url -
wrap: (1.2.5)

DEPLOYER 35

[32] [Active] [Created] [30] Apache Karaf ::
Deployer :: Wrap Non OSGi Jar (2.1.99.SNAPSHOT)

Karaf wrap deployer looks for jar files in the deploy folder. The jar files is
considered as non-OSGi if the MANIFEST
doesn't contain the Bundle-SymbolicName and Bundle-Version attributes, or
if there is no MANIFEST at all.

The non-OSGi jar file is transformed into an OSGi bundle.
The deployer tries to populate the Bundle-SymbolicName and Bundle-

Version extracted from the jar file path.
For example, if you simply copy commons-lang-2.3.jar (which is not an

OSGi bundle) into the deploy folder, you
will see:

karaf@root> la|grep -i commons-lang
[41] [Active] [] [60] commons-lang (2.3)

If you take a look on the commons-lang headers, you can see that the bundle
exports all packages with optional resolution
and that Bundle-SymbolicName and Bundle-Version have been populated:

karaf@root> osgi:headers 41

commons-lang (41)

Specification-Title = Commons Lang
Tool = Bnd-0.0.357
Specification-Version = 2.3
Specification-Vendor = Apache Software Foundation
Implementation-Version = 2.3
Generated-By-Ops4j-Pax-From = wrap:file:/home/onofreje/
workspace/karaf/assembly/target/apache-karaf-2.99.99-SNAPSHOT/
deploy/
commons-lang-2.3.jar$Bundle-SymbolicName=commons-lang&Bundle-Version=2.3
Implementation-Vendor-Id = org.apache
Created-By = 1.6.0_21 (Sun Microsystems Inc.)
Implementation-Title = Commons Lang
Manifest-Version = 1.0
Bnd-LastModified = 1297248243231
X-Compile-Target-JDK = 1.1
Originally-Created-By = 1.3.1_09-85 ("Apple Computer, Inc.")
Ant-Version = Apache Ant 1.6.5
Package = org.apache.commons.lang

36 DEPLOYER

X-Compile-Source-JDK = 1.3
Extension-Name = commons-lang
Implementation-Vendor = Apache Software Foundation

Bundle-Name = commons-lang
Bundle-SymbolicName = commons-lang
Bundle-Version = 2.3
Bundle-ManifestVersion = 2

Import-Package =
org.apache.commons.lang;resolution:=optional,
org.apache.commons.lang.builder;resolution:=optional,
org.apache.commons.lang.enum;resolution:=optional,
org.apache.commons.lang.enums;resolution:=optional,
org.apache.commons.lang.exception;resolution:=optional,
org.apache.commons.lang.math;resolution:=optional,
org.apache.commons.lang.mutable;resolution:=optional,
org.apache.commons.lang.text;resolution:=optional,
org.apache.commons.lang.time;resolution:=optional

Export-Package =

org.apache.commons.lang;uses:="org.apache.commons.lang.builder,org.apache.commons.lang.math,org.apache.commons.lang.exception",

org.apache.commons.lang.builder;uses:="org.apache.commons.lang.math,org.apache.commons.lang",

org.apache.commons.lang.enum;uses:=org.apache.commons.lang,

org.apache.commons.lang.enums;uses:=org.apache.commons.lang,

org.apache.commons.lang.exception;uses:=org.apache.commons.lang,

org.apache.commons.lang.math;uses:=org.apache.commons.lang,

org.apache.commons.lang.mutable;uses:="org.apache.commons.lang,org.apache.commons.lang.math",

org.apache.commons.lang.text;uses:=org.apache.commons.lang,

org.apache.commons.lang.time;uses:=org.apache.commons.lang

DEPLOYER 37

Managing child instances

A child instance of Karaf is a copy that you can launch separately and deploy
applications into. An instance does not contain the full copy of Karaf, but only
a copy of the configuration files and data folder which contains all the
runtime information, logs and temporary files.

USING THE ADMIN CONSOLE COMMANDS
The admin console commands allow you to create and manage instances of
Karaf on the same machine. Each new runtime is a child instance of the
runtime that created it. You can easily manage the children using names
instead of network addresses. For details on the admin commands, see the
admin commands.

CREATING CHILD INSTANCES
You create a new runtime instance by typing admin:create in the Karaf
console.

As shown in the following example, admin:create causes the runtime to
create a new runtime installation in the active runtime's {{instances/name}
directory. The new instance is a new Karaf instance and is assigned an SSH
port number based on an incremental count starting at 8101 and a RMI
registry port number based on an incremental count starting at 1099.

karaf@root>admin:create finn
Creating new instance on SSH port 8106 and RMI port 1100 at:
/home/fuse/esb4/instances/finn
Creating dir: /home/fuse/esb4/instances/finn/bin
Creating dir: /home/fuse/esb4/instances/finn/etc
Creating dir: /home/fuse/esb4/instances/finn/system
Creating dir: /home/fuse/esb4/instances/finn/deploy
Creating dir: /home/fuse/esb4/instances/finn/data
Creating file: /home/fuse/esb4/instances/finn/etc/
config.properties
Creating file: /home/fuse/esb4/instances/finn/etc/
java.util.logging.properties
Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.felix.fileinstall-deploy.cfg

38 MANAGING CHILD INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-create.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/name.html

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.log.cfg
Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.features.cfg
Creating file: /home/fuse/esb4/instances/finn/etc/
org.ops4j.pax.logging.cfg
Creating file: /home/fuse/esb4/instances/finn/etc/
org.ops4j.pax.url.mvn.cfg
Creating file: /home/fuse/esb4/instances/finn/etc/
startup.properties
Creating file: /home/fuse/esb4/instances/finn/etc/
system.properties
Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.shell.cfg
Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.management.cfg
Creating file: /home/fuse/esb4/instances/finn/bin/karaf
Creating file: /home/fuse/esb4/instances/finn/bin/start
Creating file: /home/fuse/esb4/instances/finn/bin/stop
karaf@root>

CHANGING A CHILD'S PORTS
You can change the SSH port number assigned to a child instance using the
admin:change-ssh-port command. The syntax for the command is:

admin:change-ssh-port instance port

Note that the child instance has to be stopped in order to run this command.
In the same way, you can change the RMI registry port number assigned

to a child instance using the admin:change-rmi-registry-port command.
The syntax for the command is:

admin:change-rmi-registry-port instance port

Note that the child instance has to be stopped in order to run this command.

STARTING CHILD INSTANCES
New instances are created in a stopped state. To start a child instance and
make it ready to host applications, use the admin:start command. This

MANAGING CHILD INSTANCES 39

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-change-port.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-change-rmi-registry-port.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-start.html

command takes a single argument instance-name that identifies the child
you want started.

LISTING ALL CONTAINER INSTANCES
To see a list of all Karaf instances running under a particular installation, use
the admin:list command.

karaf@root>admin:list
SSH Port RMI Port State Pid Name

[8107] [1106] [Started] [10628] harry
[8101] [1099] [Started] [20076] root
[8106] [1105] [Stopped] [15924] dick
[8105] [1104] [Started] [18224] tom
karaf@root>

CONNECTING TO A CHILD INSTANCE
You can connect to a started child instance's remote console using the
admin:connect command which takes three arguments:

admin:connect [-u username] [-p password] instance

Once you are connected to the child instance, the Karaf prompt changes to
display the name of the current instance, as shown:

karaf@harry>

STOPPING A CHILD INSTANCE
To stop a child instance from within the instance itself, type osgi:shutdown
or simply shutdown.

To stop a child instance remotely, in other words, from a parent or sibling
instance, use the admin:stop:

admin:stop instance

DESTROYING A CHILD INSTANCE
You can permanently delete a stopped child instance using the
admin:destroy command:

40 MANAGING CHILD INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/instance-name.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-list.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-connect.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-stop.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-destroy.html

admin:destroy instance

Note that only stopped instances can be destroyed.

USING THE ADMIN SCRIPT
You can also manage the local instances of Karaf. The admin script in the
karaf-install-dir/bin directory provides the same commands as the
admin console commands, apart from admin:connect.

> bin/admin
Available commands:

change-ssh-port - Changes the secure shell port of an
existing container instance.

change-rmi-registry-port - Changes the RMI registry port
(used by management layer) of an existing container instance.

create - Creates a new container instance.
destroy - Destroys an existing container instance.
list - List all existing container instances.
start - Starts an existing container instance.
stop - Stops an existing container instance.

Type 'command --help' for more help on the specified command.

For example, to list all the instances of Karaf on the local machine, type:

bin/admin list

MANAGING CHILD INSTANCES 41

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-connect.html

Security

MANAGING USERS AND PASSWORDS
The default security configuration uses a property file located at karaf-
install-dir/etc/users.properties to store authorized users and their
passwords.

The default user name is karaf and the associated password is karaf too.
We strongly encourage you to change the default password by editing the
above file before moving Karaf into production.

The users are currenly used in three different places in Karaf:
• access to the SSH console
• access to the JMX management layer
• access to the Web console

Those three ways all delegate to the same JAAS based security
authentication.

The users.properties file contains one or more lines, each line
defining a user, its password and the associated roles.

user=password[,role][,role]...

MANAGING ROLES
JAAS roles can be used by various components. The three management
layers (SSH, JMX and WebConsole) all use a global role based authorization
system. The default role name is configured in the etc/system.properties
using the karaf.admin.role system property and the default value is admin.
All users authenticating for the management layer must have this role
defined.

The syntax for this value is the following:

[classname:]principal

where classname is the class name of the principal object (defaults to
org.apache.karaf.jaas.modules.RolePrincipal) and principal is the name of the
principal of that class (defaults to admin).

Note that roles can be changed for a given layer using ConfigAdmin in the
following configurations:
Layer PID Value

42 SECURITY

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

SSH org.apache.karaf.shell sshRole
JMX org.apache.karaf.management jmxRole
Web org.apache.karaf.webconsole role

ENABLING PASSWORD ENCRYPTION
In order to not keep the passwords in plain text, the passwords can be stored
encrypted in the configuration file.
This can be easily enabled using the following commands:

edit config
config:edit org.apache.karaf.jaas
config:propset encryption.enabled true
config:update
force a restart
dev:restart

The passwords will be encrypted automatically in the etc/
users.properties configuration file the first time the user logs in.
Encrypted passwords are prepended with {CRYPT} so that are easy to
recognize.

MANAGING REALMS
More informations about modifying the default realm or deploying new
realms is provided in the developers guide.

DEPLOYING SECURITY PROVIDERS
Some applications require specific security providers to be available, such as
BouncyCastle. The JVM impose some restrictions about the use of such jars:
they have to be signed and be available on the boot classpath. One way to
deploy those providers is to put them in the JRE folder at $JAVA_HOME/jre/
lib/ext and modify the security policy configuration ($JAVA_HOME/jre/lib/
security/java.security) in order to register such providers.

While this approach works fine, it has a global effect and require you to
configure all your servers accordingly.

Karaf offers a simple way to configure additional security providers:
• put your provider jar in karaf-install-dir/lib/ext

SECURITY 43

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/security-framework.html
http://www.bouncycastle.org
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

• modify the karaf-install-dir/etc/config.properties
configuration file to add the following property

org.apache.karaf.security.providers = xxx,yyy

The value of this property is a comma separated list of the provider class
names to register.
For example:

org.apache.karaf.security.providers =
org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those
providers from the system bundle so that all bundles can access those. It can
be done by modifying the org.osgi.framework.bootdelegation property in
the same configuration file:

org.osgi.framework.bootdelegation = ...,org.bouncycastle*

44 SECURITY

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

Failover Deployments

Karaf provides failover capability using either a simple lock file system or a
JDBC locking mechanism. In both cases, a container-level lock system allows
bundles to be preloaded into the slave Karaf instance in order to provide
faster failover performance.

SIMPLE LOCK FILE
The simple lock file mechanism is intended for failover configurations where
instances reside on the same host machine.

To use this feature, edit the $KARAF_HOME/etc/system.properties file as
follows on each system in the master/slave setup:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.SimpleFileLock
karaf.lock.dir=<PathToLockFileDirectory>
karaf.lock.delay=10

Note: Ensure that the karaf.lock.dir property points to the same directory
for both the master and slave instance, so that the slave can only acquire the
lock when the master releases it.

JDBC LOCKING
The JDBC locking mechanism is intended for failover configurations where
instances exist on separate machines. In this deployment, the master
instance holds a lock on a Karaf locking table hosted on a database. If the
master loses the lock, a waiting slave process gains access to the locking
table and fully starts its container.

To use this feature, do the following on each system in the master/slave
setup:

• Update the classpath to include the JDBC driver
• Update the $KARAF_HOME/bin/karaf script to have unique JMX

remote port set if instances reside on the same host
• Update the $KARAF_HOME/etc/system.properties file as follows:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.DefaultJDBCLock

FAILOVER DEPLOYMENTS 45

karaf.lock.level=50
karaf.lock.delay=10
karaf.lock.jdbc.url=jdbc:derby://dbserver:1527/sample
karaf.lock.jdbc.driver=org.apache.derby.jdbc.ClientDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

Note:
• Will fail if JDBC driver is not on classpath.
• The database name "sample" will be created if it does not exist on

the database.
• The first Karaf instance to acquire the locking table is the master

instance.
• If the connection to the database is lost, the master instance tries to

gracefully shutdown, allowing a slave instance to become master
when the database service is restored. The former master will require
manual restart.

JDBC locking on Oracle
If you are using Oracle as your database in a JDBC locking scenario, the
karaf.lock.class property in the $KARAF_HOME/etc/system.properties
file must point to org.apache.felix.karaf.main.OracleJDBCLock.

Otherwise, configure the system.properties file as normal for your setup,
for example:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.OracleJDBCLock
karaf.lock.jdbc.url=jdbc:oracle:thin:@hostname:1521:XE
karaf.lock.jdbc.driver=oracle.jdbc.OracleDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

As with the default JDBC locking setup, the Oracle JDBC driver JAR file must
be in your classpath. You can ensure this by copying the ojdbc14.jar into
Karaf's lib folder before starting Karaf.

46 FAILOVER DEPLOYMENTS

Note: The karaf.lock.jdbc.url requires an active SID, which means you
must manually create a database instance before using this particular lock.

Derby

TODO

MySQL

TODO

CONTAINER-LEVEL LOCKING
Container-level locking allows bundles to be preloaded into the slave kernel
instance in order to provide faster failover performance. Container-level
locking is supported in both the simple file and JDBC locking mechanisms.

To implement container-level locking, add the following to the
$KARAF_HOME/etc/system.properties file on each system in the master/
slave setup:

karaf.lock=true
karaf.lock.level=50
karaf.lock.delay=10

The karaf.log.level property tells the Karaf instance how far up the boot
process to bring the OSGi container. Bundles assigned the same start level or
lower will then also be started in that Karaf instance.

Bundle start levels are specified in $KARAF_HOME/etc/
startup.properties, in the format jar.name=level. The core system
bundles have levels below 50, where as user bundles have levels greater
than 50.
Level Behavior

1 A 'cold' standby instance. Core bundles are not loaded into
container. Slaves will wait until lock acquired to start server.

<50
A 'hot' standby instance. Core bundles are loaded into the
container. Slaves will wait until lock acquired to start user level
bundles. The console will be accessible for each slave instance at
this level.

>50 This setting is not recommended as user bundles will be started.

FAILOVER DEPLOYMENTS 47

Note: When using a 'hot' spare on the same host you need to set the JMX
remote port to a unique value to avoid bind conflicts. You can edit the Karaf
start script to include the following:

DEFAULT_JAVA_OPTS="-server $DEFAULT_JAVA_OPTS
-Dcom.sun.management.jmxremote.port=1100
-Dcom.sun.management.jmxremote.authenticate=false"

48 FAILOVER DEPLOYMENTS

Logging system

Karaf provides a powerful logging system based on OPS4j Pax Logging.
In addition to being a standard OSGi Log service, it supports the following

APIs:
• Apache Commons Logging
• SLF4J
• Apache Log4j
• Java Util Logging

Karaf also comes with a set of console commands that can be used to
display, view and change the log levels.

CONFIGURATION

Configuration file
The configuration of the logging system uses a standard Log4j configuration
file at the following location:

[karaf_install_dir]/etc/org.ops4j.pax.logging.cfg

You can edit this file at runtime and any change will be reloaded and be
effective immediately.

Configuring the appenders
The default logging configuration defines three appenders:

• the stdout console appender is disabled by default. If you plan to
run Karaf in server mode only (i.e. with the locale console disabled),
you can turn on this appender on by adding it to the list of configured
appenders using the log4j.rootLogger property

• the out appender is the one enabled by default. It logs events to a
number of rotating log files of a fixed size. You can easily change the
parameters to control the number of files using maxBackupIndex and
their size size maxFileSize

• the sift appender can be used instead to provide a per-bundle log
file. The default configuration uses the bundle symbolic name as the
file name to log to

LOGGING SYSTEM 49

http://wiki.ops4j.org/confluence/display/ops4j/Pax+Logging
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html

Changing the log levels
The default logging configuration sets the logging levels so that the log file
will provide enough information to monitor the behavior of the runtime and
provide clues about what caused a problem. However, the default
configuration will not provide enough information to debug most problems.

The most useful logger to change when trying to debug an issue with Karaf
is the root logger. You will want to set its logging level to DEBUG in the
org.ops4j.pax.logging.cfg file.

log4j.rootLogger=DEBUG, out, osgi:VmLogAppender
...

When debugging a problem in Karaf you may want to change the level of
logging information that is displayed on the console. The example below
shows how to set the root logger to DEBUG but limiting the information
displayed on the console to WARN.

log4j.rootLogger=DEBUG, out, stdout, osgi:VmLogAppender
log4j.appender.stdout.threshold=WARN
...

CONSOLE LOG COMMANDS
The log subshell comes with the following commands:

• log:clear: clear the log
• log:display: display the last log entries
• log:display-exception: display the last exception from the log
• log:get: show the log levels
• log:set: set the log levels
• log:tail: continuous display of the log entries

For example, if you want to debug something, you might want to run the
following commands:

> log:set DEBUG
... do something ...
> log:display

Note that the log levels set using the log:set commands are not persistent
and will be lost upon restart.
To configure those in a persistent way, you should edit the configuration file

50 LOGGING SYSTEM

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-clear.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-display.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-display-exception.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-get.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-set.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-tail.html

mentioned above using the config commands or directly using a text editor
of your choice.

The log commands has a separate configure file:

[karaf_install_dir]/etc/org.apache.karaf.log.cfg

ADVANCED CONFIGURATION
The logging backend uses Log4j, but offer a number of additional features.

Nested filters, appenders and error handlers

Filters
Appender filters can be added using the following syntax:

log4j.appender.[appender-name].filter.[filter-name]=[filter-class]
log4j.appender.[appender-name].filter.[filter-name].[option]=[value]

Below is a real example:

log4j.appender.out.filter.f1=org.apache.log4j.varia.LevelRangeFilter
log4j.appender.out.filter.f1.LevelMax=FATAL
log4j.appender.out.filter.f1.LevelMin=DEBUG

Nested appenders
Nested appenders can be added using the following syntax:

log4j.appender.[appender-name].appenders=[comma-separated-list-of-appender-names]

Below is a real example:

log4j.appender.async=org.apache.log4j.AsyncAppender
log4j.appender.async.appenders=jms

LOGGING SYSTEM 51

log4j.appender.jms=org.apache.log4j.net.JMSAppender
...

Error handlers
Error handlers can be added using the following syntax:

log4j.appender.[appender-name].errorhandler=[error-handler-class]
log4j.appender.[appender-name].errorhandler.root-ref=[true|false]
log4j.appender.[appender-name].errorhandler.logger-ref=[logger-ref]
log4j.appender.[appender-name].errorhandler.appender-ref=[appender-ref]

OSGi specific MDC attributes
Pax-Logging provides the following attributes by default:

• bundle.id: the id of the bundle from which the class is loaded
• bundle.name: the symbolic-name of the bundle
• bundle.version: the version of the bundle

An MDC sifting appender is available to split the log events based on MDC
attributes. Below is a configuration example for this appender:

log4j.appender.sift=org.apache.log4j.sift.MDCSiftingAppender
log4j.appender.sift.key=bundle.name
log4j.appender.sift.default=karaf
log4j.appender.sift.appender=org.apache.log4j.FileAppender
log4j.appender.sift.appender.layout=org.apache.log4j.PatternLayout
log4j.appender.sift.appender.layout.ConversionPattern=%d{ABSOLUTE}
| %-5.5p | %-16.16t | %-32.32c{1} | %-32.32C %4L | %m%n
log4j.appender.sift.appender.file=${karaf.data}/log/
$\\{bundle.name\\}.log
log4j.appender.sift.appender.append=true

Enhanced OSGi stack trace renderer
This renderer is configured by default in Karaf and will give additional
informations when printing stack traces.
For each line of the stack trace, it will display OSGi specific informations
related to the class on that line: the bundle id, the bundle symbolic name
and the bundle version. This information can greatly help diagnosing

52 LOGGING SYSTEM

problems in some cases.
The information is appended at the end of each line in the following format
id:name:version as shown below

java.lang.IllegalArgumentException: Command not found: *:foo
at

org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:225)[21:org.apache.karaf.shell.console:2.1.0]
at

org.apache.felix.gogo.runtime.shell.Closure.executeStatement(Closure.java:162)[21:org.apache.karaf.shell.console:2.1.0]
at

org.apache.felix.gogo.runtime.shell.Pipe.run(Pipe.java:101)[21:org.apache.karaf.shell.console:2.1.0]
at

org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:79)[21:org.apache.karaf.shell.console:2.1.0]
at

org.apache.felix.gogo.runtime.shell.CommandSessionImpl.execute(CommandSessionImpl.java:71)[21:org.apache.karaf.shell.console:2.1.0]
at

org.apache.karaf.shell.console.jline.Console.run(Console.java:169)[21:org.apache.karaf.shell.console:2.1.0]
at java.lang.Thread.run(Thread.java:637)[:1.6.0_20]

Using your own appenders
If you plan to use your own appenders, you need to create an OSGi bundle
and attach it as a fragment to the bundle with a symbolic name of
org.ops4j.pax.logging.pax-logging-service. This way, the underlying
logging system will be able to see and use your appenders.

LOGGING SYSTEM 53

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/id:name:version

Provisioning

Karaf provides a simple, yet flexible, way to provision applications or
"features". Such a mechanism is mainly provided by a set of commands
available in the features shell. The provisioning system uses xml
"repositories" that define a set of features.

REPOSITORIES
The complete xml schema for feature descriptor are available on Features
XML Schema page. We recommend using this XML schema. It will allow Karaf
to validate your repository before parsing. You may also verify your
descriptor before adding it to Karaf by simply validation, even from IDE level.

Here is an example of such a repository:

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
<feature name="spring" version="3.0.4.RELEASE">

<bundle>mvn:org.apache.servicemix.bundles/
org.apache.servicemix.bundles.aopalliance/1.0_1</bundle>

<bundle>mvn:org.springframework/spring-core/
3.0.4.RELEASE</bundle>

<bundle>mvn:org.springframework/spring-beans/
3.0.4.RELEASE</bundle>

<bundle>mvn:org.springframework/spring-aop/
3.0.4.RELEASE</bundle>

<bundle>mvn:org.springframework/spring-context/
3.0.4.RELEASE</bundle>

<bundle>mvn:org.springframework/spring-context-support/
3.0.4.RELEASE</bundle>

</feature>
</features>

A repository includes a list of feature elements, each one representing an
application that can be installed. The feature is identified by its name which
must be unique amongst all the repositories used and consists of a set of
bundles that need to be installed along with some optional dependencies on
other features and some optional configurations for the Configuration Admin
OSGi service.

54 PROVISIONING

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/provisioning-schema.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/provisioning-schema.html

References to features define in other repositories are allow and can be
achieved by adding a list of repository.

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
<repository>mvn:org.apache.servicemix.nmr/

apache-servicemix-nmr/1.3.0/xml/features</repository>
<repository>mvn:org.apache.camel.karaf/apache-camel/2.5.0/xml/

features</repository>
<repository>mvn:org.apache.karaf/apache-karaf/2.1.2/xml/

features</repository>
...

Be carefull when you define them as there is a risk of 'cycling'
dependencies.

Remark : By default, all the features defined in a repository are not installed
at the launch of Apache Karaf (see section hereafter 'h2. Service
configuration' for more info).

Bundles
The main information provided by a feature is the set of OSGi bundles that
defines the application. Such bundles are URLs pointing to the actual bundle
jars. For example, one would write the following definition:

<bundle>http://repo1.maven.org/maven2/org/apache/servicemix/nmr/
org.apache.servicemix.nmr.api/1.0.0-m2/
org.apache.servicemix.nmr.api-1.0.0-m2.jar</bundle>

Doing this will make sure the above bundle is installed while installing the
feature.

However, Karaf provides several URL handlers, in addition to the usual
ones (file, http, etc...). One of these is the maven URL handler, which allow
reusing maven repositories to point to the bundles.

Maven URL Handler
The equivalent of the above bundle would be:

<bundle>mvn:org.apache.servicemix.nmr/
org.apache.servicemix.nmr.api/1.0.0-m2</bundle>

PROVISIONING 55

In addition to being less verbose, the maven url handlers can also resolve
snapshots and can use a local copy of the jar if one is available in your
maven local repository.

The org.ops4j.pax.url.mvn bundle resolves mvn URLs. This flexible tool
can be configured through the configuration service. For example, to find the
current repositories type:

karaf@root:/> config:list
...
--
Pid: org.ops4j.pax.url.mvn
BundleLocation: mvn:org.ops4j.pax.url/pax-url-mvn/0.3.3
Properties:

service.pid = org.ops4j.pax.url.mvn
org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/

development/karaf/assembly/target/
apache-felix-karaf-1.2.0-SNAPSHOT/system@snapshots

org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/
maven2,

http://people.apache.org/repo/
m2-snapshot-repository@snapshots@noreleases,

http://repository.ops4j.org/maven2,
http://svn.apache.org/

repos/asf/servicemix/m2-repo
below = list of repositories and even before the local

repository

The repositories checked are controlled by these configuration properties.
For example, org.ops4j.pax.url.mvn.repositories is a comma

separate list of repository URLs specifying those remote repositories to be
checked. So, to replace the defaults with a new repository at
http://www.example.org/repo on the local machine:

karaf@root:/> config:edit org.ops4j.pax.url.mvn
karaf@root:/> config:proplist

service.pid = org.ops4j.pax.url.mvn
org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/

development/karaf/assembly/target/
apache-felix-karaf-1.2.0-SNAPSHOT/system@snapshots

org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/
maven2,

56 PROVISIONING

http://people.apache.org/repo/
m2-snapshot-repository@snapshots@noreleases,

http://repository.ops4j.org/maven2,
http://svn.apache.org/

repos/asf/servicemix/m2-repo
below = list of repositories and even before the local

repository
karaf@root:/> config:propset org.ops4j.pax.url.mvn.repositories
http://www.example.org/repo
karaf@root:/> config:update

By default, snapshots are disable. To enable an URL for snapshots append
@snapshots. For example

http://www.example.org/repo@snapshots

Repositories on the local are supported through file:/ URLs

Bundle start-level
Available since Karaf 2.0

By default, the bundles deployed through the feature mechanism will have
a start-level equals to the value defined in the configuration file
config.properties
with the variable karaf.startlevel.bundle=60. This value can be changed
using the xml attribute start-level.

<feature name='my-project' version='1.0.0'>
<feature version='2.4.0'>camel-spring</feature>
<bundle start-level='80'>mvn:com.mycompany.myproject/

myproject-dao</bundle>
<bundle start-level='85'>mvn:com.mycompany.myproject/

myproject-service</bundle>
<bundle start-level='85'>mvn:com.mycompany.myproject/

myproject-camel-routing</bundle>
</feature>

The advantage to define the start-level of a bundle is that you can deploy
all your bundles including those of the project with the 'infrastructure'
bundles required (e.g : camel, activemq)
at the same time and you will have the guaranty when you use Spring

PROVISIONING 57

Dynamic Module (to register service through OSGI service layer), Blueprint
that by example
Spring context will not be created without all the required services installed.

Bundle 'stop/start'
The OSGI specification allows to install a bundle without starting it. To use
this functionality, simply add the following attribute in your <bundle>
definition

<feature name='my-project' version='1.0.0'>
<feature version='2.4.0'>camel-spring</feature>
<bundle start-level='80'

start='false'>mvn:com.mycompany.myproject/
myproject-dao</bundle>

<bundle start-level='85'
start='false'>mvn:com.mycompany.myproject/
myproject-service</bundle>

<bundle start-level='85'
start='false'>mvn:com.mycompany.myproject/
myproject-camel-routing</bundle>

</feature>

Bundle 'dependency'
A bundle can be flagged as being a dependency. Such information can be
used by resolvers to compute the final list of bundles to be installed.

Dependent features
Dependent features are useful when a given feature depends on another
feature to be installed. Such a dependency can be expressed easily in the
feature definition:

<feature name="jbi">
<feature>nmr</feature>
...

</feature>

The effect of such a dependency is to automatically install the required nmr
feature when the jbi feature will be installed.

A version range can be specified on the feature dependency:

58 PROVISIONING

<feature name="spring-dm">
<feature version="[2.5.6,4)">spring</feature>
...

</feature>

In such a case, if no matching feature is already installed, the feature with
the highest version available in the range will be installed. If a single version
is specified, this version will be choosen. If nothing is specified, the highest
available will be instaleld.

Configurations
The configuration section allows to deploy configuration for the OSGi
Configuration Admin service along a set of bundles.
Here is an example of such a configuration:

<config name="com.foo.bar">
myProperty = myValue

</config>

The name attribute of the configuration element will be used as the
ManagedService PID for the configuration set in the Configuration Admin
service. When using a ManagedServiceFactory, the name attribute is
servicePid-_aliasId_, where servicePid is the PID of the
ManagedServiceFactory and aliasId is a label used to uniquely identify a
particular service (an alias to the factory generated service PID).

Deploying such a configuration has the same effect than dropping a file
named com.foo.bar.cfg into the etc folder.

The content of the configuration element is set of properties parsed
using the standard java property mechanism.

Such configuration as usually used with Spring-DM or Blueprint support for
the Configuration Admin service, as in the following example, but using plain
OSGi APIs will of course work the same way:

<bean ...>
<property name="propertyName" value="${myProperty}" />

</bean>

<osgix:cm-properties id="cmProps" persistent-id="com.foo.bar">
<prop key="myProperty">myValue</prop>

</osgix:cm-properties>
<ctx:property-placeholder properties-ref="cmProps" />

PROVISIONING 59

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

There may also be cases where you want to make the properties from
multiple configuration files available to your bundle context. This is
something you may
want to do if you have a multi-bundle application where there are application
properties used by multiple bundles, and each bundle has its own specific
properties. In that case, <ctx:property-placeholder> won't work as it was
designed to make only one configuration file available to a bundle context.
To make more than one configuration file available to your bundle-context
you would do something like this:

<beans:bean id="myBundleConfigurer"

class="org.springframework.beans.factory.config.PropertyPlaceholderConfig">
<beans:property name="ignoreUnresolvablePlaceholders"

value="true"/>
<beans:property name="propertiesArray">

<osgix:cm-properties id="myAppProps"
persistent-id="myApp.props"/>

<osgix:cm-properties id="myBundleProps"
persistent-id="my.bundle.props"/>

</beans:property>
</beans:bean>

In this example, we are using SpringDM with osgi as the primary namespace.
Instead of using ctx:context-placeholder we are using the
"PropertyPlaceholderConfig"
class. Then we are passing in a beans array and inside of that array is where
we set our osgix:cm-properties elements. This element "returns" a properties
bean.

For more informations about using the Configuration Admin service in
Spring-DM, see the Spring-DM documentation.

Configuration files
Available since Karaf 2.2

In certain cases it is needed not only to provide configurations for the
configuration admin service but to add additional configuration files e.g. a
configuration file for jetty (jetty.xml). It even might be help full to deploy a
configuration file instead of a configuration for the config admin service
since. To achieve this the attribute finalname shows the final destination of
the configfile, while the value references the maven artifact to deploy.

60 PROVISIONING

http://static.springframework.org/osgi/docs/1.2.0-m2/reference/html/compendium.html#compendium:cm:props

<configfile finalname="/etc/jetty.xml">mvn:org.apache.karaf/
apache-karaf/${project.version}/xml/jettyconfig</configfile>

Feature resolver
The resolver attribute on a feature can be set to force the use of a given
resolver instead of the default resolution process. A resolver will be use to
obtain the list of bundles to actually install for a given feature.
The default resolver will simply return the list of bundles provided in the
feature description.
The obr resolver can be installed and used instead of the standard one. In
that case, the resolver will use the OBR service to determine the list of
bundles to install (bundles flagged as dependency will only be used as
possible candidates to solve various constraints).

COMMANDS

Repository management
The following commands can be used to manage the list of descriptors
known by Karaf. They use URLs pointing to features descriptors. These URLs
can use any protocol known to the Apache Karaf, the most common ones
being http, file and mvn.

features:addUrl Add a list of repository URLs to the
features service
features:removeUrl Remove a list of repository URLs from the
features service
features:listUrl Display the repository URLs currently
associated with the features service.
features:refreshUrl Reload the repositories to obtain a fresh
list of features

Karaf maintains a persistent list of these repositories so that if you add one
URL and restart Karaf, the features will still be available.

The refreshUrl command is mostly used when developing features
descriptors: when changing the descriptor, it can be handy to reload it in the
Kernel without having to restart it or to remove then add again this URL.

PROVISIONING 61

Features management

features:install
features:uninstall
features:list

Examples
1. Install features using mvn handler

features:addUrl mvn:org.apache.servicemix.nmr/
apache-servicemix-nmr/1.0.0-m2/xml/features
features:install nmr

2. Use file handler to deploy features file

features:addUrl file:base/features/features.xml

Remark : The path is relative to the Apache Karaf installation directory
3. Deploy bundles from file system without using maven
As we can use file:// as protocol handler to deploy bundles, you can use

the following syntax to deploy bundles when they are
located in a directory which is not available using maven

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
<feature name="spring-web" version="2.5.6.SEC01">

<bundle>file:base/bundles/
spring-web-2.5.6.SEC01.jar</bundle>

</feature>
</features>

Remark : The path is relative to the Apache Karaf installation directory

SERVICE CONFIGURATION
A simple configuration file located in [FELIX:karaf]/etc/
org.apache.karaf.features.cfg can be modified to customize the
behavior when starting the Kernel for the first time.
This configuration file contains two properties:

• featuresBoot: a comma separated list of features to install at
startup

• featuresRepositories: a comma separated list of feature
repositories to load at startup

62 PROVISIONING

This configuration file is of interest if you plan to distribute Apache Karaf
distribution which includes pre-installed features. Such a process is detailed
in the 6.2. Building custom distributions section.

PROVISIONING 63

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/6.2. Building custom distributions

XML Schema for provisioning

Following schema can be found in Karaf sources. It is also available public on
url http://karaf.apache.org/xmlns/features/v1.0.0.

64 XML SCHEMA FOR PROVISIONING

Developers Guide

DEVELOPERS GUIDE 65

Programmatically connect to
the console

A connection to Karaf console can also be done programmatically.
The following code is a simplified version of the code from the client library.

import org.apache.sshd.ClientChannel;
import org.apache.sshd.ClientSession;
import org.apache.sshd.SshClient;
import org.apache.sshd.client.future.ConnectFuture;

public class Main {

public static void main(String[] args) throws Exception {
String host = "localhost";
int port = 8101;
String user = "karaf";
String password = "karaf";

SshClient client = null;
try {

client = SshClient.setUpDefaultClient();
client.start();
ConnectFuture future = client.connect(host,

port);
future.await();
ClientSession session = future.getSession();
session.authPassword(user, password);
ClientChannel channel =

session.createChannel("shell");
channel.setIn(System.in);
channel.setOut(System.out);
channel.setErr(System.err);
channel.open();
channel.waitFor(ClientChannel.CLOSED, 0);

} catch (Throwable t) {
t.printStackTrace();
System.exit(1);

} finally {

66 PROGRAMMATICALLY CONNECT TO THE CONSOLE

try {
client.stop();

} catch (Throwable t) { }
}
System.exit(0);

}

}

You can find a more complete example at the following location.

PROGRAMMATICALLY CONNECT TO THE CONSOLE 67

http://svn.apache.org/repos/asf/karaf/trunk/client/src/main/java/org/apache/karaf/client/Main.java

Shell syntax

EASY TO USE INTERACTIVELY - NO UNNECESSARY SYNTAX

// simple command
karaf@root> echo hello world
hello world

// session variables
karaf@root> msg = "hello world"
hello world
karaf@root> echo $msg
hello world

// execution quotes () - similar to bash backquotes
karaf@root> (bundle 1) location
mvn:org.ops4j.pax.url/pax-url-mvn/1.1.3

LIST, MAPS, PIPES AND CLOSURES

// lists - []
karaf@root> list = [1 2 a b]
1
2
a
b

karaf@root> map = [Jan=1 Feb=2 Mar=3]
Jan 1
Feb 2
Mar 3

// pipes
karaf@root> bundles | grep felix
000000 ACT org.apache.felix.framework-3.0.2
000005 ACT org.apache.felix.configadmin-1.2.4
000006 ACT org.apache.felix.fileinstall-3.0.2

// closures - {}

68 SHELL SYNTAX

karaf@root> echo2 = { echo xxx $args yyy }
org.apache.felix.gogo.runtime.shell.Closure@2ffb36c2
karaf@root> echo2 hello world
xxx hello world yyy

LEVERAGES EXISTING JAVA CAPABILITIES, VIA
REFLECTION

// exception handling - console shows summary, but full context
available
karaf@root> start xxx
Error executing command osgi:start: unable to convert argument
ids with value '[xxx]' to type java.util.List<java.lang.Long>
karaf@root> $karaf.lastException printStackTrace
org.apache.felix.gogo.commands.CommandException: Unable to
convert argument ids with value '[xxx]' to type
java.util.List<java.lang.Long>

at
org.apache.felix.gogo.commands.basic.DefaultActionPreparator.prepare(DefaultActionPreparator.java:347)

at
org.apache.felix.gogo.commands.basic.AbstractCommand.execute(AbstractCommand.java:34)

at
org.apache.felix.gogo.runtime.shell.CommandProxy.execute(CommandProxy.java:50)

at
org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:229)

at
org.apache.felix.gogo.runtime.shell.Closure.executeStatement(Closure.java:162)

at
org.apache.felix.gogo.runtime.shell.Pipe.run(Pipe.java:101)

at
org.apache.felix.gogo.runtime.shell.Closure.execute(Closure.java:79)

at
org.apache.felix.gogo.runtime.shell.CommandSessionImpl.execute(CommandSessionImpl.java:71)

at
org.apache.karaf.shell.console.jline.Console.run(Console.java:169)

at java.lang.Thread.run(Thread.java:637)
Caused by: java.lang.Exception: Unable to convert from [xxx] to
java.util.List<java.lang.Long>(error converting collection
entry)

at
org.apache.aries.blueprint.container.AggregateConverter.convertToCollection(AggregateConverter.java:318)

at

SHELL SYNTAX 69

org.apache.aries.blueprint.container.AggregateConverter.convert(AggregateConverter.java:159)
at

org.apache.karaf.shell.console.commands.BlueprintCommand$BlueprintActionPreparator.convert(BlueprintCommand.java:73)
at

org.apache.felix.gogo.commands.basic.DefaultActionPreparator.prepare(DefaultActionPreparator.java:344)
... 9 more

Caused by: java.lang.NumberFormatException: For input string:
"xxx"

at
java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

at java.lang.Long.parseLong(Long.java:410)
at java.lang.Long.valueOf(Long.java:525)
at

org.apache.aries.blueprint.container.AggregateConverter.convertFromString(AggregateConverter.java:261)
at

org.apache.aries.blueprint.container.AggregateConverter.convert(AggregateConverter.java:151)
at

org.apache.aries.blueprint.container.AggregateConverter.convertToCollection(AggregateConverter.java:316)
... 12 more

// add all public methods on java.lang.System as commands:
karaf@root> addcommand system (loadClass java.lang.System)
karaf@root> system:getproperty karaf.name
root

// create new objects
karaf@root> map = (new java.util.HashMap)
karaf@root> $map put 0 0
karaf@root> $map
0 0

70 SHELL SYNTAX

Add extended information to
bundles

Karaf supports a OSGI-INF/bundle.info file in a bundle.
This file is extended description of the bundle. It supports ASCII character

(to color, formatting, etc).
For instance, you can define a bundle like this (using Apache Felix maven-

bundle-plugin):

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>my.groupId</groupId>
<artifactId>my.bundle</artifactId>
<version>1.0-SNAPSHOT</version>
<name>My Bundle</name>
<description>My bundle short description</description>

<build>
<resources>

<resource>
<directory>/x1/asf/karaf-2.2.x/target/checkout/

manual/src/main/resources</directory>
<filtering>true</filtering>
<includes>

<include>**/*</include>
</includes>

</resource>
</resources>
<plugins>

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.2.0</version>

ADD EXTENDED INFORMATION TO BUNDLES 71

<extensions>true</extensions>
<configuration>

<instructions>

<Bundle-SymbolicName>manual</Bundle-SymbolicName>
...

</instructions>
</configuration>

</plugin>
</plugins>

</build>

</project>

And simply add src/main/resources/OSGI-INF/bundle.info file containing, for
instance:

\u001B[1mSYNOPSIS\u001B[0m
The Apache Software Foundation provides support for the

Apache community of open-source software projects.
The Apache projects are characterized by a collaborative,

consensus based development process, an open and
pragmatic software license, and a desire to create high

quality software that leads the way in its field.
We consider ourselves not simply a group of projects

sharing a server, but rather a community of developers
and users.

\u001B[1mDESCRIPTION\u001B[0m
Long description of your bundle, including usage, etc.

\u001B[1mSEE ALSO\u001B[0m
\u001B[36mhttp://yourside\u001B[0m
\u001B[36mhttp://yourside/docs\u001B[0m

You can display this extended information using:

root@karaf> osgi:info

72 ADD EXTENDED INFORMATION TO BUNDLES

Creating bundles for third
party dependencies

Karaf support the wrap: protocol execution.
It allows you to directly deploy third party dependency, like Apache

Commons Lang:

root@karaf> osgi:install wrap:mvn:commons-lang/commons-lang/2.4

You can specify OSGi statements on the wrap URL:

root@karaf> osgi:install wrap:mvn:commons-lang/commons-lang/
2.4,Bundle-SymbolicName=commons-lang&Bundle-Version=2.4

Anyway, you can create a wrap bundle for a third party dependencies.
This bundle is simply a Maven POM that shade an existing jar and package
into a jar bundle.

For instance, to create an OSGi bundle to wrap Apache Commons Lang,
you can simply define the following Maven POM:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>osgi.commons-lang</groupId>
<artifactId>osgi.commons-lang</artifactId>
<version>2.4</version>
<packaging>bundle</packaging>
<name>commons-lang OSGi Bundle</name>
<description>This OSGi bundle simply wraps

commons-lang-2.4.jar artifact.</description>

<dependencies>
<dependency>

<groupId>commons-lang</groupId>

CREATING BUNDLES FOR THIRD PARTY DEPENDENCIES 73

<artifactId>commons-lang</artifactId>
<version>2.4</version>
<optional>true</optional>

</dependency>
</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>shade</goal>
</goals>
<configuration>

<artifactSet>
<includes>

<include>commons-lang:commons-lang</include>
</includes>

</artifactSet>
<filters>

<filter>

<artifact>commons-lang:commons-lang</artifact>
<excludes>

<exclude>**</exclude>
</excludes>

</filter>
</filters>

<promoteTransitiveDependencies>true</promoteTransitiveDependencies>

<createDependencyReducedPom>true</createDependencyReducedPom>
</configuration>

</execution>
</executions>

</plugin>

74 CREATING BUNDLES FOR THIRD PARTY DEPENDENCIES

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.1.0</version>
<extensions>true</extensions>
<configuration>

<instructions>

<Bundle-SymbolicName>manual</Bundle-SymbolicName>
<Export-Package></Export-Package>
<Import-Package></Import-Package>

<_versionpolicy>[$(version;==;$(@)),$(version;+;$(@)))</_versionpolicy>

<_removeheaders>Ignore-Package,Include-Resource,Private-Package,Embed-Dependency</_removeheaders>
</instructions>
<unpackBundle>true</unpackBundle>

</configuration>
</plugin>

</build>

</project>

You have now a OSGi bundle for commons-lang that you can deploy
directory:

root@karaf> osgi:install -s mvn:osgi.commons-lang/
osgi.commons-lang/2.4

Some more infos available at http://gnodet.blogspot.com/2008/09/id-like-to-
talk-bit-about-third-party.html, http://blog.springsource.com/2008/02/18/
creating-osgi-bundles/ and http://felix.apache.org/site/apache-felix-maven-
bundle-plugin-bnd.html.

CREATING BUNDLES FOR THIRD PARTY DEPENDENCIES 75

http://gnodet.blogspot.com/2008/09/id-like-to-talk-bit-about-third-party.html
http://gnodet.blogspot.com/2008/09/id-like-to-talk-bit-about-third-party.html
http://blog.springsource.com/2008/02/18/creating-osgi-bundles/
http://blog.springsource.com/2008/02/18/creating-osgi-bundles/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Troubleshooting,
Debugging,Profiling, and
Monitoring

TROUBLESHOOTING

Logging
Logging is easy to control through the console, with commands grouped
under log shell. To learn about the available logging commands type:

karaf@root> log<tab>

log:display log:display-exception
log:get log:set
karaf@root>

Typical usage is:
Use log:set to dynamically change the global log level

Execute the problematic operation
Use log:display (or log:display-exception to display the log

Worst Case Scenario
If you end up with a Karaf in a really bad state (i.e. you can not boot it
anymore) or you just want to revert to a clean state quickly, you can safely
remove the data directory just in the installation directory. This folder
contains transient data and will be recreated if you remove it and relaunch
Karaf.
You may also want to remove the files in the deploy folder to avoid them
being automatically installed when Karaf is started the first time.

DEBUGGING
Usually, the easiest way to debug Karaf or any application deployed onto it is
to use remote debugging.

76 TROUBLESHOOTING, DEBUGGING,PROFILING, AND MONITORING

Remote debugging can be easily activated by using the debug parameter on
the command line.

> bin/karaf debug
{noformat
or on Windows

> bin\karaf.bat debug
{noformat

Another option is to set the KARAF_DEBUG environment variable to TRUE.
This can be done using the following command on Unix systems:

export KARAF_DEBUG=true

On Windows, use the following command

set KARAF_DEBUG=true

Then, you can launch Karaf using the usual way:

bin/karaf

or

bin\karaf.bat

Last, inside your IDE, connect to the remote application (the default port to
connect to is 5005).

This option works fine when we have to debug a project deployed top of
Apache Karaf. Nervertheless, you will be blocked if you would like to debug
the server Karaf. In this case, you can change the following parameter
suspend=y in the karaf.bat script file. That will cause the JVM to pause just
before running main() until you attach a debugger then it will resume the
execution. This way you can set
your breakpoints anywhere in the code and you should hit them no matter
how early in the startup they are

export DEFAULT_JAVA_DEBUG_OPTS='-Xdebug -Xnoagent
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005'

and on Windows,

TROUBLESHOOTING, DEBUGGING,PROFILING, AND MONITORING 77

set DEFAULT_JAVA_DEBUG_OPTS='-Xdebug -Xnoagent
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005'

PROFILING

YourKit
You need a few steps to be able to profile Karaf using YourKit.
The first one is to edit the etc/config.properties configuration file and
add the following property:

org.osgi.framework.bootdelegation=com.yourkit.*

Then, set the JAVA_OPTS environment variable:

export JAVA_OPTS='-Xmx512M -agentlib:yjpagent'

or, on Windows

set JAVA_OPTS='-Xmx512M -agentlib:yjpagent'

Run Karaf from the console, and you should now be able to connect using
YourKit standalone or from your favorite IDE.

MONITORING
Karaf uses JMX for monitoring and management of all Karaf components.

The JMX connection could be:
• local using the process id

• remote using the rmiRegistryPort property defined in etc/
org.apache.karaf.management.cfg file.

Using JMX, you can have a clean overview of the running Karaf instance:
• A overview with graphics displaying the load in terms of thread,

heap/GC, etc:

• A thread overview:

• A memory heap consumption, including "Perform GC" button:

• A complete JVM summary, with all number of threads, etc:

78 TROUBLESHOOTING, DEBUGGING,PROFILING, AND MONITORING

You can manage Karaf features like you are in the shell. For example, you
have access to the Admin service MBean, allowing you to create, rename,
destroy, change SSH port, etc Karaf instances:

You can also manage Karaf features MBean to list, install, uninstall Karaf
features:

TROUBLESHOOTING, DEBUGGING,PROFILING, AND MONITORING 79

Extending the console

This chapter will guide you through the steps needed to extend the console
and create a new shell. We will leverage Maven, Blueprint and OSGi, so you
will need some knowledge of those products.

You may also find some information about the console at
http://felix.apache.org/site/rfc-147-overview.html.

CREATE THE PROJECT USING MAVEN
We first need to create the project using maven. Let's leverage maven
archetypes for that.

Command line
Using the command line, we can create our project:

mvn archetype:create \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DgroupId=org.apache.karaf.shell.samples \
-DartifactId=shell-sample-commands \
-Dversion=1.0-SNAPSHOT

This generate the main pom.xml and some additional packages.

Interactive shell
You can also use the interactive mode for creating the skeleton project:

mvn archetype:generate

Use the following values when prompted:

Choose a number: (1/2/3/4/5/6/7/.../32/33/34/35/36) 15: : 15
Define value for groupId: : org.apache.karaf.shell.samples
Define value for artifactId: : shell-sample-commands
Define value for version: 1.0-SNAPSHOT: :
Define value for package: : org.apache.karaf.shell.samples

80 EXTENDING THE CONSOLE

http://felix.apache.org/site/rfc-147-overview.html

Manual creation
Alternatively, you can simply create the directory shell-sample-commands
and create the pom.xml file inside it:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>org.apache.karaf.shell.samples</groupId>
<artifactId>shell-sample-commands<artifactId>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</version>
<name>shell-sample-commmands</name>

<dependencies>
<dependency>

<groupId>org.apache.karaf.shell</groupId>
<artifactId>org.apache.karaf.shell.console</artifactId>
<version>2.2.1</version>

</dependency>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.3.4</version>
<configuration>

<instructions>
<Import-Package>

org.apache.felix.service.command,
org.apache.felix.gogo.commands,
org.apache.karaf.shell.console,

EXTENDING THE CONSOLE 81

*
</Import-Package>

</instructions>
</configuration>

</plugin>
</plugins>

</build>

</project>

CONFIGURING FOR JAVA 5
We are using annotations to define commands, so we need to ensure maven
will actually use JDK 1.5 to compile the jar.
Just add the following snippet after the dependencies section.

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<target>1.5</target>
<source>1.5</source>

</configuration>
</plugin>

</plugins>
</build>

LOADING THE PROJECT IN YOUR IDE
We can use maven to generate the needed files for your IDE:

Inside the project, run the following command

mvn eclipse:eclipse

or

mvn idea:idea

82 EXTENDING THE CONSOLE

The project files for your IDE should now be created. Just open the IDE and
load the project.

CREATING A BASIC COMMAND CLASS
We can now create the command class HelloShellCommand.java

package org.apache.karaf.shell.samples;

import org.apache.felix.gogo.commands.Command;
import org.apache.karaf.shell.console.OsgiCommandSupport;

@Command(scope = "test", name = "hello", description="Says
hello")
public class HelloShellCommand extends OsgiCommandSupport {

@Override
protected Object doExecute() throws Exception {

System.out.println("Executing Hello command");
return null;

}
}

CREATING THE ASSOCIATED BLUEPRINT CONFIGURATION
FILES
The blueprint configuration file will be used to create the command and
register it in the OSGi registry, which is the way to make the command
available to Karaf console. This blueprint file must be located in the OSGI-
INF/blueprint/ directory inside the bundle.

If you don't have the src/main/resources directory yet, create it.

mkdir src/main/resources

Then, re-generate the IDE project files and reload it so that this folder is now
recognized as a source folder.

Inside this directory, create the OSGI-INF/blueprint/ directory and put
the following file inside (the name of this file has no impact at all):

EXTENDING THE CONSOLE 83

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/
v1.0.0">

<command-bundle xmlns="http://karaf.apache.org/xmlns/
shell/v1.0.0">

<command name="test/hello">
<action

class="org.apache.karaf.shell.samples.HelloShellCommand"/>
</command>

</command-bundle>

</blueprint>

COMPILING THE JAR
Let's try to build the jar. Remove the test classes and sample classes if you
used the artifact, then from the command line, run:

mvn install

The end of the maven output should look like:

[INFO]
--
[INFO] BUILD SUCCESSFUL
[INFO]
--

TEST IN KARAF
Launch a Karaf instance and run the following command to install the newly
created bundle:

karaf@root> osgi:install -s mvn:org.apache.karaf.shell.samples/
shell-sample-commands/1.0-SNAPSHOT

Let's try running the command:

karaf@root> test:hello
Executing Hello command

84 EXTENDING THE CONSOLE

Command completer

A completer allow you to automatically complete a command argument
using <tab>. A completer is simply a bean which is injected to a command.

Of course to be able to complete it, the command should require an
argument.

COMMAND ARGUMENT
We add an argument to the HelloCommand:

package org.apache.karaf.shell.samples;

import org.apache.felix.gogo.commands.Command;
import org.apache.felix.gogo.commands.Argument;
import org.apache.karaf.shell.console.OsgiCommandSupport;

@Command(scope = "test", name = "hello", description="Says
hello")
public class HelloShellCommand extends OsgiCommandSupport {

@Argument(index = 0, name = "arg", description = "The
command argument", required = false, multiValued = false)

String arg = null;

@Override
protected Object doExecute() throws Exception {

System.out.println("Executing Hello command");
return null;

}
}

The Blueprint configuration file is the same as previously.

COMPLETER BEAN
A completer is a bean which implements the Completer interface:

COMMAND COMPLETER 85

package org.apache.karaf.shell.samples;

import
org.apache.karaf.shell.console.completer.StringsCompleter;
import org.apache.karaf.shell.console.Completer;

/**
* <p>
* A very simple completer.
* </p>
*/

public class SimpleCompleter implements Completer {

/**
* @param buffer it's the beginning string typed by the user
* @param cursor it's the position of the cursor
* @param candidates the list of completions proposed to the

user
*/

public int complete(String buffer, int cursor, List
candidates) {

StringsCompleter delegate = new StringsCompleter();
delegate.getStrings().add("one");
delegate.getStrings().add("two");
delegate.getStrings().add("three");
return delegate.complete(buffer, cursor, candidates);

}

}

BLUEPRINT CONFIGURATION FILE
Using Blueprint, you can "inject" the completer linked to your command. The
same completer could be used for several commands and a command can
have several completers:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<command-bundle xmlns="http://karaf.apache.org/xmlns/shell/
v1.0.0">

<command name="test/hello">
<action

class="org.apache.karaf.shell.samples.HelloShellCommand"/>

86 COMMAND COMPLETER

</command>
<completers>

<ref component-id="simpleCompleter"/>
<null/>

</completers>
</command-bundle>

<bean id="simpleCompleter"
class="org.apache.karaf.shell.samples.SimpleCompleter"/>

</blueprint>

TEST IN KARAF
Launch a Karaf instance and run the following command to install the newly
created bundle:

karaf@root> osgi:install -s mvn:org.apache.karaf.shell.samples/
shell-sample-commands/1.0-SNAPSHOT

Let's try running the command:

karaf@root> test:hello <tab>
one two three

COMMAND COMPLETER 87

Using the features-maven-
plugin

The features-maven-plugin provides several goals to help you create and
validate features XML descriptors as well as leverage your features to create
a custom Karaf distribution.
Goal Description

features:add-
features-to-repo

Copies all the bundles required for a given set of
features into a directory
(e.g. for creating your own Karaf-based
distribution)

features:generate-
features-file

Deprecated - use features:generate-features-
xml instead

features:generate-
features-xml

Generates a features XML descriptor for a set of
bundles

features:validate Validate a features XML descriptor by checking if
all the required imports can be matched to exports

CONFIGURE THE FEATURES-MAVEN-PLUGIN
In order to use the features-maven-plugin, you have to define the plugin in
your project's pom.xml file:

<project>
<build>

<plugins>
<plugin>

<groupId>org.apache.karaf.tooling</groupId>
<artifactId>features-maven-plugin</artifactId>
<version>2.2.1</version>

<executions>
<!-- add execution definitions here -->

</executions>
</plugin>

88 USING THE FEATURES-MAVEN-PLUGIN

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-add.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-add.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-generate.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-generate.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-generate.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-generate.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/features-maven-plugin-validate.html

</plugins>
</build>

</project>

GOAL FEATURES:ADD-FEATURES-TO-REPO
The features:add-features-to-repo goal adds all the required bundles for
a given set of features into directory. You can use this goal to create a
/system directory for building your own Karaf-based distribution.

Example
The example below copies the bundles for the spring and war features
defined in the Karaf features XML descriptor into the target/features-repo
directory.

<project>
<build>

<plugins>
<plugin>

<groupId>org.apache.karaf.tooling</groupId>
<artifactId>features-maven-plugin</artifactId>
<version>2.2.1</version>

<executions>
<execution>

<id>add-features-to-repo</id>
<phase>generate-resources</phase>
<goals>

<goal>add-features-to-repo</goal>
</goals>
<configuration>

<descriptors>
<descriptor>mvn:org.apache.karaf/

apache-karaf/2.2.1/xml/features</descriptor>
</descriptors>
<features>

<feature>spring</feature>
<feature>war</feature>

</features>
<repository>target/features-repo</repository>

USING THE FEATURES-MAVEN-PLUGIN 89

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Parameters

Name Type Description

descriptors String[] List of features XML descriptors where the
features are defined

features String[] List of features that bundles should be copied
to the repository directory

repository File The directory where the bundles will be copied
by the plugin goal

GOAL FEATURES:GENERATE
The features:generate goal generates a features XML file for every bundle
listed in the project's dependencies. In order to satisfy the required imports
in these bundles, the plugin will add bundles:

▪ bundles provided by Apache Karaf
▪ a list of bundles
▪ bundles discovered in the POM's transitive dependencies

Afterwards, the generated file is attached to the build as an additional build
artifact (by default as group:artifact:version:xml:features)

Example
The example below generates one feature that installs bundle
mvn:org.apache:bundle1:1.0 in a features XML file called target/
features.xml. It will find bundle in Apache Karaf 2.2.1, the transitive
dependencies for this POM and the bundles listed in src/main/resources/
bundles.properties.

90 USING THE FEATURES-MAVEN-PLUGIN

<project>
<dependencies>

<dependency>
<groupId>org.apache</groupId>
<artifactId>bundle1</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<groupId>org.apache.karaf.tooling</groupId>
<artifactId>features-maven-plugin</artifactId>
<version>2.2.1</version>

<executions>
<execution>

<id>generate</id>
<phase>generate-resources</phase>
<goals>

<goal>generate</goal>
</goals>
<configuration>

<bundles>src/main/resources/
bundles.properties</bundles>

<kernelVersion>2.2.1</kernelVersion>
<outputFile>target/features.xml</outputFile>

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Parameters

Name Type Description

USING THE FEATURES-MAVEN-PLUGIN 91

outputFile File

Name of the features XML file
that is being generated
Default value: /x1/asf/
karaf-2.2.x/target/
checkout/manual/target/
classes/feature.xml

attachmentArtifactType String

The artifact type for
attaching the generated file
to the project
Default value: {{xml})

attachmentArtifactClassifier String

The artifact classifier for
attaching the generated file
to the project
Default value: features

kernelVersion String

The version of Karaf that is
used to determine system
bundles and default provided
features

bundles File

A properties file that contains
a list of bundles that will be
used to generate the
features.xml file

GOAL FEATURES:VALIDATE
The features:validate goal validates a features XML descriptor by
checking if all the required imports for the bundles defined in the features
can be matched to a provided export.

Example
The example below validates the features defined in the target/
features.xml by checking all the imports and exports. It reads the definition
for the packages that are exported by the system bundle from the src/main/
resources/config.properties file.

<project>
<build>

<plugins>

92 USING THE FEATURES-MAVEN-PLUGIN

<plugin>
<groupId>org.apache.karaf.tooling</groupId>
<artifactId>features-maven-plugin</artifactId>
<version>2.2.1</version>

<executions>
<execution>

<id>validate</id>
<phase>process-resources</phase>
<goals>

<goal>validate</goal>
</goals>
<configuration>

<file>target/features.xml</file>
<karafConfig>src/main/resources/

config.properties</karafConfig>
</configuration>

</execution>
</executions>
<dependencies>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.4.3</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

Parameters

Name Type Description

file File

The features XML descriptor file to validate.
Default value: /x1/asf/karaf-2.2.x/
target/checkout/manual/target/classes/
features.xml

karafConfig String
The Karaf config.properties file to use
during the validation process
Default value: config.properties

USING THE FEATURES-MAVEN-PLUGIN 93

jreVersion String
The JRE version that is used during the
validation process
Default value: {{jre-1.5})

repositories String[] Additional features XML descriptors that will
be used during the validation process

94 USING THE FEATURES-MAVEN-PLUGIN

Security framework

Karaf supports JAAS with some enhancements to allow JAAS to work nicely in
an OSGi environment. This framework also features an OSGi keystore
manager with the ability to deploy new keystores or truststores at runtime.

OVERVIEW
This feature allow the deployment at runtime of JAAS based configuration for
use in various parts of the application. This includes the remote console
login, which uses the karaf realm, but which is configured with a dummy
login module by default. These realms can also be used by the NMR, JBI
components or the JMX server to authenticate users logging in or sending
messages into the bus.

In addition to JAAS realms, you can also deploy keystores and truststores
to secure the remote shell console, setting up HTTPS connectors or using
certificates for WS-Security.

A very simple XML schema for spring has been defined, allowing the
deployment of a new realm or a new keystore very easily.

SCHEMA
To override or deploy a new realm, you can use the following XSD which is
supported by a Spring namespace handler and can thus be defined in a
spring xml configuration file.

Following is the XML Schema to use when defining Karaf realms:

You can find the schema at the following location.
Here are two example using this schema:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:jaas="http://karaf.apache.org/xmlns/jaas/

v1.0.0"
xmlns:ext="http://aries.apache.org/blueprint/

xmlns/blueprint-ext/v1.0.0">

SECURITY FRAMEWORK 95

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://karaf.apache.org/xmlns/jaas/v1.1.0

<!-- Bean to allow the $[karaf.base] property to be
correctly resolved -->

<ext:property-placeholder placeholder-prefix="$["
placeholder-suffix="]"/>

<jaas:config name="myrealm">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
</jaas:module>

</jaas:config>

</blueprint>

<jaas:keystore xmlns:jaas="http://karaf.apache.org/xmlns/
jaas/v1.1.0"

name="ks"
rank="1"
path="classpath:privatestore.jks"
keystorePassword="keyStorePassword"
keyPasswords="myalias=myAliasPassword">

</jaas:keystore>

The id attribute is the blueprint id of the bean, but it will be used by default
as the name of the realm if no name attribute is specified. Additional
attributes on the config elements are a rank, which is an integer. When the
LoginContext looks for a realm for authenticating a given user, the realms
registered in the OSGi registry are matched against the required name. If
more than one realm is found, the one with the highest rank will be used,
thus allowing the override of some realms with new values. The last attribute
is publish which can be set to false to not publish the realm in the OSGi
registry, hereby disabling the use of this realm.

Each realm can contain one or more module definition. Each module
identify a LoginModule and the className attribute must be set to the class
name of the login module to use. Note that this login module must be
available from the bundle classloader, so either it has to be defined in the
bundle itself, or the needed package needs to be correctly imported. The
flags attribute can take one of four values that are explained on the JAAS
documentation.

96 SECURITY FRAMEWORK

http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java

The content of the module element is parsed as a properties file and will be
used to further configure the login module.

Deploying such a code will lead to a JaasRealm object in the OSGi registry,
which will then be used when using the JAAS login module.

Configuration override and use of the rank attribute
The rank attribute on the config element is tied to the ranking of the
underlying OSGi service. When the JAAS framework will perform an
authentication, it will use the realm name to find a matching JAAS
configuration. If multiple configurations are used, the one with the highest
rank attribute will be used.
So if you want to override the default security configuration in Karaf (which is
used by the ssh shell, web console and JMX layer), you need to deploy a JAAS
configuration with the name name="karaf" and rank="1".

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:jaas="http://karaf.apache.org/xmlns/jaas/

v1.1.0"
xmlns:ext="http://aries.apache.org/blueprint/

xmlns/blueprint-ext/v1.0.0">

<!-- Bean to allow the $[karaf.base] property to be
correctly resolved -->

<ext:property-placeholder placeholder-prefix="$["
placeholder-suffix="]"/>

<jaas:config name="karaf" rank="1">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
...

</jaas:module>
</jaas:config>

</blueprint>

ARCHITECTURE
Due to constraints in the JAAS specification, one class has to be available for
all bundles. This class is called ProxyLoginModule and is a LoginModule that

SECURITY FRAMEWORK 97

http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/java/org/apache/karaf/jaas/config/JaasRealm.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java

acts as a proxy for an OSGi defines LoginModule. If you plan to integrate this
feature into another OSGi runtime, this class must be made available from
the system classloader and the related package be part of the boot
delegation classpath (or be deployed as a fragment attached to the system
bundle).

The xml schema defined above allow the use of a simple xml (leveraging
spring xml extensibility) to configure and register a JAAS configuration for a
given realm. This configuration will be made available into the OSGi registry
as a JaasRealm and the OSGi specific Configuration will look for such
services. Then the proxy login module will be able to use the information
provided by the realm to actually load the class from the bundle containing
the real login module.

AVAILABLE REALMS
Karaf comes with several login modules that can be used to integrate into
your environment.

PropertiesLoginModule
This login module is the one configured by default. It uses a properties text
file to load the users, passwords and roles from.
Name Description
users location of the properties file
This file uses the properties file format.
The format of the properties are as follows, each line defining a user, its
password and the associated roles:

user=password[,role][,role]...

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
</jaas:module>

</jaas:config>

98 SECURITY FRAMEWORK

http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/java/org/apache/karaf/jaas/config/JaasRealm.java
http://download.oracle.com/javase/6/docs/api/java/util/Properties.html#load(java.io.Reader)

OsgiConfigLoginModule
The OsgiConfigLoginModule uses the OSGi ConfigurationAdmin service to
provide the users, passwords and roles.
Name Description
pid the PID of the configuration containing user definitions
The format of the configuration is the same than for the
PropertiesLoginModule.

JDBCLoginModule
The JDBCLoginModule uses a database to load the users, passwords and roles
from, provided a data source (normal or XA). The data source and the queries
for password and role retrieval are configurable, with the use of the following
parameters.
Name Description
datasource The datasource as on OSGi ldap filter or as JDNI name
query.password The SQL query that retries the password of the user
query.role The SQL query that retries the roles of the user
Passing a data source as an OSGi ldap filter

To use an OSGi ldap filter, the prefix osgi: needs to be provided. See the
example below:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule"
flags="required">

datasource = osgi:javax.sql.DataSource/
(osgi.jndi.service.name=jdbc/karafdb)

query.password = SELECT PASSWORD FROM USERS WHERE
USERNAME=?

query.role = SELECT ROLE FROM ROLES WHERE USERNAME=?
</jaas:module>

</jaas:config>

Passing a data source as a JNDI name
To use an JNDI name, the prefix jndi: needs to be provided. The example

below assumes the use of aries jndi to expose services via JNDI.

SECURITY FRAMEWORK 99

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule"
flags="required">

datasource = jndi:aries:services/
javax.sql.DataSource/(osgi.jndi.service.name=jdbc/karafdb)

query.password = SELECT PASSWORD FROM USERS WHERE
USERNAME=?

query.role = SELECT ROLE FROM ROLES WHERE USERNAME=?
</jaas:module>

</jaas:config>

LDAPLoginModule
The LDAPLoginModule uses a LDAP to load the users and roles, bind the users
on the LDAP to check passwords.

The LDAPLoginModule supports the following parameters:
Name Description

connection.url The LDAP connection URL, e.g.
ldap://hostname

connection.username

Admin username to connect to the LDAP.
This parameter is optional, if it's not
provided, the LDAP connection will be
anonymous.

connection.password
Admin password to connect to the LDAP.
Only used if the connection.username is
specified.

user.base.dn The LDAP base DN used to looking for user,
e.g. ou=user,dc=apache,dc=org

user.filter
The LDAP filter used to looking for user, e.g.
(uid=%u) where %u will be replaced by the
username.

user.search.subtree
If "true", the user lookup will be recursive
(SUBTREE). If "false", the user lookup will be
performed only at the first level (ONELEVEL).

role.base.dn The LDAP base DN used to looking for roles,
e.g. ou=role,dc=apache,dc=org

100 SECURITY FRAMEWORK

role.filter The LDAP filter used to looking for user's
role, e.g. (member:=uid=%u)

role.name.attribute The LDAP role attribute containing the role
string used by Karaf, e.g. cn

role.search.subtree
If "true", the role lookup will be recursive
(SUBTREE). If "false", the role lookup will be
performed only at the first level (ONELEVEL).

authentication Define the authentication backend used on
the LDAP server. The default is simple.

initial.context.factory
Define the initial context factory used to
connect to the LDAP server. The default is
com.sun.jndi.ldap.LdapCtxFactory

ssl
If "true" or if the protocol on the
connection.url is ldaps, an SSL connection
will be used

ssl.provider The provider name to use for SSL

ssl.protocol The protocol name to use for SSL (SSL for
example)

ssl.algorithm
The algorithm to use for the
KeyManagerFactory and
TrustManagerFactory (PKIX for example)

ssl.keystore
The key store name to use for SSL. The key
store must be deployed using a
jaas:keystore configuration.

ssl.keyalias The key alias to use for SSL

ssl.truststore
The trust store name to use for SSL. The
trust store must be deployed using a
jaas:keystore configuration.

A example of LDAPLoginModule usage follows:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">

connection.url = ldap://localhost:389
user.base.dn = ou=user,dc=apache,dc=org
user.filter = (cn=%u)

SECURITY FRAMEWORK 101

user.search.subtree = true
role.base.dn = ou=group,dc=apache,dc=org
role.filter = (member:=uid=%u)
role.name.attribute = cn
role.search.subtree = true
authentication = simple

</jaas:module>
</jaas:config>

If you want to use an SSL connection, the following configuration can be used
as an example:

<ext:property-placeholder />

<jaas:config name="karaf" rank="1">
<jaas:module

className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">

connection.url = ldaps://localhost:10636
user.base.dn = ou=users,ou=system
user.filter = (uid=%u)
user.search.subtree = true
role.base.dn = ou=groups,ou=system
role.filter = (uniqueMember=uid=%u)
role.name.attribute = cn
role.search.subtree = true
authentication = simple
ssl.protocol=SSL
ssl.truststore=ks
ssl.algorithm=PKIX

</jaas:module>
</jaas:config>

<jaas:keystore name="ks"
path="file:///${karaf.home}/etc/trusted.ks"
keystorePassword="secret" />

ENCRYPTION SERVICE
The EncryptionService is a service registered in the OSGi registry providing
means to encrypt and check encrypted passwords. This service acts as a
factory for Encryption objects actually performing the encryption.

102 SECURITY FRAMEWORK

http://svn.apache.org/repos/asf/karaf/trunk/jaas/modules/src/main/java/org/apache/karaf/jaas/modules/EncryptionService.java
http://svn.apache.org/repos/asf/karaf/trunk/jaas/modules/src/main/java/org/apache/karaf/jaas/modules/Encryption.java

This service is used in all Karaf login modules to support encrypted
passwords.

Configuring properties
Each login module supports the following additional set of properties:
Name Description

encryption.name Name of the encryption service registered in
OSGi (cf. paragraph below)

encryption.enabled Boolean used to turn on encryption
encryption.prefix Prefix for encrypted passwords
encryption.suffix Suffix for encrypted passwords

encryption.algorithm Name of an algorithm to be used for hashing,
like "MD5" or "SHA-1"

encryption.encoding Encrypted passwords encoding (can be
hexadecimal or base64)

role.policy A policy for identifying roles (can be prefix or
group) below)

role.discriminator A discriminator value to be used by the role
policy

A simple example follows:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
encryption.enabled = true
encryption.algorithm = MD5
encryption.encoding = hexadecimal

</jaas:module>
</jaas:config>

Prefix and suffix
The login modules have the ability to support both encrypted and plain
passwords at the same time. In some cases, some login modules may be

SECURITY FRAMEWORK 103

able to encrypt the passwords on the fly and save them back in an encrypted
form.

To

Jasypt
Karaf default installation comes with a simple encryption service which
usually fullfill simple needs. However, in some cases, you may want to install
the Jasypt library which gives you stronger encryption algorithm and more
control over it.

To install the Jasypt library, the easiest way is to install the available
feature:

karaf@root> features:install jasypt-encryption

It will download and install the required bundles and also register an
EncryptionService for Jasypt in the OSGi registry.

When configuring a login module to use Jasypt, you need to specify the
encryption.name property and set it to a value of jasypt to make sure the
Jasypt encryption service will be used.

In addition to the standard properties above, the Jasypt service provides
the following parameters:
Name Description

providerName Name of the java.security.Provider name
to use for obtaining the digest algorithm

providerClassName Class name for the security provider to be
used for obtaining the digest algorithm

iterations Number of times the hash function will be
applied recursively

saltSizeBytes Size of the salt to be used to compute the
digest

saltGeneratorClassName Class name of the salt generator
A typical realm definition using Jasypt encryption service would look like:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties

104 SECURITY FRAMEWORK

http://www.jasypt.org/

encryption.enabled = true
encryption.name = jasypt
encryption.algorithm = SHA-256
encryption.encoding = base64
encryption.iterations = 100000
encryption.saltSizeBytes = 16

</jaas:module>
</jaas:config>

ROLE DISCOVERY POLICIES
The JAAS specification does not provide means to distinguish between User
and Role Principals, without referring to the specification classes. In order to
provide means to the application developer to decouple the application from
Karaf JAAS implementation role policies have been created.

A role policy is a convention that can be adopted by the application in
order to identify Roles, without depending from the implementation. Each
role policy can be cofigured by setting a "role.policy" and "role.discriminator"
property to the login module configuration. Currently, Karaf provides two
policies that can be applied to all Karaf Login Modules.

1. Prefixed Roles
2. Grouped Roles

Prefixed Roles
When the prefixed role policy is used the login module applies a configurable
prefix (property role.discriminator) to the role, so that the application can
identify the roles principals by its prefix. Example:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
role.policy = prefix
role.discriminator = ROLE_

</jaas:module>
</jaas:config>

The application can identify the role principals using a snippet like this:

SECURITY FRAMEWORK 105

LoginContext ctx = new LoginContext("karaf", handler);
ctx.login();
authenticated = true;
subject = ctx.getSubject();
for (Principal p : subject.getPrincipals()) {

if (p.getName().startsWith("ROLE_")) {

roles.add((p.getName().substring("ROLE_".length())));
}

}

Grouped Roles
When the group role policy is used the login module provides all roles as
members of a group with a configurable name (property role.discriminator).
Example:

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
role.policy = group
role.discriminator = ROLES

</jaas:module>
</jaas:config>

LoginContext ctx = new LoginContext("karaf", handler);
ctx.login();
authenticated = true;
subject = ctx.getSubject();
for (Principal p : subject.getPrincipals()) {

if ((p instanceof Group) &&
("ROLES".equalsIgnoreCase(p.getName()))) {

Group g = (Group) p;
Enumeration<? extends Principal> members =

g.members();
while (members.hasMoreElements()) {

Principal member = members.nextElement();
roles.add(member.getName());

}

106 SECURITY FRAMEWORK

}
}

SECURITY FRAMEWORK 107

Writing integration tests

We recommend using PAX Exam to write integration tests when developping
applications using Karaf.

Karaf provides an helper library to help writing such integration tests.

@Configuration
public static Option[] configuration() throws Exception{

return combine(
// Default karaf environment
Helper.getDefaultOptions(),
// Test on both equinox and felix
equinox(), felix()

);
}

If you need to provision a few features in addition to the default karaf
environment, you can do so by adding the following code:

scanFeatures(
maven().groupId("org.apache.felix.karaf")

.artifactId("apache-felix-karaf")

.type("xml").classifier("features")

.versionAsInProject(),
"obr", "wrapper"

),

108 WRITING INTEGRATION TESTS

http://wiki.ops4j.org/display/paxexam/Pax+Exam

	Overview
	Karaf Overview
	Quick Start
	1. Quick Start
	Background
	Getting the software
	Prerequisites
	Download binaries

	Start the server
	Deploy a sample application
	Stopping and uninstalling the sample application
	Common Problems

	Stopping Karaf
	Summary

	Users Guide
	Installation
	Pre-Installation Requirements
	Building from Sources
	Building on Windows
	Building on Unix

	Installation Procedure for Windows
	Installation Procedure For Unix
	Post-Installation steps

	Starting and Stopping Karaf
	Starting Karaf
	On Windows
	On Unix

	Starting Karaf without console
	Starting Karaf in the background
	Starting Karaf from clean
	Stopping Karaf

	Configuration
	Editing
	Select Configuration To Edit
	Modify Properties
	Commit Or Rollback Changes

	Using the console
	Viewving available commands
	Getting help on a command
	More...

	Enabling Colorized Console on Windows
	Web console
	Installing the web console
	Accessing the web console
	Changing the web console port number

	Using remote instances
	Configuring remote instances
	Connecting and disconnecting remotely
	Using the ssh:ssh command
	Using the karaf client
	Using a plain SSH client
	Disconnecting from a remote console

	Stopping a remote instance
	Using the remote console
	Using the karaf client

	Deployer
	Spring deployer
	Features deployer
	War deployer
	Wrap deployer

	Managing child instances
	Using the admin console commands
	Creating child instances
	Changing a child's ports
	Starting child instances
	Listing all container instances
	Connecting to a child instance
	Stopping a child instance
	Destroying a child instance
	Using the admin script

	Security
	Managing users and passwords
	Managing roles
	Enabling password encryption
	Managing realms
	Deploying security providers

	Failover Deployments
	Simple lock file
	JDBC locking
	JDBC locking on Oracle
	Derby
	MySQL

	Container-level locking

	Logging system
	Configuration
	Configuration file
	Configuring the appenders
	Changing the log levels

	Console Log Commands
	Advanced configuration
	Nested filters, appenders and error handlers
	Filters
	Nested appenders
	Error handlers

	OSGi specific MDC attributes
	Enhanced OSGi stack trace renderer
	Using your own appenders

	Provisioning
	Repositories
	Bundles
	Maven URL Handler
	Bundle start-level
	Bundle 'stop/start'
	Bundle 'dependency'

	Dependent features
	Configurations
	Configuration files
	Feature resolver

	Commands
	Repository management
	Features management
	Examples

	Service configuration

	XML Schema for provisioning
	Developers Guide
	Programmatically connect to the console
	Shell syntax
	Easy to use interactively - no unnecessary syntax
	List, maps, pipes and closures
	Leverages existing Java capabilities, via reflection

	Add extended information to bundles
	Creating bundles for third party dependencies
	Troubleshooting, Debugging,Profiling, and Monitoring
	Troubleshooting
	Logging
	Worst Case Scenario

	Debugging
	Profiling
	YourKit

	Monitoring

	Extending the console
	Create the project using maven
	Command line
	Interactive shell
	Manual creation

	Configuring for Java 5
	Loading the project in your IDE
	Creating a basic command class
	Creating the associated blueprint configuration files
	Compiling the jar
	Test in Karaf

	Command completer
	Command argument
	Completer bean
	Blueprint configuration file
	Test in Karaf

	Using the features-maven-plugin
	Configure the features-maven-plugin
	Goal features:add-features-to-repo
	Example
	Parameters

	Goal features:generate
	Example
	Parameters

	Goal features:validate
	Example
	Parameters

	Security framework
	Overview
	Schema
	Configuration override and use of the rank attribute

	Architecture
	Available realms
	PropertiesLoginModule
	OsgiConfigLoginModule
	JDBCLoginModule
	LDAPLoginModule

	Encryption service
	Configuring properties
	Prefix and suffix
	Jasypt

	Role discovery policies

	Writing integration tests

