
Design Cube in Kylin

dev@kylin.incubator.apache.org

Before You Start

• Kylin is a MOLAP engine on Hadoop.

• Understand Kylin helps cube design a lot.
– http://www.slideshare.net/YangLi43/apache-kylin-deep-dive-2014-dec

• This deck summarizes best practices and
patterns on how to design an efficient cube.
– For detailed steps to create a cube, check out

https://github.com/KylinOLAP/Kylin/wiki/Kylin-Cube-Creation-Tutorial

Overview

• Identify Star Schema

• Design Cube
– Dimensions

– Measures

– Incremental Build

– Advanced Options

• Build and Verify

Identify Star Schema

• Kylin creates cube from a star schema of Hive
tables.

• One fact table that has ever growing records, like
transactions.

• A few dimension tables that are relatively static,
like users and products.

• Hive tables must be synced into Kylin first.

http://en.wikipedia.org/wiki/Star_schema

Know Cardinalities of Columns

• Cardinalities have significant impact on cube size and query
latency.
– High Cardinality: > 1,000
– Ultra High Cardinality: > 1,000,000

• Avoid UHC as much as possible.

– If it’s used as indicator, then put the indicator in cube.
– Try categorize values or derive features from the UHC rather

than putting the original value in cube.

• To know column cardinalities

– select count(distinct A) from T
– or google for fancy tools

https://www.google.com/search?hl=en&q=hive+estimate+column+cardinality

Cube Concepts
Cube = all combination of dimensions
Cuboid = one combination of dimensions
Curse of dimensionality: N dimension cube has 2N cuboid

Design Dimensions

• 15 dimensions or less is most ideal.
– More than that causes slowness in cube build and

longer query latency.
– Does user really need a report of 15+ dimensions?
– You can define multiple cubes on one star schema to

fulfill different analysis scenarios.

• Control the total number of dimensions.

– Mandatory dimension
– Hierarchy dimension
– Derived dimension

Mandatory Dimension

• Dimension that presents in every query.
– like Date

• Mandatory dimension cuts cuboid combinations by half.

Normal Dimensions

A B C

A B -

- B C

A - C

A - -

- B -

- - C

- - -

A is Mandatory

A B C

A B -

A - C

A - -

Hierarchy Dimension

• Dimensions that form a “contains” relationship where
parent level is required for child level to make sense.
– like Year -> Month -> Day; or Country -> City

• Hierarchy dimension reduces combination from 2N to N+1.

Normal Dimensions

A B C

A B -

- B C

A - C

A - -

- B -

- - C

- - -

A->B->C is Hierarchy

A B C

A B -

A - -

- - -

Derived Dimension

• Dimensions on lookup table that can be derived by PK.
– like User ID derives [Name, Age, Gender]

• Derived dimension reduces combination from 2N to 2 at the

cost of extra runtime aggregation.

Normal Dimensions

A B C

A B -

- B C

A - C

A - -

- B -

- - C

- - -

A, B, C are Derived by ID

ID

-

The Order of Dimensions

• Finally, define dimensions in following order.
– Mandatory dimension
– Dimensions that heavily involved in filters
– High cardinality dimensions
– Low cardinality dimensions

• Filter first, helps to cut down query scan ranges.

• High cardinality first, helps to calculate cube

efficiently.

Define Measures

• Kylin currently support
– Sum
– Count
– Max
– Min
– Average
– Distinct Count (based on HyperLogLog)

• Distinct Count is a very heavy data type.

– Error rate<1.22% takes 64KB per cell.
– Convince user to use the wildest tolerable error rate.
– Distinct Count is slower to build and query comparing to other

measures.

Incremental Build

• Kylin supports incremental build along a time dimension if enabled.

• Setting a start time, cube segments can be built daily (or any period)
processing only the incremental data.

• A segment can be refreshed relatively cheaply to reflect changes in
hive table.

• With the increasing number of segments, query would slow down a
bit.

• Merge segments to control the total number < 10 for best
performance.

Advanced Options

• Leave advanced options as is if you are not sure what they mean.

• Aggregation groups give finest control on which cuboids to build.
– Partial cube -- Only combinations within the same group are built.
– For cube with 30 dimensions, if divide the dimensions into 3 groups,

the cuboid number will reduce from 1 Billion to 3 Thousands.
• 230 => 210 + 210 + 210

– It’s tradeoff between online aggregation and offline pre-aggregation.

• Rowkeys, suggest leave them untouched.

Build and Verify

• Once the cube is created, build it, and ready to verify.

• Check the expansion rate of your cube.
– Under 10 times is ideal.

• Notes on the SQLs

– Write queries against the original hive tables, cubes are
transparent at the query time.

– Sanity check: select count(*) from fact
– Make sure the join relationships (inner or left) matches the cube

definition exactly.
– Kylin works best with a group by clause.
– Date constant is like date ‘1970-01-01’

Q & A

Thanks!

