|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Model | |
---|---|
org.apache.mahout.clustering | This package provides several clustering algorithm implementations. |
org.apache.mahout.clustering.canopy | |
org.apache.mahout.clustering.dirichlet | |
org.apache.mahout.clustering.dirichlet.models | |
org.apache.mahout.clustering.fuzzykmeans | |
org.apache.mahout.clustering.kmeans | This package provides an implementation of the k-means clustering algorithm. |
org.apache.mahout.clustering.meanshift |
Uses of Model in org.apache.mahout.clustering |
---|
Subinterfaces of Model in org.apache.mahout.clustering | |
---|---|
interface |
Cluster
Implementations of this interface have a printable representation and certain attributes that are common across all clustering implementations |
Classes in org.apache.mahout.clustering that implement Model | |
---|---|
class |
AbstractCluster
|
class |
DistanceMeasureCluster
|
Methods in org.apache.mahout.clustering that return Model | |
---|---|
Model<?> |
JsonModelAdapter.deserialize(com.google.gson.JsonElement json,
java.lang.reflect.Type typeOfT,
com.google.gson.JsonDeserializationContext context)
|
Model<VectorWritable> |
Model.sampleFromPosterior()
|
Model<VectorWritable> |
DistanceMeasureCluster.sampleFromPosterior()
|
Model<O>[] |
ModelDistribution.sampleFromPosterior(Model<O>[] posterior)
Return a list of models sampled from the posterior |
Model<O>[] |
ModelDistribution.sampleFromPrior(int howMany)
Return a list of models sampled from the prior |
Methods in org.apache.mahout.clustering with parameters of type Model | |
---|---|
Model<O>[] |
ModelDistribution.sampleFromPosterior(Model<O>[] posterior)
Return a list of models sampled from the posterior |
com.google.gson.JsonElement |
JsonModelAdapter.serialize(Model<?> src,
java.lang.reflect.Type typeOfSrc,
com.google.gson.JsonSerializationContext context)
|
Constructor parameters in org.apache.mahout.clustering with type arguments of type Model | |
---|---|
VectorModelClassifier(java.util.List<Model<VectorWritable>> models)
|
Uses of Model in org.apache.mahout.clustering.canopy |
---|
Classes in org.apache.mahout.clustering.canopy that implement Model | |
---|---|
class |
Canopy
This class models a canopy as a center point, the number of points that are contained within it according to the application of some distance metric, and a point total which is the sum of all the points and is used to compute the centroid when needed. |
Uses of Model in org.apache.mahout.clustering.dirichlet |
---|
Classes in org.apache.mahout.clustering.dirichlet that implement Model | |
---|---|
class |
DirichletCluster
|
Methods in org.apache.mahout.clustering.dirichlet that return Model | |
---|---|
Model<VectorWritable>[] |
DirichletState.getModels()
|
Model<VectorWritable> |
DirichletCluster.sampleFromPosterior()
|
protected Model<VectorWritable>[] |
DirichletClusterer.samplePosteriorModels()
|
Methods in org.apache.mahout.clustering.dirichlet with parameters of type Model | |
---|---|
protected void |
DirichletClusterer.observe(Model<VectorWritable>[] newModels,
VectorWritable observation)
|
static void |
DirichletCluster.writeModel(java.io.DataOutput out,
Model<?> model)
Writes a typed Model instance to the output stream |
Uses of Model in org.apache.mahout.clustering.dirichlet.models |
---|
Classes in org.apache.mahout.clustering.dirichlet.models that implement Model | |
---|---|
class |
AsymmetricSampledNormalModel
|
class |
GaussianCluster
|
class |
L1Model
|
class |
NormalModel
|
class |
SampledNormalModel
|
Methods in org.apache.mahout.clustering.dirichlet.models with parameters of type Model | |
---|---|
Model<VectorWritable>[] |
SampledNormalDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Model<VectorWritable>[] |
NormalModelDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Model<VectorWritable>[] |
L1ModelDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Model<VectorWritable>[] |
GaussianClusterDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Model<VectorWritable>[] |
DistanceMeasureClusterDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Model<VectorWritable>[] |
AsymmetricSampledNormalDistribution.sampleFromPosterior(Model<VectorWritable>[] posterior)
|
Uses of Model in org.apache.mahout.clustering.fuzzykmeans |
---|
Classes in org.apache.mahout.clustering.fuzzykmeans that implement Model | |
---|---|
class |
SoftCluster
|
Uses of Model in org.apache.mahout.clustering.kmeans |
---|
Classes in org.apache.mahout.clustering.kmeans that implement Model | |
---|---|
class |
Cluster
|
Uses of Model in org.apache.mahout.clustering.meanshift |
---|
Classes in org.apache.mahout.clustering.meanshift that implement Model | |
---|---|
class |
MeanShiftCanopy
This class models a canopy as a center point, the number of points that are contained within it according to the application of some distance metric, and a point total which is the sum of all the points and is used to compute the centroid when needed. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |