|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use ModelDistribution | |
---|---|
org.apache.mahout.clustering.dirichlet | |
org.apache.mahout.clustering.dirichlet.models |
Uses of ModelDistribution in org.apache.mahout.clustering.dirichlet |
---|
Methods in org.apache.mahout.clustering.dirichlet that return ModelDistribution | |
---|---|
ModelDistribution<VectorWritable> |
DirichletState.getModelFactory()
|
Methods in org.apache.mahout.clustering.dirichlet with parameters of type ModelDistribution | |
---|---|
static List<Cluster[]> |
DirichletClusterer.clusterPoints(List<VectorWritable> points,
ModelDistribution<VectorWritable> modelFactory,
double alpha0,
int numClusters,
int thin,
int burnin,
int numIterations)
Create a new instance on the sample data with the given additional parameters |
void |
DirichletState.setModelFactory(ModelDistribution<VectorWritable> modelFactory)
|
Constructors in org.apache.mahout.clustering.dirichlet with parameters of type ModelDistribution | |
---|---|
DirichletClusterer(List<VectorWritable> sampleData,
ModelDistribution<VectorWritable> modelFactory,
double alpha0,
int numClusters,
int thin,
int burnin)
Create a new instance on the sample data with the given additional parameters |
|
DirichletState(ModelDistribution<VectorWritable> modelFactory,
int numClusters,
double alpha0)
|
Uses of ModelDistribution in org.apache.mahout.clustering.dirichlet.models |
---|
Classes in org.apache.mahout.clustering.dirichlet.models that implement ModelDistribution | |
---|---|
class |
AbstractVectorModelDistribution
|
class |
DistanceMeasureClusterDistribution
An implementation of the ModelDistribution interface suitable for testing the DirichletCluster algorithm. |
class |
GaussianClusterDistribution
An implementation of the ModelDistribution interface suitable for testing the DirichletCluster algorithm. |
Methods in org.apache.mahout.clustering.dirichlet.models that return ModelDistribution | |
---|---|
ModelDistribution<VectorWritable> |
DistributionDescription.createModelDistribution()
Create an instance of AbstractVectorModelDistribution from the given command line arguments |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |