Method parameters in org.apache.mahout.clustering.fuzzykmeans with type arguments of type SoftCluster |
protected void |
FuzzyKMeansClusterer.addPointToClusters(List<SoftCluster> clusterList,
Vector point)
|
static List<List<SoftCluster>> |
FuzzyKMeansClusterer.clusterPoints(Iterable<Vector> points,
List<SoftCluster> clusters,
DistanceMeasure measure,
double threshold,
double m,
int numIter)
This is the reference k-means implementation. |
Vector |
FuzzyKMeansClusterer.computePi(Collection<SoftCluster> clusters,
List<Double> clusterDistanceList)
|
void |
FuzzyKMeansClusterer.emitPointProbToCluster(Vector point,
List<SoftCluster> clusters,
org.apache.hadoop.mapreduce.Mapper.Context context)
Emit the point and its probability of belongingness to each cluster |
void |
FuzzyKMeansClusterer.emitPointToClusters(VectorWritable point,
List<SoftCluster> clusters,
org.apache.hadoop.mapreduce.Mapper.Context context)
|
void |
FuzzyKMeansClusterer.emitPointToClusters(VectorWritable point,
List<SoftCluster> clusters,
org.apache.hadoop.io.SequenceFile.Writer writer)
|
protected static boolean |
FuzzyKMeansClusterer.runFuzzyKMeansIteration(Iterable<Vector> points,
List<SoftCluster> clusterList,
FuzzyKMeansClusterer clusterer)
Perform a single iteration over the points and clusters, assigning points to clusters and returning if
the iterations are completed. |
void |
FuzzyKMeansReducer.setup(Collection<SoftCluster> clusters,
org.apache.hadoop.conf.Configuration conf)
|
protected boolean |
FuzzyKMeansClusterer.testConvergence(Iterable<SoftCluster> clusters)
|