Introduction to MINA

A Multipurpose
Infrastructure
for Network
Applications

April 2005, Trustin Lee, ASF

oy Contents

Overview

How to Program
~ilter Mechanism
Proof of Productivity
Architecture Review
Conclusion

| /4

Overview

.y What is MINA? oy

A network application framework

< Feature-rich

< Extensible

< Designed for agile client/server programming

Client- or server-less unit testing
Very high reusability and maintainability

< Yet scalable / high performance

‘oy Architecture: I/0 Layer oy
Clients L‘zge”d
ore
Low-Level Protocol Implementation
I/0
IoAcceptor

I/O Events

IoHandler

MINA abstracts all low-level I/O via abstract API.
IoHandlers get notified when I/O events occur.

You communicate by reading and writing data buffers.

49y Architecture: Protocol Layer {gg

. Legend
Clients —
Low-Level Protocol Implementation
o
A
= IoAcceptor
O
" ‘ I/O Events ‘ I/O Events
<
] IoHandler ProtocolAcceptor ‘
Y

<<IoHandler>>
‘I/O Layer to Protocol Layer
Bridge

JoAe |000104d

Protocol Codec Protocol Handler

Protocol Provider § .

Built upon I/0 layer
Good when you implement complex protocols
You communicate by sending and receiving message objects..

oy MINA Abstract API 2

Single API for various transport types

Highly extensible

Unit-test your server using mock objects.
— no real clients anymore!

&y MINA Abstract API (Cont'd) &5

Once a protocol implemented, it works for:

< NIO sockets
TCP/IP
UDP/IP

< In-VM pipe

< Coming soon:
Non-NIO sockets
Serial port

Parallel port
Multicast (when Mustang is ready)

How to Program

&y What MINA Does For You &y

You NEVER need to program...
< Stream I/O

< NIO

<« Thread management

< Buffer management

because it does ALL of them for you!
Then what do you have to do?

oy What You Should Do 2

The first way to implement your protocol:

<« Using I/0O Layer: IoHandler
You communicate by reading and writing data buffers.

¢9y What You Should Do (Cont'd) ¢

<<interface>>
loHandler

~ SsessionCreated(loSession) : void

~ sessionOpened(loSession) : void

~ sessionClosed(loSession) : void

~ sessionldle(loSession, IdleStatus) : void

~ exceptionCaught(loSession, Throwable) : void
~ dataRead(loSession, ByteBuffer) : void

~ dataWritten(loSession, Object) : void

49y What You Should Do (Cont'd) ¢

The second way to implement your protocol:
Using Protocol Layer: ProtocolProvider

You communicate by exchanging objects (POJO).

Your codec performs transformations between
data buffers and message objects.

Reusable
Pluggable (thanks to polymorphism)

You take full advantage of OOP for message objects

Inheritance

¢9y What You Should Do (Cont'd) ¢

cd protocol /

<<interface>>

ProtocolProvider

~ getCodecFactory() : ProtocolCodecFactory
~ getHandler() : ProtocolHandler

<<interface>>

ProtocolHandler

~ sessionCreated(ProtocolSession) : void
~ sessionOpened(Protocol Session) : void
~ sessionClosed(Protocol Session) : void
~ sessionldle(Protocol Session, IdleStatus) : void

~ exceptionCaught(ProtocolSession, Throwable) : void
~ messageReceived(ProtocolSession, Object) : void

~ messageSent(Protocol Session, Object) : void

<<interface>>

ProtocolCodecFactory

~ newEncoder() : ProtocolEncoder
~ newDecoder() : ProtocolDecoder

ProtocolEncoder ProtocolDecoder

Filter Mechanism

&y Architecture (with Filters) &

. Legend
Clients —
Low-Level Extension Point
‘ 1/0 Protocol Implementation
A
IoAcceptor
= I/O Events
@)
& IoFilters
<
@ Filtered Filtered
I/O Events I/O Events
IoHandler ProtocolAcceptor i
M <<IoHandler>>
‘I/O Layer to Protocol Layer’
e Bridge
6006)
66\0 =
o Protocol)
© Events o
8
ProtocolFilters =
Filtered ‘2
iltere
Protocol (_2
i } Events
Protocol Codec Protocol Handler
Protocol Provider | |

- What is Filter by

A reusable event interceptor
Similar to Servlet filters

Can be added and removed "on-the-fly”

Works in both coarse- and fine-grained way:
Per Server Port
Per Individual Session

Ay Filter Use Cases ‘y

Implemented filters:
Thread pool (= customizable thread model!)
SSL
Client blacklisting

Coming soon:

Logging, Profiling, StartTLS, Peak Point Control,
Traffic throttling, Firewall, and many more ...

Any contributions are welcome!

&y Filter Use Cases (Cont'd) &y

Customizable thread models

< MINA runs in single thread mode by default
Good for low-latency apps

< Add a ThreadPoolFilter to make MINA
multi-threaded
Good for high-scalability apps

Proof of Productivity {5

Comparison 'y,

/ /
Plain NIO MINA
Echo server| 109 lines* 50 lines (45%)
Reusability Poor All reusable:
Filters, Codecs, Handlers
Maintainability Poor Very good

*) A Core Java Tech Tips example

100% CPU consumption while socket buffer is full.
(doesn't register for OP_WRITE)

No SSL support (never trivial)

{9 More Complex Protocols &

Even echo server is hard to maintain.

< Writing complex protocols with plain NIO is the
beginning of your nightmare.

MINA Protocol Layer is your cozy pillow.

Known implementations:
<+ LDAP » Kerberos

< SMTP < IMAPv4

< DNS < NTP

Architecture Review

>

y

Jakeq O/

Architecture Review

. Legend
Clients Core
Low-Level Extension Point
‘ 1/0 Protocol Implementation
IoAcceptor
‘ I/O Events ‘
IoFilters
‘ Filtered ‘ ‘ Filtered ‘
I/O Events I/O Events
IoHandler ProtocolAcceptor

<<IoHandler>>
‘I/O Layer to Protocol Layer’

e Bridge
o°
eV
ey ‘ Protocol
<& Events

ProtocolFilters

Filtered
Protocol

~ _~

Events

Protocol Codec

Protocol Handler

Protocol Provider

JoAe |000101d

Conclusion

| /4

Conclusion

MINA is
a flexible and extensible
network application framework
that boosts developer productivity.

| /4

Ay How to Contribute \gy

<+ MINA is a subproject of
the Apache Directory Project

< Homepage:
http://directory.apache.org/subprojects/network

< Mailing List:
dev@directory.apache.org (Use ‘[mina]’ prefix)

