Push-Pull User Manual

Author: Brian Foster

email: Brian.M.Foster@jpl.nasa.gov
Copyright (c) 2008 California Institute of Technology.
ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged.
Table of contents

41
About Push-Pull Framework

1.1
DaemonLauncher
4
1.2
DaemonManager
4
1.3
Daemons
4
1.4
RemoteCrawler Configuration
5
1.5
ListRetriever Configuration
5
1.6
FileRetrievalSystem and DB Communication
6
1.7
Protocol Communication
6
1.8
DaemonController and JConsole
7
2
Specify Remote Site Info
8
2.1
Purpose
8
2.2
Adapting file into Push-Pull
8
2.3
Parser
8
2.4
Xml Schema
8
2.4.1
Layout
8
2.4.2
Elements
8
2.5
Path to Example File in Push-Pull Project
8
3
Specify Daemons
9
3.1
Purpose
9
3.2
Adapting file into Push-Pull
9
3.3
Parser
9
3.4
Xml Schema
9
3.4.1
Layout
9
3.4.2
Elements
9
3.5
Path to Example File in Push-Pull Project
13
4
Site Crawl Specification
14
4.1
Purpose
14
4.2
Adapting file into Push-Pull
14
4.3
Parser
14
4.4
Xml Schema
14
4.4.1
Layout
14
4.4.2
Variables (Optional)
15
4.4.3
Methods (Optional)
15
4.4.4
Syntax Requirements
15
4.4.5
Method’s <action> element usage
15
4.4.6
Dirstruct
16
4.4.7
Advance Usage of Dirstruct
18
4.4.8
Method and Variable Usage in Dirstruct
19
4.5
Path to Example File in Push-Pull Project
20
5
Renaming Convention Utility
21
5.1
Description
21
5.2
Usage
21
5.2.1
Environment Variables
21
5.2.2
Predefined Variables
21
5.3
Examples
21
5.3.1
GFS file
21
5.3.2
www.class.noaa.gov email sent to class@peate.jpl.nasa.gov
21
6
Parsers
22
6.1
Description
22
6.2
Creating a Parser
22
6.2.1
Implementing the Parser interface
22
6.2.2
VirtualFileStructure
22
6.2.3
VirtualFile
22
6.3
Using a Parser
25
7
Protocols
26
7.1
Description
26
7.2
Creating a Protocol
26
7.2.1
Interfaces
26
7.2.2
ProtocolFactory Registration
26
7.2.3
URL Handler Compatibility
26
7.3
Using a Protocol
26
8
Metadata Extractor Plugin to Cas-Crawler
27
8.1
Java Property
27
8.2
Schema
27
9
Building Push-Pull Framework
28
9.1
Development build
28
9.2
Distribution build
28
9.3
NPP Sounder PEATE build
28
10
Setup of Push-Pull Framework
30
10.1
List of Java Properties
30
10.2
NPP Sounder PEATE setup
30
11
Running Push-Pull Framework
31
11.1
Push-Pull Framework Usage
31
11.2
NPP Sounder PEATE running instructions
31

1 About Push-Pull Framework XE "About Push-Pull Framework"
 The push-pull framework was develop in hopes that an infrastructure would be created which could literally connect to any given remote site and given a set of restrictions download files from that remote site based on those restrictions. The following diagrams describe the architecture of the hence developed push-pull framework.

1.1 DaemonLauncher XE "DaemonLauncher"

The push-pull framework is launch by using its DaemonLauncher. This DaemonLauncher will launch off several Daemons, which are specified in an xml file described in the section: Specify Remote Site Daemons.

[image: image1.wmf]
Figure 1
1.2 DaemonManager XE "DaemonManager"
There is also a DaemonManager which the DaemonLauncher will register each Daemon it creates with. The purpose of this DaemonManager is to assure that no two Daemons are ever running at the same time. If a Daemon is running while another asks permission to run, permission will be denied and the Daemon will be put on a queue and wait until the current running Daemon and all other Daemons ahead of it on the queue complete their task.

[image: image2.wmf]
Figure 2

1.3 Daemons XE "Daemons"
A Daemon, at present, will wrap one of two processes: 1) RemoteCrawler or 2) ListRetriever

[image: image3.wmf]
Figure 3
The RemoteCrawler is used to crawl remote sites for files. The ListRetriever is used to retrieve known files from remote sites (that is, the path and file name to each file is known and has been specified in a property file and a parser for that property file has been specified).

1.4 RemoteCrawler Configuration XE "RemoteCrawler Configuration"
The RemoteCrawler is configured by the XML file described in section: Site Crawl Specification.
[image: image4.wmf]
Figure 4
1.5 ListRetriever Configuration XE "ListRetriever Configuration"
The ListRetriever is configured through any property file which has a parser written for it. For example, currently two different property file parsers are written for the ListRetriever: 1) IasiEmailParser and 2) FileListParser. The IasiEmailParser will parse file paths and names from emails sent from class.noaa.gov and FileListParser will parse files of the format:

remote-directory

file-name

file-name

…

…

Example:

/misc/raid2/IASI/L1C/2007/06/30

IASI_xxx_1C_M02_20070629235953Z_20070630000256Z_N_O_20070630013723Z__20070630014330

IASI_xxx_1C_M02_20070630000257Z_20070630000552Z_N_O_20070630013952Z__20070630014640

IASI_xxx_1C_M02_20070630000553Z_20070630000856Z_N_O_20070630014220Z__20070630014740

IASI_xxx_1C_M02_20070630000857Z_20070630001152Z_N_O_20070630014452Z__20070630014944

IASI_xxx_1C_M02_20070630001153Z_20070630001456Z_N_O_20070630014718Z__20070630015234

IASI_xxx_1C_M02_20070630001753Z_20070630002056Z_N_O_20070630015228Z__20070630015909
The classpaths for above two mentioned parsers are:

 1) gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.IasiEmailParser

 2) gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.FileListParser

Other parsers may be written to extend the current selection of parsers. Just extend the Parser interface and then use the parser as you would use the already predefined parsers. The classpath for the Parser interface is:

 gov.nasa.jpl.oodt.cas.crawl.filerestrictions.Parser

The figure below describes the process of the ListRetriever:

[image: image5.wmf]
Figure 5
1.6 FileRetrievalSystem and DB Communication XE "FileRetrievalSystem and DB Communication"
Both the RemoteCrawler and ListRetriever have the same backbone downloading infrastructure: FileRetrievalSystem. This infrastructure automates a lot of the download procedures and is fully customizable through property files. Database communication is adaptable through the CommunicationMethod interface. Currently there are 3 types of CommunicationMethods implemented (they are all currently implemented to use the same database FileManager, but a CommuncationMethod could be written to communicate with a completely different database system). The 3 currently implement CommunicationMethods are: XmlRpcCommunication, XmlRpcCachedCommunication, and RmiCachedCommunication. XmlRpcCommunication exists in the Cas-Filemgr database client/server cataloging utility. It allows for direct communication with the cas-filemgr for every query. If any information is needed from the database the filemgr is queried directly. The other two forms of CommunicationMethods are implement in such a way to remove the load of existence checking from the database. The first of these two is the XmlRpcCachedCommunication. This allows a range query local cache of a user decided unique metadata values that can be queried against instead of having to constantly query the database. There is an initial loading time of the cache, but after that all queries are loaded into the local cache the communication with the database is limited to only new file ingestion. However, this type of cached query is local only to the current push-pull framework process. If for example, N push-pull instance existed, the cache would have to be created N times. Also the Cas-Crawler, the infrastructure used to ingest the data downloaded by the push-pull framework, cannot use this same cache. The cas-crawler does existing checking also before it ingests files into the database, so it to would have to cache locally also. In order to get around this, a separate process is available which keeps a cache of the data. It works just like the XmlRpcCachedCommunciation except that the cache is stored in a separate process which can be accessed by all other processes through RMI communication. Therefore we have the RmiCachedCommunication. This CommunicationMethod communicates with the RmiDatabaseServer, which must be launched separately and before any process that needs it.

Here are diagrams describing the 3 types of CommunicationMethods:

XmlRpcCommunication:

[image: image6.wmf]
Figure 6
XmlRpcCachedCommunication: [image: image7.wmf]
Figure 7
RmiCachedCommunication:

[image: image8.wmf]
Figure 8
1.7 Protocol Communication XE "Protocol Communication"
The FileRetrievalSystem does all of its remote protocol communication through its ProtocolHandler. The ProtocolHandler automatically figures out which Protocol currently implemented is the best suited for a given remote host. For example, there are currently several FTP protocols implemented because I have yet to find one Java FTP library that is compatible with every FTP site. So the ProtocolHandler will go through the list of FTP protocols and test the connectivity of each one until it finds one that it likes and seems to have compatible connectivity. It then remembers that it liked a certain protocol for a certain site to avoid having to perform the test over and over again. If you write a new Protocol you must implement the Protocol interface: gov.nasa.jpl.oodt.cas.crawl.protocol.Protocol. You must write a corresponding ProtocolFactory for your Protocol that implements the ProtocolFactory interface: gov.nasa.jpl.oodt.cas.crawl.protocol.ProtocolFactory. You must then register the ProtocolFactory with the ProtocolHandler by adding the factory classpath to: src/resources/policy/ProtocolFactoryInfo.xml. I think the schema for this file is pretty self-explanatory (here is the current version of the file as an example):

<protocols>

 <protocol type="ftp">

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.ftp.jvftp.FtpClientFactory_jvftp"/>

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.ftp.apache.FtpClientFactory_apache"/>

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.ftp.ftp4che.FtpClientFactory_ftp4che"/>

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.ftp.cog.FtpClientFactory_cog"/>

 </protocol>

 <protocol type="http">

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.http.HttpClientFactory"/>

 </protocol>

 <protocol type="sftp">

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.sftp.jsch.SftpClientFactory_jsch"/>

 </protocol>

 <protocol type="imaps">

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.imaps.ImapsClientFactory"/>

 </protocol>

 <protocol type="file">

 <protocolFactory class="gov.nasa.jpl.oodt.cas.crawl.protocol.local.LocalClientFactory"/>

 </protocol>

</protocols>
The order in which each protocol is specified within each <protocoltype> does matter. First in the list is the first tried by the ProtocolHandler, so you would want to put the most compatible library at the top of the list.

1.8 DaemonController and JConsole XE "DaemonController and JConsole"
There is another feature which uses RMI beside the RmiCachedCommunication. Each Daemon registers with a RMI registry created by the DaemonLauncher. The DaemonLauncher will use the rmiRegistryPort passed to create the RMI registry. Each Daemon can be controlled by the DaemonController class. Each Daemon also registers itself with as an MBean object with JMX. This allows for viewing the performance and the calling of each method which DaemonController can call with the benefit of having a GUI interface supplied by jconsole. Very helpful for debugging purposes.

2 Specify Remote Site Info XE "Specify Remote Site Info"
2.1 Purpose

 This is an XML file which specifies all the remote sites, protocol connections, and the corresponding username and passwords. This file is meant to be specific to the user and should be only user readable and writable since passwords are kept within it in plan text.

2.2 Adapting file into Push-Pull XE "Adapting file into Push-Pull"
See Specify Daemons
2.3 Parser XE "Parser"
 gov.nasa.jpl.oodt.cas.crawl.config.RemoteSpecs

 -- this parser is built into the push-pull framework and is called automatically
2.4 Xml Schema XE "Xml Schema"
2.4.1 Layout

<sources>

<source host="host-of-remote-site">

<login type="connection-type" alias="any-name-alias-you-choose">

<username>obvious</username>

<password>obvious</password>

</login>

 …

…

…

</source>

…

…

…

</sources>
2.4.2 Elements

 Any number of <source> elements may be specified within <sources>

For each <source> element there is one attribute:

1) host : the address of the remote host this <source> element is aliasing

For each <source> element there my be one or more <login> elements

For each <login> element there are 2 attributes:

1) type : specifies the connection protocol – should match the ‘type’ attribute in the ProtocolFactory XML file (see Protocol Communication).

2) alias : specifies the alias which identifies this combination of ‘host’, ‘type’, ‘username’, and ‘password’

For each <login> element there are 2 elements:

1) username : the login username

2) password : the login password

2.5 Path to Example File in Push-Pull Project
 In project workspace: <project_home>/src/resources/examples/ExternalSourcesFiles/ExternalSources.xml

 After maven build: <build-home>/etc/examples/ExternalSourcesFiles/ExternalSources.xml

3 Specify Daemons

3.1 Purpose

 This is an XML file which specifies the sites which files will be retrieved from and for which a Daemon will be created. Each <site> element specified represent a new Daemon. Requires a XML file described in section Specify Remote Site Info.

3.2 Adapting file into Push-Pull

 --Set the command line option for DaemonLauncher:

--remoteSpecsFile <path-to-this-daemon-specification-file>

3.3 Parser

 gov.nasa.jpl.oodt.cas.crawl.config.RemoteSpecs

 -- this parser is built into the push-pull framework and is called automatically

3.4 Xml Schema

3.4.1 Layout

<remoteSpecs>

 <aliasSpecs>

 <aliasSpec file="file-path"/>

 …

 …

 …

 </aliasSpecs>

 <daemons>

 <daemon alias=" site-alias" rtvlMethod="class-path" active="yes-or-no">

 <runInfo firstRunDateTime="utc-time" period="#[w,d,h,m,s]" epsilon="#[w,d,h,m,s]" runOnReboot="yes-or-no"/>

 <propInfo dir="directory-path">

 <downloadInfo alias="site-alias" remoteDir="directory-path" regExp="regular-expression"

 deleteFromServer="yes-or-no" renamingConv="string"/>

 <propFiles regExp="regular-expression" parser="class-path"/>

 <afterUse moveToOnSuccess="directory-path" moveToOnFail="directory-path"/>

 </propInfo>

 <dataInfo stagingArea="directory-path" deleteFromServer="yes-or-no" allowAlliasOverride="yes-or-no"

 queryElement="metadata-element" renamingConv="string"/>

 </daemon>

…

…

…

 </daemons>

</remoteSpecs>

3.4.2 Elements

List of Elements

1) <remoteSpecs>
2) <aliasSpecs>
3) <aliasSpec>
4) <daemons>
5) <daemon>
6) <runInfo>
7) <propInfo>
8) <downloadingInfo>
9) <propFiles>
10) <afterUse>
11) <dataInfo>
3.4.2.1 <remoteSpecs>

Description

The root element which encapsulates all other elements

Attributes

NONE

Sub-Elements

1) <aliasSpecs>
· Number of Times Allowed: 1
2) <daemons>
· Number of Times Allowed: 1

3.4.2.2 <aliasSpecs>

Description

Marks the start of the <aliasSpec> specifications

Attributes

NONE

Sub-Elements

1) <aliasSpec>
· Number of Times Allowed: 1 or more

3.4.2.3 <aliasSpec>

Description

Defines the files (see Specify Remote Site Info) which define the aliases used in this file

Attributes

1) file

· Description: The path to the file which specifies the aliases

· Allowed values:

i. Any local file path

· Default value: empty string

· Required: yes

Sub-Elements

NONE

3.4.2.4 <daemons>

Description

Marks the start of the <daemon> specifications

Attributes

NONE

Sub-Elements

1) <daemon>
· Number of Times Allowed: 1 or more

3.4.2.5 <daemon>

Description

Defines a daemon which downloads files from a given alias via a given set of property files

Attributes

1) alias

· Description: The site which the data files will be downloaded from

· Allowed values:

i. any alias specified in one of the <aliasSpec> files

· Default value: empty string

· Required: yes

2) rtvlMethod

· Description: The RetrievalMethod to be used to download the data files

· Allowed values:

i. gov.nasa.jpl.oodt.cas.crawl.retrievalmethod.RemoteCrawler

ii. gov.nasa.jpl.oodt.cas.crawl.retrievalmethod.ListRetriever

· Default value: empty string

· Required: yes

3) active

· Description: Where the daemon should be created or note

· Allowed values:

i. yes

ii. no

· Default value: no

· Required: no

Sub-Elements

1) <runInfo>
· Number of Times Allowed: 0 or 1 -- daemon will only run once, then quit, if not specified
2) <propInfo>
· Number of Times Allowed: 1
3) <dataInfo>
· Number of Times Allowed: 1
3.4.2.6 <runInfo>

Description
Defines the run and repetition info for a daemon

Attributes

1) firstRunDateTime

· Description: The date that must pass before daemon will be permitted to run

· Allowed values:

i. Any UTC ascii date/time string with no milliseconds (format: YYYY-MM-DDThh:mm:ssZ)

· Default value: date/time which daemon info was loaded

· Required: no

2) period

· Description: The period of time between start times for this daemon

· Allowed values:

i. <numeric>[w,d,h,m,s] (that is, any positive integer followed by any of the following character: w, d, h, m, s -- where: w = week, d = day, h = hour, m = minute, s = second)

· Default value: -1

· Required: no

3) epsilon

· Description: When calculating next runtime, if next runtime does not exactly equal current time, this allows for the runtime to still equal current time if it is within epsilon time away.

· Allowed values:

i. same as ‘period’

· Default value: -1

· Required: no

4) runOnReboot

· Description: This tells the daemon to either run when the push-pull framework is restarted or to wait until next scheduled runtime.

· Allowed values:

i. yes
ii. no
· Default value: false

· Required: no

Sub-Elements
NONE

3.4.2.7 <propInfo>

Description

Defines how to get property file remotely, if property files need to be required from a remote machine. Also defines how to parse such property files and where to move property file (if desired) to a final destination after done processing.

Attributes

1) dir

· Description: The local directory where the property files are located
· Allowed values:
i. Any path to a local directory
· Default value: empty string

· Required: yes
Sub-Elements

1) <downloadingInfo>
· Number of Times Allowed: 0 or 1
2) <propFiles>
· Number of Time Allowed: 1 or more
3) <afterUse>
· Number of Time Allowed: 0 or 1

3.4.2.8 <downloadingInfo>

Description

Defines how and where to download the property file needed to configure the <daemon>.

Attributes

1) alias

· Description: The alias from which the property files will be downloaded from

· Allowed values:

i. Any alias specified in one of the <aliasSpec> files
· Default value: empty string

· Required: yes

2) remoteDir

· Description: The remote directory where the property files are located

· Allowed values:

i. Any path to a directory that exist on the remote alias
· Default value: empty string

· Required: yes

3) regExp

· Description: A regular expression that describes the property files in the remote directory

· Allowed values:

i. Any regular expression accepted by the Java 5.0 Pattern Class
· Default value: same as regExp attribute specified in the <propFiles> element

· Required: no

4) deleteFromServer

· Description: If true, the files will be deleted from the alias after downloaded (must be allowed by alias in order for deletion to succeed)

· Allowed values:

i. yes
ii. no
· Default value: no

· Required: no

5) renamingConv

· Description: Specifies how to rename files when they are downloaded

· Allowed values:

i. See Renaming Convention Utility
· Default value: empty string

· Required: no

Sub-Elements

NONE

3.4.2.9 <propFiles>

Description

Defines how to parse the property files it specifies with its regular expression

Attributes

1) regExp

· Description: Describes the property files in the local directory

· Allowed values:

i. Any regular expression accepted by the Java 5.0 Pattern Class
· Default value: empty string

· Required: yes

2) parser

· Description: Defines the parser which will parse the property files described by regExp
· Allowed values:

i. gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.DirStructXmlParser

ii. gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.FileListParser

iii. gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.IasiEmailParser

iv. Any classpath of a new parser you choose to write
· Default value: empty string

· Required: yes

Sub-Elements

NONE

3.4.2.10 <afterUse>

Description

Defines the location to which property files will be moved to on success or fail

Attributes

1) moveToOnSuccess

· Description: Specifies the directory to which each property file will be move to after it is successfully parsed and all data files it specifies have been successfully downloaded

· Allowed values:

i. Any local directory path
· Default value: empty string

· Required: yes

2) moveToOnFail

· Description: Specifies the directory to which each property file will be moved to if it fails during parsing or one or more of the data files it specifies fails to download.

· Allowed values:

i. Any local directory path
· Default value: empty string

· Required: yes

Sub-Elements

NONE

3.4.2.11 <dataInfo>

Description

Defines information about how the data files defined in the property files should be treated

Attributes

1) stagingArea

· Description: The local directory when the data files will be downloaded into

· Allowed values:

i. Any local directory path
· Default value: empty string

· Required: yes

2) deleteFromServer

· Description: If true, the files will be deleted from the alias after downloaded (must be allowed by alias in order for deletion to succeed)

· Allowed values:

i. yes

ii. no
· Default value: no

· Required: no

3) allowAliasOverride

· Description: If the parser extracts the alias from the property file, then if this is set to ‘yes’, then that alias is used, otherwise the alias in <daemon> is used.

· Allowed values:

i. yes

ii. no
· Default value: no

· Required: no

4) queryElement

· Description: Specifies which metadata element defined in the FileRetrievalSystem to uses when querying the database on file uniqueness.

· Allowed values:

i. RetrievedFromLoc

ii. Filename
· Default value: Filename

· Required: no

5) renamingConv

· Description: Specifies how to rename files when they are downloaded

· Allowed values:

i. See Renaming Convention Utility
· Default value: empty string

· Required: no

Sub-Elements

NONE

3.5 Path to Example File in Push-Pull Project

 In project workspace: <project_home>/src/resources/configurations/SiteInfo.xml

 After maven build: <build-home>/etc/configurations/SiteInfo.xml

4 Site Crawl Specification

4.1 Purpose

 An XML which describes how to crawl a remote site.

4.2 Adapting file into Push-Pull

 See Specify Daemons
4.3 Parser

 gov.nasa.jpl.oodt.cas.crawl.filerestrictions.parsers.DirStructXmlParser

4.4 Xml Schema

4.4.1 Layout

<root>

 <variables>

 <variable name="variable-name">

 <type>INT-or-STRING</type>

 <value>variable-value</value>

 <precision>

 <locations>number-of-fill-locations</locations>

 <fill>fill-value</fill>

 <side>front-or-back</side>

 </precision>

 </variable>

 ...

 ...

 </variables>

 <methods>

 <method name="method-name">

 <args>

 <arg name="argument-name">

 <type>INT-or-STRING</type>

 </arg>

 ...

 ...

 </args>

 <action>method-behavior</action>

 </method>

 ...

 ...

 </methods>

 <dirstruct name="root-directory-name">

 <nodirs/>

 <nofiles/>

 <file name="file-name"/>

 <dir name="directory-name">

 <nodirs/>

 <nofiles/>

 <file name="file-name"/>

 <dir name="directory-name">

 ...

 ...

 </dir>

 </dir>

 ...

 ...

 </dirstruct>

</root>

<variables> and <methods> can be created in this XML file so that they can be used in the <dirstruct> portion of the XML file. These <variables> and <methods> can be used inside the <dir> and <file> elements within the <dirstruct> element to allow for varrying directory and file names beyond the capability of regular expressions (which are also allowed).

4.4.2 Variables (Optional)
 Let's start with describing the <variables> portion of the XML file. As many <variable> elements as you would like can be specified inside the <variables> tag. The <variable> element must have a parameter, 'name', which is the name of this <variable>. Every <variable> is a global variable (that is, global in the scope of the XML file it is declared in -- it is not usable in other XML file, unless redeclared) so variable names are unique (however, are case sensitive) so thus a name can only be applied to one <variable>. Within the <variable> element there are three possible sub-elements that can be included. <type> and <value> are required and <precision> is optional. <type> can be either (and it must be in all UPPERCASE) INT or STRING (sorry, floating point numbers are not supported as of yet). This specifies what type of value will be given in <value>. This allows you to both use numerical values as either an integer or a string. <precision> can also be specified for each <variable>. This allows you to insure that an integer or string will take up a certain amount of space. This is especially useful when dealing with dates. For instance, say you had the following in your XML file:

<variable name="myVariable">

 <type>INT</type>

 <value>3</value>

</variable>

 When myVariable was finally returned it would look like 3, however many times for dates you would like 03 returned. You can specify this by adding precision to the following XML:

<variable name="myVariable">

 <type>INT</type>

 <value>3</value>

 <precision>

 <locations>2</locations>

 <fill>0</fill>

 <side>front</side>

 </precision>

</variable>

 This insures that the number is always printed with 2 digits and if the number does not take up 2 digits worth of space a fill value 0 will be added to the front side of the integer, thus, in this example would give us 03. Note: <value>03</value> would NOT accomplish the same!!!!

4.4.3 Methods (Optional)
 Next let's look at the <methods> portion of the XML file. <method> elements must have a 'name' parameter, which is the name of the <method>. Every <method> is also global in the same way as is every <variable> and are also case-sensitive, thus method names must be unique. <method> element may contain an <args> sub-element, however this is optional and only needed if the method is to take any arguments. If an <args> element is given, then it should contain at least one <arg> element. A <method> may contain as many <arg> elements as it needs. What is being specified by a <method> element is what would be known in java code as the method signature. Thus all we are going to specify is each argument's name and type. Thus each <arg> element must contain a 'name' parameter, which is the name of the argument and must contain a <type> sub-element, so it is known how to treat the arguments when the method is used within the <dirstruct> section of the XML file. Another sub-element, which is required, for the <method> element is the <action> element. This element contains the behavior of the <i>{@literal <method>}</i>. Before going into detail about what can be placed within the <action> element let's first cover some syntax requirements for the XML file.

4.4.4 Syntax Requirements
 When a <variable> is used it must be preceded by $ and inclosed in {} (e.g. ${myVariable}).

 When a <method> is used it must be preceded by % and end with () (e.g. %myMethod(), however if arguments are given then %myMethod(12,9)).

 When a <method> argument (<arg> element) is used is must be preceded by $ (e.g. $myArg).

 When a literal integer is used it must be preceded by # (e.g. #234).

 When a literal string is used it must be inclosed in " (e.g. "my age is 56 -- no not really").

NOTE: When passing arguments into methods the string and integer literal rules do not need to be followed because you have already defined what each argument type should be and they will be evaluated as such.

NOTE : Also note that at present a <variable> cannot be passed as an argument to the methods. Just use the <variable> where needed inside the <action> element. This feature should hopefully be added in a later release.

4.4.5 Method’s <action> element usage
 The <action> element will evaluate expressions that contain both integers and strings. It obeys the rules of mathematical precedence and will also handle parentheses. It also, like Java, still follows the order of precedence when strings are present. That is, if you have the expression:

 #2+#4+" years old, going on "+#2+#4

It would evaluate to:

 6 years old, going on 24

You may use any <variable> declared within the same XML file and may also use any argument (<arg> element) declared within that <method>. Also string and integer literals may be used. Currently the only operators supported are +,-, ,/ (which are respectively: addition, subtraction, multiplication, and division). Parentheses, (), and embedded parentheses, (()()), are also all allowed.

4.4.6 Dirstruct
 The final section of the XML file is the actual main purpose of the XML file. This is the XML that controls which directories the crawler will be allowed to crawl and which files will be allowed. The <dirstruct> element requires a 'name' parameter which is the path to the root directory that is to be considered (that is, all other directories below the given directory are unimportant and will not be crawled). You want your root directory path to stop at the first directory in which you are interested in more than one of its sub-directories or want file(s) inside it. For example, let say we want to crawl a remote site that has the following directory structure:

-parent

 -child1

 -grandChild1

 -greatGrandChild1

 -file1

 -greatGrandChild2

 -grandChild2

 -file1

 -child2

 -file1

 -child3

 -file1

 -file2

 -grandChild1

 -file1

 -file2

 -child4

 Now, say, we only are interested in directories and files below the two shown 'grandChild1' directories. This would mean that for our <dirstruct> 'name' parameter we would put name="parent". This is because we need access to both 'child1' and 'child3' subdirectories. Now in order to avoid crawling 'child2' and 'child4' directories we have to specify <dir> elements. This would give us the following XML:

<dirstruct name="/parent">

 <dir name="child1"/>

 <dir name="child3"/>

</dirstruct>

 This would restrict the directories allowed under 'parent' to only be directories with names either 'child1' or 'child3', all other directory names will be rejected. However, more must be added to this example because we have not yet specified any restrictions on files allowed beneath 'parent', we have to add the <nofiles/> element:

<dirstruct name="/parent">}

 <nofiles/>

 <dir name="child1"/>

 <dir name="child3"/>

</dirstruct>

 Now the only thing acceptable below parent is 'child1' and 'child3'. We have to still further our restrictions under 'child1' and 'child3'. Since under 'child1' we only want 'grandChild1' we would have to make another <dir> element and also add a <nofiles/> element:

<dirstruct name="/parent">

 <nofiles/>

 <dir name="child1">}

 <nofiles/>

 <dir name="grandChild1"/>

 </dir>

 <dir name="child3"/>

</dirstruct>

 We have to do the same also for 'child3', giving us:

<dirstruct name="/parent">

 <nofiles/>

 <dir name="child1">

 <nofiles/>

 <dir name="grandChild1"/>

 </dir>

 <dir name="child3">}

 <nofiles/>

 <dir name="grandChild1"/>

 </dir>

</dirstruct>

 From the example directory structure above, with this XML file specified, that directory structure would be limited to:

-parent

 -child1

 -grandChild1

 -greatGrandChild1

 -file1

 -greatGrandChild2

 -child3

 -grandChild1

 -file1

 -file2

 Say we now decide that we only want files below the two 'grandChild1' directories -- that is, no directories. So we would change or XML by adding in the <nodir/> element:

<dirstruct name="/parent">

 <nofiles/>

 <dir name="child1">

 <nofiles/>

 <dir name="grandChild1">}

 <nodirs/>

 </dir>

 </dir>

 <dir name="child3">

 <nofiles/>

 <dir name="grandChild1">}

 <nodirs/>

 </dir>

 </dir>

</dirstruct>

 Which now restricts our directory structure to:

-parent

 -child1

 -grandChild1

 -child3

 -grandChild1

 -file1

 -file2

 Let's further specify now that we only want 'file1' in the '/parent/child3/grandChild1' directory. This would change the XML to:

<dirstruct name="/parent">

 <nofiles/>

 <dir name="child1">

 <nofiles/>

 <dir name="grandChild1">

 <nodirs/>

 </dir>

 </dir>

 <dir name="child3">

 <nofiles/>

 <dir name="grandChild1">

 <nodirs/>}

 <file name="file1"/>

 </dir>

 </dir>

</dirstruct>

 Our new allowed directory structure would now be:

-parent

 -child1

 -grandChild1

 -child3

 -grandChild1

 -file1

NOTES:

-You would not want to use the <nofiles/> and <file> elements in the same directory (same goes for the <nodirs/> and <dir> elements) because you would be specifying that you don't want any files in that directory, and then contradict yourself by specifying a <file> element that is okay to have. The <file> element states that no other file but the file I specified is allowed. The only exception is if you have two or more <file> elements in the same directory -- this is allowed. It follows the same rules as the <dir> element in the example given above where only 'child1' and 'child3' were allow. The two don't cancel each other out.

4.4.7 Advance Usage of Dirstruct
 Regular expressions are allowed in the 'name' parameter of both <dir> and <file> elements. Also any <method> or <variable> element declared can be used within the 'name' parameter of both <dir> and <file> elements. There are also several predefined variables that can be used.

4.4.7.1 Regular Expressions
 The regular expressions are parsed by the http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html class (See its documentation on rule for specifying regular expressions). Here is an example use of a regular expression:

<dirstruct name="/.../temp/test">

 <nofiles/>

 <dir name="\d{4}-\d{2}-\d{2}">

 <nodirs/>

 </dir>

</dirstruct>

 This would restrict the directory files in directories below /.../temp/test to only directories whose names are dates of the format: YYYY-MM-DD.

4.4.7.2 Predefined Date Variables
 There are several predefined date variables than can be put as the <value> of a <variable> and then used.

 These variables are:

[DATE]
- today's date (format: YYYY-MM-DD)

[DATE.UTC] – today’s date (format: YYYY-MM-DDThh:mm:ss.nnnnnnZ)

[DATE.DAY]
- day of today's date

[DATE.MONTH]
- month of today's date

[DATE.YEAR]
- year of today's date

[DATE-N.DAY]
- the day of the date N days ago

[DATE-N.MONTH]
- the month of the date N days ago

[DATE-N.YEAR]
- the year of the date N days ago

[DATE+N.DAY]
- the day of the date N days from now

[DATE+N.MONTH]
- the month of the date N days from now

[DATE+N.YEAR]
- the year of the date N days from now

-sorry, no DayOfYear implemented yet -- hopefully in a later release

 Usage:

<root>

 <variables>

 <variable name="todaysDay">

 <type>INT</type>

 <value>[DATE.DAY]</value>

 <precision>

 <locations>2</locations>

 <fill>0</fill>

 <side>front</side>

 </precision>

 </variable>

 </variabls>

 <dirstruct name="/path/to/parent/dir">

 <nofiles/>

 <dir name="MyFiles">

 <nodirs/>

 <file name="MyPaper_${todaysDay}"/>

 </dir>

 </dirstruct>

</root>

 This would allow only a file in /path/to/parent/dir/MyFiles which had the name which started with MyPaper_ and ended with the day of the current day of the month. For example, if to days date was 03/23/2005, then the file name allowed would be: MyPaper_23.

4.4.8 Method and Variable Usage in Dirstruct
 Here is an example of using <variables> and <methods>:

<root>

 <variables>

 <variable name="DAY">

 <type>INT</type>

 <value>[DATE.DAY]</value>

 <precision>

 <locations>2</locations>

 <fill>0</fill>

 <side>front</side>

 </precision>

 </variable>

 <variable name="MONTH">

 <type>INT</type>

 <value>[DATE.MONTH]</value>

 <precision>

 <locations>2</locations>

 <fill>0</fill>

 <side>front</side>

 </precision>

 </variable>

 <variable name="YEAR">

 <type>INT</type>

 <value>[DATE.YEAR]</value>

 </variable>

 </variables>

 <methods>

 <method name="ADD">

 <args>

 <arg name="1">

 <type>INT</type>

 </arg>

 </args>

 <action>"THE_YEAR_PLUS_"+$1+": "+(${YEAR}+$1)</action>

 </method>

 <method name="HOW_OLD_AM_I">

 <action>${YEAR}-#1984</action>

 </method>

 <method name="DATE">

 <action>${YEAR}+"-"+${MONTH}+"-"+${DAY}</action>

 </method>

 </methods>

 <dirstruct name="/path/to/parent/dir">

 <nofiles/>

 <dir name="AGE_%HOW_OLD_AM_I()"/>

 <dir name="DATE">

 <nodirs/>

 <file name="%ADD(5)"/>

 </dir>

 </dirstruct>

</root>

 This would accept only the directories under /path/to/parent/dir which had the name (given today is 9/7/2007) 'AGE_23' or '2007-09-07'. This would allow any file or directory in under 'AGE_23', but would only allow a file with the name 'THE_YEAR_PLUS_5: 2012' in the directory '2007-09-07'.

4.5 Path to Example File in Push-Pull Project

 In project workspace: <project_home>/src/resources/examples/DirStructXmlParserFiles/*

 After maven build: <build-home>/etc/examples/DirStructXmlParserFiles/*
5 Renaming Convention Utility
5.1 Description

This allows for the renaming of files upon download so that there are no naming collisions in the staging area.

5.2 Usage

Any regular string value, all environment variables, and other predefined values may be used when renaming a file.

5.2.1 Environment Variables

An environment variable is defined by put the environment variables name in all uppercase between to brackets ‘[]’.

5.2.2 Predefined Variables

These are a list of variables that can be used when renaming a files, and they are specified the same way a environment variables.

Here is a list of these variables

· FILENAME

· PATH_NO_FILENAME

· HOST

· PARENT_FILENAME

· PARENT_PATH_NO_FILENAME

· URL

· IS_DIR

· All Predefined Date Variables
5.3 Examples

5.3.1 GFS file

Remote path (or FileRetrievalSystem ‘RetrievedFromLoc’)

ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.2008021212/gfs.t12z.pgrb2f12

Renaming String

[PARENT_FILENAME]_[FILENAME]

New Filename

gfs.2008021212_gfs.t12z.pgrb2f12
5.3.2 www.class.noaa.gov email sent to class@peate.jpl.nasa.gov

Remote path (or FileRetrievalSystem ‘RetrievedFromLoc’)
peate.jpl.nasa.gov/INBOX/20080211170211.739A2502E
Renaming String
IASI_[HOST]_[DATE.UTC]_[FILENAME].email

New Filename
IASI_peate.jpl.nasa.gov_2008-02-11T09:24:56.000867Z_20080211170211.739A2502E.email

6 Parsers

6.1 Description

Java classes which extract information from Push-Pull property files

6.2 Creating a Parser

6.2.1 Implementing the Parser interface

To write a parser for the Push-Pull, the parser must conform to the Parser interface.

Parser classpath
gov.nasa.jpl.oodt.cas.crawl.filerestrictions.Parser

Parser Method Prototype
public VirtualFileStructure parse(FileInputStream inputFile) throws ParserException;
6.2.2 VirtualFileStructure

VirtualFileStructure Description

The one method which the Parser class contains is responsible for converting the FileInputStream into a VirtualFileStructure which the Push-Pull Framework understands.

VirtualFileStructure classpath
gov.nasa.jpl.oodt.cas.crawl.filerestrictions.VirtualFileStructure

VirtualFileStructure Method Prototype

public VirtualFileStructure(String pathToRoot, VirtualFile root);

public VirtualFileStructure(RemoteSite remoteSite, String pathToRoot, VirtualFile root);

public String getPathToRoot();

public VirtualFile getRootVirtualFile();

public RemoteSite getRemoteSite();

public boolean isRootBased();

VirtualFileStructure Explanation
A VirtualFileStructure represents a directory structure, which may or may not belong to a given RemoteSite. An arbitrary VirtualFileStructure can be created and the Push-Pull Framework will attach it to a given RemoteSite via specifications in the Specify Daemons file. The ‘pathToRoot’ is the path to the directory in which you are interested in. Functions as an initial change to directory for the RemoteCrawler (was implemented as a work-around for linux auto-mounting – a given directory had to be changed too, otherwise it might not be mounted and wouldn’t be visible to the RemoteCrawler).

6.2.3 VirtualFile

VirtualFile Description

A VirtualFile is a file that does not exist, but describes a file which does exist somewhere.

VirtualFile classpath
gov.nasa.jpl.oodt.cas.crawl.filerestrictions.VirtualFile

VirtualFile Method Prototype
public VirtualFile(String regExp, boolean isDir);

public VirtualFile(VirtualFile root, String path, boolean isDir);

public static VirtualFile createRootDir();

public static VirtualFile mergeTwoFiles(VirtualFile vf1, VirtualFile vf2);

public void addChild(VirtualFile vf);

public LinkedList<VirtualFile> getChildren();

public VirtualFile getChild(String regExp, boolean isDirectory);

public VirtualFile getChildRecursive(String path, boolean isDirectory);

public boolean hasChild(VirtualFile vf);

public String getAbsolutePath();
public VirtualFile getParentFile();

public String getRegExp();

public void setNoDirs(boolean noDirs);

public void setNoFiles(boolean noFiles);

public boolean allowNewDirs();

public boolean allowNewFiles();

public boolean allowNoDirs();

public boolean allowNoFiles();

public boolean isDir();

public void copy(VirtualFile vf);

public boolean equals(Object obj);

public String toString();
VirtualFile Explanation
When building a VirtualFile directory structure you must start by creating a root VirtualFile: VirtualFile.createRootDir().

‘createRootDir()’ creates a new root directory which virtually represents the root directory ‘/’ if a directory structure. After creating the root directory all other directories should be added to it.

Example

Say we have the following directory structure somewhere:

-dir1_1

-dir2_1

-dir2_2

-dir3_1

-dir4_1

-dir5_1

-file5_1

-file5_2

-dir3_2

-dir4_1

-dir2_3

-dir2_4

-dir3_1

-dir3_2
The following code would create the VirtualFile directory structure wanted:

VirtualFile root = VirtualFile.createRootDir();

//create dir1_1

VirtualFile dir1_1 = new VirtualFile(root, "dir1_1", true);

//add children to dir1_1

dir1_1.addChild(new VirtualFile("dir2_1", true));

VirtualFile dir2_2 = new VirtualFile(dir1_1, "dir2_2", true);

dir1_1.addChild(new VirtualFile("dir2_3", true));

VirtualFile dir2_4 = new VirtualFile(dir1_1, "dir2_4", true);

//add children to dir2_2

VirtualFile dir4_1 = new VirtualFile(dir2_2, "dir3_1/dir4_1/dir5_1", true).getParentFile();

dir4_1.addChild(new VirtualFile("file5_1", false));

dir4_1.addChild(new VirtualFile("file5_2", false));

new VirtualFile(dir2_2, "dir3_2/dir4_1", true);

//add children to dir2_4

dir2_4.addChild(new VirtualFile("dir3_1", true));

dir2_4.addChild(new VirtualFile("dir3_2", true));

//print VirtualFile directory structure
System.out.println(root);

The output of this code is:

-<VirtualFile>

: allowNewDirs/noDirs

: allowNewFiles/noFiles

-/

: false/false

: true/false
 -dir1_1/

: false/false

: true/false
 -dir2_1/

: true/false

: true/false
 -dir2_2/

: false/false

: true/false
 -dir3_1/

: false/false

: true/false
 -dir4_1/

: false/false

: false/false
 -dir5_1/

: true/false

: true/false
 -file5_1

: false/true

: false/true
 -file5_2

: false/true

: false/true
 -dir3_2/

: false/false

: true/false
 -dir4_1/

: true/false

: true/false
 -dir2_3/

: true/false

: true/false
 -dir2_4/

: false/false

: true/false
 -dir3_1/

: true/false

: true/false
 -dir3_2/

: true/false

: true/false

The true/false part have to do with the purpose of the VirtualFile class, which is to allow one to specify a directory structure to the Push-Pull Framework and which files within the structure should be downloaded. Regular expression can also be used as VirtualFile names (see Java 5.0 Pattern Class). However, you may pass in actual filenames also. NOTE: If regular expressions are used, make sure you use the RemoteCrawler, because the ListRetriever should only be used if actual filenames are specified, because the ListRetriever uses a FileRestrictions method which takes a VirtualFile and converts it to a list of file paths. So if there are regular expression anywhere specified within the VirtualFile directory structure, then they will be evaluated as a string and you will get undesired results.

Setting Directory and Files Restrictions
You can restrict a VirtualFile directory 3 way: 1) allow no files, 2) allow no directories, and 3) specify which directories or files are allowed.

Say this is a given directory structure we want to download files from:

-dir1_1

-dir2_1

-file3_1

-file2_1

-dir1_2

-dir2_1

-file3_1

-file3_2

-dir2_2

-file3_1

-file1_1

And let say we only want these 2 files:

/dir1_1/file2_1

/dir1_2/dir2_1/file3_1

This code would work if you are using the ListRetriever (however, would have quite a different effect if using the RemoteCrawler):

VirtualFile root = VirtualFile.createRootDir();

new VirtualFile(root, "dir1_1/file2_1", false);

new VirtualFile(root, "dir1_2/dir2_1/file3_1", false);

System.out.println(root);

Here is the ouput:

-<VirtualFile>

: allowNewDirs/noDirs

: allowNewFiles/noFiles

-/

: false/false

: true/false
 -dir1_1/

: true/false

: false/false
 -file2_1

: false/true

: false/true
 -dir1_2/

: false/false

: true/false
 -dir2_1/

: true/false

: false/false
 -file3_1

: false/true

: false/true

This would work for the ListRetriever because it evaluates the VirtualFile by using the FileRestrictions.toStringList() method:

System.out.println(FileRestrictions.toStringList(root));

Which gives output:

[/dir1_1/file2_1, /dir1_2/dir2_1/file3_1]

And those are the two files we want. However, say we wanted to use the RemoteCrawler to get these two files, then the true/false part of the output above has meaning. Here is the explanation of them:

allowNewDirs:

· true : means that no directory restriction has been specified for directories below this directory and noDirs has not been set to true for this directory, so, when crawling, all directories beneath this directory will be crawled.

· false : means that a directory restriction has been specified for this directory or noDirs has been set to true. This means that the only directories beneath that will be crawl are the ones that meet the restrictions specified or if noDirs equals true, then no directories beneath this directory will be crawled.

noDirs:

· true : means that no directories at all are allowed below this directory.

· false : means that directories are allowed below this directory, however, they must now meet the restrictions specified or allowNewDirs must be true (that is, no restrictions where specified).
allowNewFiles:

(same as allowNewDirs, but applies to files)

noFiles:

(same as noDirs, but applies to files)

NOTE ABOUT DEFAULTS: allowNewDirs and allowNewFiles are allows set to false for non-directory VirtualFiles and are set to true for directories. noDirs and noFiles are allows set to true for non-directory VirtualFiles and are set to false for directories. These 4 parameters can only be modified for directory VirtualFiles, not change takes place if tried on a non-directory VirtualFile.

Here is what the code should look like for use with RemoteCrawler:

VirtualFile root = VirtualFile.createRootDir();

new VirtualFile(root, "dir1_1/file2_1", false).getParentFile().setNoDirs(true);

new VirtualFile(root, "dir1_2/dir2_1/file3_1", false);
System.out.println(root);

Here is the ouput:

-<VirtualFile>

: allowNewDirs/noDirs

: allowNewFiles/noFiles

-/

: false/false

: true/false
 -dir1_1/

: false/true

: false/false
 -file2_1

: false/true

: false/true
 -dir1_2/

: false/false

: true/false
 -dir2_1/

: true/false

: false/false
 -file3_1

: false/true

: false/true

Let analyze the difference between the two outputs:

Original code:

-dir1_1/

: true/false

: false/false

Modified code:
-dir1_1/

: false/true

: false/false

The difference is in the allowNewDirs/noDirs of dir1_1. The original code would have permitted the RemoteCrawler to crawl

the directory ‘/dir1_1/dir2_1’ because it didn’t specify any directory restrictions (that is, add any children to ‘dir1_1’) or didn’t

specify that it couldn’t crawl any directories below it. In the modified code noDirs is true, therefore no directories below

‘dir1_1’ would be crawled, therefore avoiding ‘/dir1_1/dir2_1’.

So, for example if we use the FileRestrictions.isAllowed() method on the above 2 VirtualFiles create we will see the results I just explained.

Here is the code:

System.out.println(FileRestrictions.isAllowed(new VirtualFile("/dir1_1/dir2_1", true), root));

Here is the output:

Original code:

true

Modified code:

false

This shows that the original code would allow the RemoteCrawler to crawl the directory ‘/dir1_1/dir2_1’ but the modified code

wouldn’t.
6.3 Using a Parser

See ‘parser’ attribute for the <propFiles> element in section Specify Daemons.

7 Protocols

7.1 Description

This is the interface by which the Push-Pull Framework knows how to download files from a given RemoteSite.

7.2 Creating a Protocol

7.2.1 Interfaces

There currently exist Protocols for: ftp, sftp, http, imaps, and file (localhost). However, if for any reason these Protocols don’t meet your needs, a new Protocol can easily be adapted into the Push-Pull Framework. Two class must be written, a Protocol and a corresponding ProtocolFactory. The following two interfaces must be implemented respectively: gov.nasa.jpl.oodt.cas.crawl.protocol.Protocol and gov.nasa.jpl.oodt.cas.crawl.protocol.ProtocolFactory.

7.2.2 ProtocolFactory Registration

After your class is written, just add it to the appropriate place in the ProtocolFactories XML file (see Protocol Communication).

7.2.3 URL Handler Compatibility

Also note, that the Push-Pull Framework stores remote sites by using the Java URL class, so if your protocol type is currently not supported by the Java URL class, then you will also have to specify a dummy handler for it (all it does if trick the URL class into thinking that there is a handler specified for the given protocol type – however the handler is never actually used by the Push-Pull Framework). This has already been done for imaps and sftp, so you can use them as a reference. What has to be done is the following:

· create a classpath: gov.nasa.jpl.oodt.cas.crawl.url.handlers.<protocol-type>

(for example, for the imaps protocol I created: gov.nasa.jpl.oodt.cas.crawl.url.handler.imaps)

· within this classpath directory create two classes:

1) Handler.java

2) <protocol-type>URLConnection.java

(for example, for the imaps protocol I created:

Handler.java and ImapsURLConnection.java

(note: Handler.java must be call Handler.java, the other class I just used a sensible naming schema)

· The Handler class must extend URLStreamHandler

· The Handler class should have one method (example from imaps):

protected URLConnection openConnection(URL url) throws IOException {

return new ImapsURLConnection(url);
}

· The <protoco-type>URLConnection class should extends URLConnection
· The <protocol-type>URLConnection class have a constructor with a URL argument and a connect() method (example from imaps):

protected ImapsURLConnection(URL url) {

super(url);

}

@Override

public void connect() throws IOException {

//do nothing
}
7.3 Using a Protocol

It is automatic (see Protocol Communication and Specify Remote Site Info).

8 Metadata Extractor Plugin to Cas-Crawler

Create an xml file with the following schema and set the following java property equal to the path to this xml file.

8.1 Java Property

 gov.nasa.jpl.oodt.cas.crawl.ingest.metextractor.namingschema
8.2 Schema

 <NamingSchema name="name_of_schema_type" op="ingest-or-ingore">

 <fileNameRegExp>regular_expression_for_data_file_name</fileNameRegExp>

 <pathRegExp>regular_expression_for_file_path</pathRegExp>

 <exePath>how_to_run_metadata_extractor</exePath>

 </NamingSchema>

Notes:

I) environment variables may be used within the value for <exePath>. The usage is: [env_var]. (i.e. if SHELL is the environment variable then put [SHELL] in the <exePath> value where you want it to be replaced with similar output of: echo $SHELL

II) there a 3 default local variables that may also be used within <exePath>:

a. FILE : the name of the file which passed the reg exp specified

b. PATH_NO_FILE_NAME : the path to the file with passed the rep exp specified

c. OUTPUT_DIR : the output directory given to the cas-crawler on execution

Example:

 <NamingSchema name="IASI" op="ingest">

 <fileNameRegExp>\w{4}_\w{3}_\w{2}_\w{3}_\w{15}_\w{15}_\w_\w_\w{15}__\w{14}</fileNameRegExp>

 <exePath>[SPDC_HOME]/MetExtractors/main/bin/MetExtractor --dataFileReader IasiL1CFileReader --

 dataFile [FILE] --metFileWriter XmlCasWriter --outputDir [OUTPUT_DIR] --supportFile -file

 [FILE].info.tmp -reader PropEqValFileReader -moveToDir [OUTPUT_DIR] --supportFile -file

 [SPDC_HOME]/MetExtractors/resources/IasiConstants.pev -reader PropEqValFileReader</exePath>

 </NamingSchema>

9 Building Push-Pull Framework

 The push-pull framework is built using the apache maven project, so if any plugins written required another third party software java library, this must be added to the project.xml file. The maven.xml file builds the execution script files automatically so the user does not have to generate them.

9.1 Development build

 In project home directory execute: maven
9.2 Distribution build

 In project home directory execute: maven dist:build-bin
9.3 NPP Sounder PEATE build

 Log onto dew.jpl.nasa.gov and execute this script:

#!/bin/csh

make default no soft link

set makeCurrentSoftLink = 0

read in args

switch ($#argv)

 case 2:

 if ("$argv[2]" == "-setAsCurrent") then

 set makeCurrentSoftLink = 1;

 endif

 case 1:

 set versionNum = $argv[1]

 breaksw

 default:

 echo "usage: $0 <version> [-setAsCurrent]"

 exit

endsw

create version directory

if (-e $HOME/versions/$versionNum) then

OVERRIDE:

 echo "$HOME/versions/$versionNum already exists. Override (y/n)? "

 echo " WARNING: if 'y', you will delete all contents in $HOME/versions/$versionNum"

 set override = $<

 if ("$override" == "n") then

 echo "terminating build"

 exit

 else if ("$override" == "y") then

 echo "deleting contents of $HOME/versions/$versionNum"

 rm -rf $HOME/versions/$versionNum/*

 else

 echo "Enter 'y' or 'n'"

 goto OVERRIDE;

 endif

else

 mkdir -p $HOME/versions/$versionNum

endif

make current soft link

if ($makeCurrentSoftLink) then

 cd $HOME

 if (-e current) then

 echo "Symbolic link 'current' exists . . . unlinking it"

 unlink current

 endif

 echo "Making symbolic link 'current' point to $HOME/versions/$versionNum"

 ln -s versions/$versionNum current

endif

#check out code in new directory

cd $HOME/versions/$versionNum

/usr/local/bin/svn co file:///local/dev/repo/PCS/resources/build/nppsit pcs

#build code

cd pcs

csh nppsit-build $versionNum

remind user to set filemgr port

echo ""

echo "* * * * * * * * * *"

echo "IMPORTANT:"

echo " Remember to set FILEMGR_PORT in $HOME/versions/$versionNum/pcs/env-vars.tcsh and then source the file"

echo "* * * * * * * * * * "

echo ""

10 Setup of Push-Pull Framework

10.1 List of Java Properties

 gov.nasa.jpl.oodt.cas.crawl.config.default.files : default java property file paths that user would like the push-pull framework to read

in – can be 0 or more files separated by commas.

gov.nasa.jpl.oodt.cas.crawl.config.cm.class : The CommunicationMethod which the push-pull framework should use (see section

FileRetrievalSystem and DB Communication).

 gov.nasa.jpl.oodt.cas.crawl.config.cm.args.file : XML file specifying arguments for all CommunicationMethods (see section TBD)

 gov.nasa.jpl.oodt.cas.crawl.met.file.extension : The extension attached to the temporary metadata file created by the push-pull

framework (see section TBD).

 gov.nasa.jpl.oodt.cas.crawl.base.logging.directory : The directory where the push-pull framework log file should be written.

 gov.nasa.jpl.oodt.cas.crawl.crawler.use.tracker : Should be set equal to ‘true’ or ‘false’. If set to ‘true’ download efficiency tracker

will be used (see section TBD), otherwise a static number of threads will be used.
 gov.nasa.jpl.oodt.cas.crawl.config.dbLoc : The URL location of where the CommunicationMethod client can connect to its server.

 gov.nasa.jpl.oodt.cas.crawl.protocol.page_size : The number of remote protocol files to instantiate each time a directory is queried

for more files. It have every file returned, set this to -1, otherwise set to some integer value you desire. (see section TBD)

 java.protocol.handler.pkgs=gov.nasa.jpl.oodt.cas.crawl.url.handlers : this is a constant property which must be set as specified. It is

necessary because the protocol types supported by the Java URL class were extended in the push-pull framework.

gov.nasa.jpl.oodt.cas.crawl.config.protocolfactory.info.files : This should be set to the path to the XML file specified in section

Protocol Communication
10.2 NPP Sounder PEATE setup

 All properties are already setup in the given property files. Use List of Java Properties as a reference if you ever want to customize standard install settings.

11 Running Push-Pull Framework

 Currently DaemonLauncher is the only main() which executes the push-pull framework . . . eventually I would like to have the capability to execute the Daemon class independently as well as the RetrievalMethod classes . . . but that is to come.

11.1 Push-Pull Framework Usage
Currently, in order to run the push-pull framework these are the following argument which must be set when invoking the DaemonLauncher:

--startingRmiPort : the starting RMI port which allows the DaemonController class to communicate with each Daemon

(note: this is only a starting port. This number is incremented to make a new port for each Daemon created. So, for example, if you set this value to 1000 and create 5 Daemons, then ports 1000 through 1005 will be used).

--propertiesFile : a Java properties file which sets all the needed properties for the push-pull framework (see section Push-

Pull Java Properties).

--remoteSpecsFile : this is the file described in section Specify Daemons.

11.2 NPP Sounder PEATE running instructions

 cd $CAS_PP_HOME/bin

 ./DaemonLauncher

