Pig Latin Basics

Table of contents

000177 011 o] TS 2
2 RESEIVEA KEYWOITS........eeeiiiieieeie ettt et sttt e s ae e beeneesreenseeneans 3
3 G858 SENSILIVITY .c.te ettt et e b e et et e b e b e b e re e eareenneeenne 4
4 DAATYPES ANA MOFE.......ooieieieee ettt et e te e e sreen e e e e reeteeneenns 4
5 Arithmetic Operators anNd IMOFE...........ccveiieeieceese et e st e et sreenaeeneennees 28
6 REIGLIONAl OPEIELOIS......cveivieeieieeiieee ettt sttt a bbb enes 48

FA IR F- (< 41 = 0| TR 85

1. Conventions

Pig Latin Basics

Conventions for the syntax and code examples in the Pig Latin Reference Manual are

described here.

Convention

0

[]

{}

UPPERCASE

lowercase

Description

Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Curly brackets enclose two or
more items, one of whichis
required.

Curly brackets also used to
indicate the bag data type. In this
case <> isused to indicate
required items.

Horizontal ellipsis pointsindicate
that you can repeat a portion of the
code.

In general, uppercase type
indicates elements the system
supplies.

In general, lowercase type
indicates elements that you supply.

(These conventions are not strictly
adherered to in all examples.)

See Case Sensitivity

Example

Multiple items:;

(1, abe, (2,4,6))

Optional items:
[INNER | OUTER]

Two items, one required:

{ block | nested_block }

Pig Latin syntax statement:
cat path [path ...]

Pig Latin statement:
a=LOAD 'data AS (fL:int);
« LOAD, AS- Pig keywords

a, f1 - aliases you supply
« 'data - data source you supply

Page 2

Pig Latin Basics

2. Reserved Keywords
Pig reserved keywords are listed here.

A

-B

and, any, al, arrange, as, asc, AVG
bag, BinStorage, by, bytearray

cache, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

%declare, %default, define, desc, describe, DIFF,
distinct, double, du, dump

e E, eval, exec, explain

f, F, filter, flatten, float, foreach, full
generate, group

help

if, illustrate, import, inner, input, int, into, is
join

kill

[, L, left, limit, load, long, Is

map, matches, MAX, MIN, mkdir, mv
not, null

onschema, or, order, outer, output
parallel, pig, PigDump, PigStorage, pwd

quit

Pig Latin Basics

-R register, right, rm, rmf, run

-S sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

-T TextLoader, TOKENIZE, through, tuple
-U union, using
-V,W,X,Y,Z

3. Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords (see Reserved Keywords) are case insensitive.

In the example below, note the following:

« Thenames (aliases) of relations A, B, and C are case sensitive.
e Thenames (aliases) of fieldsf1, f2, and f3 are case sensitive.
« Function names PigStorage and COUNT are case sensitive.

« KeywordsLOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are
case insensitive. They can aso be written asload, using, as, group, by, etc.

e Inthe FOREACH statement, the field in relation B isreferred to by positional notation
(%0).

grunt> A = LOAD 'data' USING PigStorage() AS (fl:int, f2:int, f3:int);
grunt> B = GROUP A BY f1;
grunt> C = FOREACH B GENERATE COUNT ($0);

grunt > DUMP C,

4. Data Typesand More

4.1. ldentifiers

| dentifiers include the names of relations (aliases), fields, variables, and so on. In Pig,
identifiers start with aletter and can be followed by any number of letters, digits, or

Page 4

cont.html#Parameter-Sub

Pig Latin Basics

underscores.
Valid identifiers:

Invalid identifiers:

4.2. Relations, Bags, Tuples, Fields

Pig L atin statements work with relations. A relation can be defined as follows:
« A relationisabag (more specifically, an outer bag).

« A bagisacollection of tuples.

e Atupleisan ordered set of fields.

« A fieldisapiece of data

A Pig relation isabag of tuples. A Pigrelation issimilar to atablein arelational database,
where the tuples in the bag correspond to the rows in atable. Unlike arelational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

4.2.1. Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of therelationisA.

Page 5

start.html#pl-Statements

Pig Latin Basics

Y ou an assign an alias to another alias. The new alias can be used in the place of the original
aliasto refer the original relation.

A = LOAD 'student' USING Pi gStorage() AS (nane:chararray, age:int,
gpa: float);

B = A

DUMP B;

4.2.2. Referencing Fields

Fields are referred to by positional notation or by name (aias).

» Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

« Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). Y ou can use any name that is not a Pig keyword (see
Identifiers for valid name examples).

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field
Datatype chararray int float
Positional notation $0 $1 $2
(generated by system)
Possible name (assigned name age gpa
by you using a schema)
Field value (for thefirst John 18 4.0

tuple)

As shown in this example when you assign names to fields (using the AS schema clause) you
can still refer to the fields using positional notation. However, for debugging purposes and
ease of comprehension, it is better to use field names.

A = LOAD 'student' USING PigStorage() AS (nane:chararray, age:int,
gpa: fl oat) ;

X = FOREACH A GENERATE nane, $2;

DUVP X;

(John, 4. OF)

(Mary, 3. 8F)

Page 6

Pig Latin Basics

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

4.2.3. Referencing Fields that are Complex Data Types

As noted, the fields in atuple can be any data type, including the complex data types: bags,
tuples, and maps.

» Usethe schemas for complex data types to name fields that are complex data types.

» Usethe dereference operators to reference and work with fields that are complex data
types.

In this example the data file contains tuples. A schemafor complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.tlaand t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can il
refer to these fields using positional notation.

Page 7

Pig Latin Basics

4.3. Data Types

4.3.1. Smple and Complex

Simple Types Description Example

int Signed 32-bit integer 10

long Signed 64-bit integer Dataz 10L or 10l
Display: 10L

float 32-bit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data: 10.5or 10.5e2 or 10.5E2
Display: 10.5 or 1050.0

chararray Character array (string) in Unicode = hello world
UTF-8 format
bytearray Byte array (blob)
boolean boolean true/false (case insensitive)
Complex Types
tuple An ordered set of fields. (19,2
bag An collection of tuples. {(19,2), (18,1)}
map A set of key value pairs. [openttapache]

Note the following general observations about data types:

e Useschemasto assign typesto fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in

Page 8

Pig Latin Basics

All

4.3

which that datais used. For example, inrelation B, f1 is converted to integer because 5 is
integer. Inrelation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

If aschemais defined as part of aload statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

data types have corresponding schemas.

2. Tuple

A tupleisan ordered set of fields.

4.3.

(fi

4.3.

()

2.1. Syntax

dd[, fied...])

22. Terms

A tupleisenclosed in parentheses ().

Page 9

Pig Latin Basics

field A piece of data. A field can be any datatype
(including tuple and bag).
4.3.2.3. Usage

Y ou can think of atuple as arow with one or more fields, where each field can be any data
type and any field may or may not have data. If afield has no data, then the following
happens:

« Inaload statement, the loader will inject null into the tuple. The actual valuethat is
substituted for null is loader specific; for example, PigStorage substitutes an empty field
for null.

« Inanon-load statement, if arequested field is missing from atuple, Pig will inject null.

Also see tuple schemas.

4.3.2.4. Example

In this example the tuple contains three fields.
(John, 18, 4. OF)

4.3.3. Bag

A bag isacollection of tuples.

4.3.3.1. Syntax: Inner bag

{ tuple[, tuple...]}

4.332. Terms
{} Aninner bag isenclosed in curly brackets{ }.
tuple A tuple.

4.3.3.3. Usage

Note the following about bags:
« A bag can have duplicate tuples.

Page 10

Pig Latin Basics

« A bag can have tuples with differing numbers of fields. However, if Pig triesto access a
field that does not exist, anull value is substituted.

» A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuples include chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

Also see bag schemas.

4.3.3.4. Example: Outer Bag
In this example A isarelation or bag of tuples. Y ou can think of thisbag as an outer bag.

= OAD data' as (fl:int, f2:int, f3;int);
I\/P

LEEe»Q

(1, 2,
(4,2,
(8,3,
(4,3,

4.3.3.5. Example: Inner Bag
Now, suppose we group relation A by thefirst field to form relation X.

In this example X isarelation or bag of tuples. Thetuplesin relation X have two fields. The
first field istypeint. The second field is type bag; you can think of this bag as an inner bag.

= GROUP A BY f1;
1)

. 2,3

,2,1),(4,3,3)})

3 4)})

A map isaset of key/value pairs.

4.3.4.1. Syntax (<> denotes optional)

[key#value <, key#vaue ...>]

Page 11

Pig Latin Basics

4.3.4.2. Terms
[Maps are enclosed in straight brackets|].
Key value pairs are separated by the pound sign #.
key Must be chararray datatype. Must be a unique value.
value Any datatype (the defaults to bytearray).

4.3.4.3. Usage

Key values within arelation must be unique.

Also see map schemas.

4.3.4.4. Example

In this example the map includes two key value pairs.
[nane#John, phone#5551212]

4.4. Nullsand Pig Latin

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or
non-existent. Nulls can occur naturally in data or can be the result of an operation.

4.4.1. Nulls, Operators, and Functions

Pig Latin operators and functions interact with nulls as shown in this table.

Operator Interaction

Comparison operators: If either subexpression isnull, the result is null.

==, I=

> <

>= <=

Comparison operator: If either the string being matched against or the string

defining the match is null, the result isnull.
matches

Page 12

Pig Latin Basics

Arithmetic operators:
+ 1 Ty *! /
% modulo

?: bincond

Null operator:

isnull

Null operator:

is not null

Dereference operators:

tuple (.) or map (#)

Operators:
COGROUP, GROUP, JOIN

Function:

COUNT_STAR

Cast operator

Functions:

AVG, MIN, MAX, SUM, COUNT

Function:

CONCAT

Function:

SIZE

If either subexpression is null, the resulting
expression isnull.

If the tested value is null, returns true; otherwise,
returns false (see Null Operators).

If the tested value is not null, returns true; otherwise,
returns false (see Null Operators).

If the de-referenced tuple or map is null, returns null.

These operators handle nulls differently (see
examples below).

This function counts all values, including nulls.

Casting a null from one type to another type resultsin
anull.

These functionsignore nulls.

If either subexpression isnull, the resulting
expression isnull.

If the tested object isnull, returns null.

For Boolean subexpressions, note the results when nulls are used with these operators.

Page 13

Pig Latin Basics

e FILTER operator — If afilter expression resultsin null value, the filter does not pass them
through (if X isnull, IX isalso null, and the filter will reject both).

» Bincond operator — If a Boolean subexpression resultsin null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

4.4.2. Nullsand Constants
Nulls can be used as constant expressions in place of expressions of any type.

In this example aand null are projected.

A = LOAD 'data' AS (a, b, c).

FOREACH A GENERATE a, null;
In this example of an outer join, if the join key is missing from atableit is replaced by null.

LOAD 'student' AS (nanme: chararray, age: int, gpa: float);
LOAD 'votertablOk' AS (name: chararray, age: int, registration:
chararray, donation: float);

C = COCROUP A BY nanme, B BY nane;

D = FOREACH C GENERATE FLATTEI\K(IsEnpty(A) ?2 null : A),

FLATTEN((1 sEnpty(B) ? null B));

Like any other expression, null constants can be implicitly or explicitly cast.

w >

In this example both aand null will be implicitly cast to double.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a + null;

In this example both aand null will be cast to int, aimplicitly, and null explicitly.

LOAD 'data' AS (a, b, c).

A
B = FOREACH A GENERATE a + (int)null;

4.4.3. Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:
« Division by zero

» Returns from user defined functions (UDFs)

o Dereferencing afield that does not exist.

« Dereferencing akey that does not exist in amap. For example, given amap, info,
containing [name#j ohn, phone#5551212] if auser tries to use info#address anull is
returned.

Page 14

Pig Latin Basics

» Accessing afield that does not exist in atuple.

4.4.3.1. Example: Accessing afield that doesnot exist in atuple

In this example nulls are injected if fields do not have data.

4.4.4. Nullsand Load Functions

As noted, nulls can occur naturally in the data. If nulls are part of the data, it isthe
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should aways
communicate null valuesto Pig by producing Javanulls.

The Pig Latin load functions (for example, PigStorage and TextL oader) produce null values
wherever datais missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example theis not null
operator is used to filter names with null values.

4.4.5. Nullsand GROUP/COGROUP Operators

When using the GROUP operator with asingle relation, records with anull group key are
grouped together.

Page 15

Pig Latin Basics

When using the GROUP (COGROUP) operator with multiple relations, records with anull
group key are considered different and are grouped separately. In the example below note
that there are two tuples in the output corresponding to the null group key: one that contains
tuples from relation A (but not relation B) and one that contains tuples from relation B (but
not relation A).

4.4.6. Nullsand JOIN Operator

The JOIN operator - when performing inner joins - adheres to the SQL standard and
disregards (filters out) null values. (See aso Drop Nulls Before a Join.)

45. Congtants

Pig provides constant representations for all data types except bytearrays.

Page 16

perf.html#nulls

Pig Latin Basics

Simple Data Types
int

long

float

double

chararray

bytearray

boolean

Complex Data Types

tuple

bag

map

P ease note the following:

Constant Example

19

19L

19.2F or 1.92e2f
19.2 or 1.92e2

'hello world'

true/false

(19, 2, 1)

{(19,2,(12)}

['name' # 'John', ‘ext’ # 5555]

Notes

Not applicable.

Caseinsensitive.

A constant in this form creates a
tuple.

A constant in this form creates a
bag.

A constant in this form creates a
map.

* On UTF-8 systems you can specify string constants consisting of printable ASCI|
characters such as 'abc'; you can specify control characters such as'\t'; and, you can
specify a character in Unicode by starting it with '\u', for instance, \uOOO1' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTFE-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far aswe
know this has not been tested.

» To specify along constant, | or L must be appended to the number (for example,
12345678L). If thel or L isnot specified, but the number istoo large to fit into an int, the

Page 17

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Pig Latin Basics

problem will be detected at parse time and the processing is terminated.

* Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, Set+1) istreated as double unlessit endswith f or F in which case it is assigned
type float (for example, 1.5f).

The data type definitions for tuples, bags, and maps apply to constants:
» A tuple can contain fields of any datatype

» A bagisacollection of tuples

e A map key must be a scalar; amap value can be any data type

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

A = LOAD 'data'" USING MyStorage() AS (T: tuple(name: chararray, age: int));
B=FILTER ABY T == ('john', 25);
D = FOREACH B GENERATE T. nane, [25#5.6], {(1, 5, 18)};

4.6. Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well as the eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

» Any Pig datatype (simple data types, complex data types)

« Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)

e Any Pig built in function.

» Any user defined function (UDF) written in Java.

In Pig Latin,
e Anarithmetic expression could look like this:

X = GROUP A BY f2*f3;

A string expression could look like this, where aand b are both chararrays:

X = FOREACH A GENERATE CONCAT(a, b);

Page 18

Pig Latin Basics

A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

4.6.1. Field Expressions

Field expressions represent afield or a dereference operator applied to afield.

4.6.2. Star Expressions

Star expressions (*) can be used to represent all the fields of atuple. It is equivalent to
writing out the fields explicitly. In the following example the definition of B and C are
exactly the same, and MyUDF will be invoked with exactly the same argumentsin both
cases.

LOAD 'data' USI NG MyStorage() AS (nane:chararray, age: int);
FOREACH A GENERATE *, MyUDF(nane, age);
FOREACH A GENERATE name, age, My/UDF(*);

Ow>
o

A common error when using the star expression is shown below. In this example, the
programmer really wants to count the number of elementsin the bag in the second field:
COUNT($1).

GROUP A BY $0;

G
C = FOREACH G GENERATE COUNT(*)

There are some restrictions on use of the star expression when the input schema is unknown
(null):

» For GROUP/COGROUP, you can't include a star expression in a GROUP BY column.
« For ORDER BY, if you have project-star as ORDER BY column, you can’t have any
other ORDER BY column in that statement.

4.6.3. Project-Range Expressions
Project-range (..) expressions can be used to project arange of columns from input. For
example:

o .. $x: projects columns $0 through $x, inclusive
e $x..: projects columns through end, inclusive
o $x.. %y : projects columns through $y, inclusive

If the input relation has a schema, you can refer to columns by alias rather than by column

Page 19

Pig Latin Basics

position. Y ou can also combine aiases and column positions in an expression; for example,
"coll.. $5" isvalid.

Project-range can be used in all cases where the star expression (*) isallowed.

Project-range can be used in the following statements: FOREACH, JOIN, GROUP,
COGROUP, and ORDER BY (aso when ORDER BY is used within a nested FOREACH
block).

A few examples are shown here:

There are some restrictions on the use of project-to-end form of project-range (eg "x .. ")
when the input schemais unknown (null):

» For GROUP/COGROUP, the project-to-end form of project-rangeis not allowed.
» For ORDER BY, the project-to-end form of project-range is supported only as the last
sort column.

4.6.4. Boolean Expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

Page 20

Pig Latin Basics

4.6.5. Tuple Expressions

Tuple expressions form subexpressions into tuples. The tuple expression has the form
(expression [, expression ...]), where expression is ageneral expression. The smplest tuple
expression is the star expression, which represents all fields.

4.6.6. General Expressions

Genera expressions can be made up of UDFs and almost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the simpliest general expressions.

4.7. Schemas

Schemas enable you to assign names to fields and declare types for fields. Schemas are
optional but we encourage you to use them whenever possible; type declarations result in
better parse-time error checking and more efficient code execution.

Schemas for simple types and complex types can be used anywhere a schema definition is
appropriate.
Schemas are defined with the LOAD, STREAM, and FOREACH operators using the AS

clause. If you define a schemausing the LOAD operator, then it is the load function that
enforces the schema (see LOAD and User Defined Functions for more information).

Known Schema Handling

Note the following:

« You can define a schemathat includes both the field name and field type.

« You can define a schemathat includes the field name only; in this case, the field type
defaults to bytearray.

« You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

If you assign aname to afield, you can refer to that field using the name or by positional
notation. If you don't assign aname to afield (the field is un-named) you can only refer to
the field using positional notation.

If you assign atypeto afield, you can subsequently change the type using the cast operators.
If you don't assign atypeto afield, the field defaults to bytearray; you can change the default
type using the cast operators.

Page 21

udf.html

Pig Latin Basics

Unknown Schema Handling

Note the following:

« When you JOIN/COGROUP/CROSS multiple relations, if any relation has an unknown
schema (or no defined schema, also referred to as a null schema), the schemafor the
resulting relation is null.

e If you FLATTEN abag with empty inner schema, the schema for the resulting relation is
null.

« If you UNION two relations with incompatible schema, the schema for resulting relation
isnull.

« If theschemaisnull, Pig treats all fields as bytearray (in the backend, Pig will determine
thereal type for the fields dynamically)

See the examples below. If afield's data type is not specified, Pig will use bytearray to
denote an unknown type. If the number of fieldsis not known, Pig will derive an unknown
schema.

/* The field data types are not specified ... */
a =1load '1l.txt' as (a0, b0);
a: {a0: bytearray, bO: bytearray}

/* The number of fields is not known ... */
a=1load '"1.txt';
a: Schema for a unknown

How Pig Handles Schema

As shown above, with afew exceptions Pig can infer the schema of arelationship up front.

Y ou can examine the schema of particular relation using DESCRIBE. Pig enforces this
computed schema during the actual execution by casting the input data to the expected data
type. If the processis successful the results are returned to the user; otherwise, awarning is
generated for each record that failed to convert. Note that Pig does not know the actual types
of the fieldsin the input data prior to the execution; rather, Pig determines the data types and
performs the right conversions on the fly.

Having a deterministic schemais very powerful; however, sometimes it comes at the cost of
performance. Consider the following example:

A =load ‘input’ as (x, y, z);

B = foreach A generate x+y;

If you do DESCRIBE on B, you will see asingle column of type double. Thisis because Pig
makes the safest choice and uses the largest numeric type when the schemais not know. In

Page 22

test.html#DESCRIBE
test.html#DESCRIBE

Pig Latin Basics

practice, the input data could contain integer values; however, Pig will cast the data to double
and make sure that a double result is returned.

If the schema of arelationship can’t be inferred, Pig will just use the runtime dataasis and
propagate it through the pipeline.
4.7.1. Schemaswith LOAD and STREAM

With LOAD and STREAM operators, the schema following the AS keyword must be
enclosed in parentheses.

In this example the LOAD statement includes a schema definition for ssimple data types.
A = LOAD 'data' AS (fl:int, f2:int);
4.7.2. Schemaswith FOREACH

With FOREACH operators, the schemafollowing the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schemafor simple data
types.

X = FOREACH C GENERATE FLATTEN(B) AS (fl1:int, f2:int, f3:int), group;
In this example the FOREA CH statement includes a schema for simple expression.

X = FOREACH A GENERATE f1+f2 AS x1:int;
In this example the FOREACH statement includes a schemas for multiple fields.

X = FOREACH A GENERATE f1 as user, f2 as age, f3 as gpa;

4.7.3. Schemasfor Simple Data Types
Simple datatypes include int, long, float, double, chararray, bytearray, and boolean.

4.7.3.1. Syntax

(dliad:type]) [, (aliag:type]) ...])

4.7.3.2. Terms

dias The name assigned to the field.

Page 23

Pig Latin Basics

type (Optional) The simple data type assigned to the field.
The alias and type are separated by acolon (;).

If the type is omitted, the field defaults to type
bytearray.

(,) Multiple fields are enclosed in parentheses and
separated by commas.

4.7.3.3. Examples

In this example the schema defines multiple types.

In thisexample field "gpa" will default to bytearray because no type is declared.

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

4.7.4. Schemas for Complex Data Types
Complex data types include tuples, bags, and maps.

4.7.5. Tuple Schemas
A tupleisan ordered set of fields.

4.7.5.1. Syntax

diad:tuple] (diad:type]) [, (diadg:typq]) ...])

4.752. Terms
dias The name assigned to the tuple.
:tuple (Optional) The data type, tuple (case insensitive).
O The designation for atuple, a set of parentheses.
diag[:type] The constituents of the tuple, where the schema

definition rules for the corresponding type appliesto
the constituents of the tuple:

» dias—the name assigned to the field

» type (optional) —the simple or complex data type
assigned to the field

4.7.5.3. Examples

In this example the schema defines one tuple. The load statements are equivalent.

Page 25

Pig Latin Basics

In this example the schema defines two tuples.

4.7.6. Bag Schemas
A bag isacollection of tuples.

4.7.6.1. Syntax
diag[:bag] {tuple}

4.76.2. Terms
dias The name assigned to the bag.
:bag (Optional) The data type, bag (case insensitive).
{} The designation for a bag, a set of curly brackets.
tuple A tuple (see Tuple Schema).

4.7.6.3. Examples

In this example the schema defines a bag. The two load statements are equivalent.

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

4.7.7. Map Schemas
A map isaset of key value pairs.

4.7.7.1. Syntax (<> demotes optional)

alias<:map> [<type>]

4.7.7.2. Terms
dias The name assigned to the map.
‘map (Optional) The data type, map (case insensitive).
[] The designation for amap, a set of straight brackets [
].
type (Optional) The datatype (all types allowed, bytearray

is the default).

The type applies to the map value only; the map key
is always type chararray (see Map).

If atypeisdeclared then ALL valuesin the map must
be of thistype.

4.7.7.3. Examples

In this example the schema defines an untyped map (the map values default to bytearray).

The load statements are equivalent.

Page 27

Pig Latin Basics

This example shows the use of atyped maps.

4.7.8. Schemasfor Multiple Types

Y ou can define schemas for data that includes multiple types.

4.7.8.1. Example

In this example the schema defines a tuple, bag, and map.

5. Arithmetic Operatorsand More

5.1. Arithmetic Operators

Page 28
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

5.1.1. Description

Operator Symbol Notes

addition +

subtraction -

multiplication *

division /

modulo % Returns the remainder of a divided
by b (a%b).
Works with integral numbers (int,
long).

bincond ?: (condition ? value if_true:
value if false)
The bincond should be enclosed in
parenthesis.
The schemas for the two
conditional outputs of the bincond
should match.
Use expressions only (relational
operators are not allowed).

5.1.1.1. Examples

Suppose we have relation A.

In this example the modul o operator is used with fieldsf1 and f2.

Page 29

Pig Latin Basics

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1": if the condition istrue, return 1; if the condition is fase, return the count of the number of
tuplesin B.

5.1.1.2. Types Table: addition (+) and subtraction (-) operators

* pytearray cast asthis datatype

bag tuple map int long float double chararray bytearray
bag error error error error error error error error error
tuple notyet error error error error error error error
map error error error error error error error
int int long float double error cast as
int
long long float double error cast as
long
float float double error cast as
float
double double error cast as
double
chararray error error
bytearray cast as
double

Page 30

Pig Latin Basics

5.1.1.3. Types Table: multiplication (*) and division (/) operators
* pytearray cast asthis datatype

bag tuple map int long float double | chararray bytearray
bag error error error notyet notyet ~notyet notyet error error
tuple error error notyet | notyet | notyet notyet | error error
map error error error error error error error
int int long float double error cast as
int
long long float double error cast as
long
float float double error cast as
float
double double error cast as
double
chararray error error
bytearray cast as
double

5.1.1.4. Types Table: modulo (%) operator

int long bytearray
int int long cast asint
long long cast aslong
bytearray error

Page 31

Pig Latin Basics

5.2. Boolean Operators

5.2.1. Description

Operator Symbol Notes
AND and

OR or

NOT not

The result of aboolean expression (an expression that includes boolean and comparison
operators) is always of type boolean (true or false).

5.2.1.1. Example
X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

5.3. Cast Operators

5.3.1. Description
Pig Latin supports casts as shown in thistable.

from/ | bag tuple map int long float double ' chararray bytearray boolean
to

bag error error error error error error error error error
tuple error error error error error error error error error
map error error error error error error error error error
int error error error yes yes yes yes error error
long error error error yes yes yes yes error error
float error error error yes yes yes yes error error

Page 32

Pig Latin Basics

double error
chararray error
bytearray yes

boolean = error

5.3.1.1. Syntax

error

error

yes

error

error

error

yes

error

yes

yes

yes

error

yes

yes

yes

error

yes yes error error
yes yes error yes
yes yes yes yes
error error yes error

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map(]) } field

53.1.2. Terms

(data_type)

field

5.3.1.3. Usage

The data type you want to cast to, enclosed in
parentheses. Y ou can cast to any data type except
bytearray (see the table above).

The field whose type you want to change.

Thefield can be represented by positional notation or
by name (alias). For example, if f1isthefirst field
and type int, you can cast to type long using (Ilong)$0
or (long)f1.

Cast operators enable you to cast or convert data from one type to another, aslong as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to a string. You can cast thisfield from int to

chararray using (chararray)myint.

P ease note the following:

« A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A CGENERATE (int)$0 + 1;

« Where possible, Pig performsimplicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

Page 33

Pig Latin Basics

When two bytearrays are used in arithmetic expressions or with built in aggregate
functions (such as SUM) they are implicitly cast to double. If the underlying datais really
int or long, you' |l get better performance by declaring the type or explicitly casting the
data.

« Downcasts may cause loss of data. For example casting from long to int may drop bits.

5.3.2. Examples

In thisexample anint is cast to type chararray (seerelation X).

In this example a bytearray (fld in relation A) is cast to type tuple.

Page 34
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

In this example abytearray (fld in relation A) is cast to type bag.

In this example a bytearray (fld in relation A) is cast to type map.

Page 35
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

5.3.3. Casting Relationsto Scalars

Pig allows you to cast the elements of a single-tuple relation into ascalar value. The tuple
can be asingle-field or multi-field tulple. If the relation contains more than one tuple,
however, aruntime error is generated: "Scalar has more than one row in the output”.

The cast relation can be used in any place where an expression of the type would make sense,
including FOREACH, FILTER, and SPLIT. Note that if an explicit cast is not used an
implict cast will be inserted according to Pig rules. Also, when the schema can't be inferred
bytearray is used.

The primary use case for casting relations to scalarsis the ability to use the values of global
aggregatesin follow up computations.

In this example the percentage of clicks belonging to a particular user are computed. For the
FOREACH statement, an explicit cast if used. If the SUM is not given aname, a position can
be used as well (userid, clicks/(double)C.$0).

In this example a multi-field tuple is used. For the FILTER statement, Pig performs an
implicit cast. For the FOREACH statement, an explicit cast is used.

Page 36

Pig Latin Basics

5.4. Comparison Operators

5.4.1. Description

Operator Symbol Notes

equal ==

not equal 1=

lessthan <

greater than >

less than or equal to <=

greater than or equal to >=

pattern matching matches Takes an expression on the left
and a string constant on the right.
expression matches
string-constant
Use the Javaformat for regular
expressions.

Use the comparison operators with numeric and string data.

5.4.2. Examples

Numeric Example

String Example

Page 37

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Pig Latin Basics

X = FILTER A BY (f2 == 'apache');
Matches Example

X = FILTER A BY (f1 natches '.*apache.*");

5.4.3. Types Table: equal (==) operator

bag tuple map int long float double ' chararray bytearray boolean
bag error error error error error error error error error error
tuple boolean ' error error error error error error error error
(see
Note 1)
map boolean = error error error error error error error
(see
Note 2)

int boolean ' boolean = boolean ' boolean = error castas | error
boolean

long boolean = boolean | boolean = error castas error
boolean

float boolean ' boolean ' error castas | error
boolean

double boolean ' error castas error
boolean

chararray boolean castas | error
boolean

bytearray boolean = error

boolean boolean

Page 38

Pig Latin Basics

Note 1. boolean (Tuple A is equal to tuple B if they havethe same size s, and for all 0 <=1i <

sA[i] = = B[i])

Note 2: boolean (Map A isequal to map B if A and B have the same number of entries, and
for every key k1in A with avalue of v1, thereisakey k2 in B with avalue of v2, such that

kl==k2andvl==v2)

5.4.4. Types Table: not equal (!=) operator

bag tuple map int long
bag error error error error error
tuple error error error error
map error error error
int boolean ' boolean
long boolean

float

double

chararray

float

error

error

error

boolean

boolean

boolean

double

error

error

error

boolean

boolean

boolean

boolean

chararray bytearray boolean

error

error

error

error

error

error

error

boolean

error error
error error
error error

boolean ' error
(bytearra

cast as

int)

boolean = error
(bytearra

cast as

long)

boolean = error
(bytearra

cast as

float)

boolean = error
(bytearra

cast as

double)

boolean ' error
(bytearra

cast as
chararray

Page 39

Pig Latin Basics

bytearray boolean = error

boolean error

5.4.5. Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*
chararray boolean boolean
bytearray boolean boolean

5.5. Type Construction Operators

5.5.1. Description

Operator Symbol Notes

tuple constructor O Use to construct a tuple from the
specified elements. Equivalent to
TOTUPLE.

bag constructor {} Use to construct a bag from the
specified elements. Equivalent to
TOBAG.

map constructor [Use to construct a bag from the
specified elements. Equivalent to
TOMAP.

Note the following:

« These operators can be used anywhere where the expression of the corresponding typeis
acceptable including FOREACH GENERATE, FILTER, etc.

« A singleelement enclosed in parens () like (5) is not considered to be atuple but rather
an arithmetic operator.

« For bags, every element is put in the bag; if the element is not atuple Pig will create a

Page 40

func.html#totuple
func.html#tobag
func.html#tomap

Pig Latin Basics

tuplefor it:
e Giventhis{$1, $2} Pig createsthis{($1), ($2)} abag with two tuples
... neither $1 and $2 are tuples so Pig creates a tuple around each item

e Giventhis{($1), $2} Pig createsthis{($1), ($2)} abag with two tuples
... since ($1) istreated as $1 (one cannot create a single element tuple using this
syntax), { ($1), $2} becomes{$1, $2} and Pig creates a tuple around each item

e Giventhis{ (%1, $2)} Pig createsthis{($1, $2)} abag with asingletuple
... Pig creates atuple ($1, $2) and then puts this tuple into the bag

5.5.2. Examples

Tuple Construction

Bag Construction

Page 41

Pig Latin Basics

Map Construction

5.6. Dereference Operators

5.6.1. Description

Operator Symbol Notes

tuple dereference tuple.id or tuple.(id,...) Tuple dereferencing can be done
by name (tuplefield_name) or
position (mytuple.$0). If a set of
fields are dereferenced
(tuple.(namel, name2) or
tuple.($0, $1)), the expression
represents a tuple composed of the
specified fields. Note that if the
dot operator is applied to a
bytearray, the bytearray will be
assumed to be atuple.

bag dereference bag.id or bag.(id,...) Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If aset of fields are
dereferenced (bag.(namel, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

map dereference map# key' Map dereferencing must be done
by key (field_namettkey or
$0#key). If the pound operator is
applied to a bytearray, the

Page 42

Pig Latin Basics

bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

5.6.2. Examples

Tuple Example

Suppose we have relation A.

In this example dereferencing is used to retrieve two fields from tuple f2.

Bag Example

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

Page 43
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

In this example dereferencing is used with relation X to project thefirst field (f1) of each
tuplein the bag (a).

Tuple/Bag Example

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field namesin relation B).

Page 44
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

In this example dereferencing is used to project afield (f1) from atuple (group) and afield
(f1) from abag (a).

Map Example
Suppose we have relation A.

In this example dereferencing is used to look up the value of key ‘open'.

5.7. Disambiguate Operator

Use the disambiguate operator (::) to identify field names after JOIN, COGROUP, CROSS,
or FLATTEN operators.

In this example, to disambiguate y, use A::y or B::y. In cases where there is no ambiguity,
such as z, the :: is not necessary but is still supported.

5.8. Flatten Operator

Page 45
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bags in away that a UDF cannot. Flatten un-nests tuples
aswell asbags. Theideaisthe same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of atuple in place of the tuple. For example, consider
arelation that has atuple of the form (a, (b, ¢)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b,).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have arelation that is made up of tuples of the form ({ (b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove a level
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has atuple of the form (a, { (b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, ¢) and (a, d, €).

Also note that the flatten of empty bag will result in that row being discarded; no output is
generated. (See aso Drop Nulls Before a Join.)

grunt > cat enpty. bag

{} 1

grunt> A = LOAD 'enpty. bag' AS (b : bag{}, i : int);
grunt> B = FOREACH A CENERATE flatten(b), i;

grunt > DUVP B;

grunt >

For examples using the FLATTEN operator, see FOREACH.
5.9. Null Operators

5.9.1. Description

Operator Symbol Notes
isnull isnull
isnot null isnot null

For adetailed discussion of nulls see Nulls and Pig Latin.

5.9.2. Examples

Page 46

perf.html#nulls

Pig Latin Basics

In this example, values that are not null are obtained.

5.9.3. Types Table
The null operators can be applied to all datatypes (see Nulls and Pig L atin).

5.10. Sign Operators

5.10.1. Description

Operator Symbol Notes
positive + Has no effect.
negative (negation) - Changes the sign of a positive or

negative number.

5.10.2. Examples

In this example, the negation operator is applied to the "x" values.

5.11. Types Table: negative (-) operator

bag error
tuple error
map error
int int

long long
float float

Page 47

Pig Latin Basics

double double
chararray error
bytearray double (as double€)

6. Relational Operators

6.1. COGROUP
See the GROUP operator.

6.2. CROSS

Computes the cross product of two or more relations.

6.2.1. Syntax

dlias= CROSS dlias, dlias|[, dlias...] [PARTITION BY partitioner] [PARALLEL nJ;

6.2.2. Terms

dias The name of arelation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hado
« For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.
6.2.3. Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more

Page 48

perf.html#Parallel

Pig Latin Basics

relations.

CROSS is an expensive operation and should be used sparingly.

6.2.4. Example

Suppose we have relations A and B.

In this example the cross product of relation A and B is computed.

6.3. DEFINE

See:

DEFINE (UDFs, streaming)
« DEFINE (macros)

6.4. DISTINCT

Removes duplicate tuplesin arelation.

6.4.1. Syntax

aias= DISTINCT alias [PARTITION BY partitioner] [PARALLEL n];

Page 49
Copyright © 2007 The Apache Software Foundation. All rights reserved.

basic.html#define-udfs
cont.html#define-macros

6.4.2. Terms

Pig Latin Basics

dias

The name of therelation.

PARTITION BY partitioner

Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

« For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api

» For usage, see Example: PARTITION BY.

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.
For more information, see Use the Parallel Features.
6.4.3. Usage

Use the DISTINCT operator to remove duplicate tuplesin arelation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). Y ou cannot use DISTINCT on a subset of fields; to do this, use FOREACH and a
nested block to first select the fields and then apply DISTINCT (see Example: Nested

Block).

6.4.4. Example

Suppose we have relation A.

In this example al duplicate tuples are removed.

Page 50

/org/apache/hado

perf.html#Parallel

Pig Latin Basics

@34
6.5.FILTER

Selects tuples from arelation based on some condition.

6.5.1. Syntax
dias=FILTER alias BY expression;
6.5.2. Terms
dias The name of the relation.
BY Required keyword.
expression A boolean expression.
6.5.3. Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH...GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

6.5.4. Examples

Suppose we have relation A.

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

Page 51

Pig Latin Basics

In this example the condition states that if the first field equals 8 or if the sum of fieldsf2 and
f3 isnot greater than first field, then include the tuple relation X.

6.6. FOREACH

Generates data transformations based on columns of data.

6.6.1. Syntax

alias = FOREACH { block | nested block };

6.6.2. Terms

dias The name of relation (outer bag).

block FOREACH...GENERATE block used with arelation
(outer bag). Use this syntax:
alias= FOREACH alias GENERATE expression [AS
schema)] [expression [AS schema ...];
See Schemas

nested block Nested FOREACH...GENERATE block used with a

inner bag. Use this syntax:

dias = FOREACH nested_alias{

dias={nested_op | nested exp}; [{alias=
{nested_op | nested_exp}; ...]

GENERATE expression [AS schema] [expression
[AS schemd]....]

Page 52

Pig Latin Basics

expression
nested alias

nested op

nested _exp
AS

schema

6.6.3. Usage

1

Where:

The nested block is enclosed in opening and closing
brackets{ ... }.

The GENERATE keyword must be the last statement
within the nested block.

See Schemas
Macros are NOT dllowed inside a nested block.

An expression.
The name of the inner bag.
Allowed operations are CROSS, DISTINCT,

FILTER, FOREACH, LIMIT, and ORDER BY..

Note: FOREACH statements can be nested to two
levels only. FOREACH statements that are nested to
three or more levels will result in agrammar error.

Y ou can also perform projections within the nested
block.

For examples, see Example: Nested Block.

Any arbitrary, supported expression.

Keyword

A schemausing the AS keyword (see Schemas).

« Ifthe ELATTEN operator is used, enclose the
schemain parentheses.

o |fthe FLATTEN operator is not used, don't
enclose the schema in parentheses.

Use the FOREACH...GENERATE operation to work with columns of data (if you want to

Page 53

Pig Latin Basics

work with tuples or rows of data, use the FILTER operation).

FOREACH...GENERATE works with relations (outer bags) as well as inner bags:
« If Alisarelation (outer bag), a FOREACH statement could look like this.

e If Alisaninner bag, a FOREACH statement could look like this.

6.6.4. Example: Projection

In this example the asterisk (*) is used to project all tuples from relation A to relation X.
Relation A and X areidentical.

In this example two fields from relation A are projected to form relation X.

6.6.5. Example: Nested Projection

In thisexampleif one of the fields in the input relation is atuple, bag or map, we can perform
aprojection on that field (using a deference operator).

Page 54

Pig Latin Basics

In this example multiple nested columns are retained.

6.6.6. Example: Schema

In this example two fieldsin relation A are summed to form relation X. A schemais defined
for the projected field.

6.6.7. Example: Applying Functions

In this example the built in function SUM() is used to sum a set of numbersin a bag.

6.6.8. Example: Flatten

In this example the ELATTEN operator is used to eliminate nesting.

Page 55
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

Another FLATTEN example.

Another FLATTEN example. Note that for the group '4' in C, there are two tuplesin each
bag. Thus, when both bags are flattened, the cross product of these tuplesis returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4,2,9), and (4, 3, 9).

Another FLATTEN example. Here, relations A and B both have a column x. When forming
relation E, you need to use the :: operator to identify which column x to use - either relation
A column x (A::x) or relation B column x (B::x). This example usesrelation A column x

(A=x).

6.6.9. Example: Nested Block
In this example a CROSS is performed within the nested block.

Page 56
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

In this example FOREACH is nested to the second level.

This example shows a CROSS and FOREA CH nested to the second level.

Suppose we have relations A and B. Note that relation B contains an inner bag.

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE. Also, note
the use of projection (PA = FA.outlink;) to retrieve afield. DISTINCT can be applied to a

Page 57

Pig Latin Basics

subset of fields (as opposed to arelation) only within anested block.

6.7. GROUP
Groups the data in one or more relations.

Note: The GROUP and COGROUP operators are identical. Both operators work with one or
more relations. For readability GROUP is used in statements involving one relation and
COGROUP is used in statements involving two or more relations. Y ou can COGROUP up to
but no more than 127 relations a atime.

6.7.1. Syntax

alias= GROUP dlias{ ALL | BY expression} [, aliasALL |BY expression ...] [USING 'collected' | 'merge]]
[PARTITION BY partitioner] [PARALLEL n[;

6.7.2. Terms

dias The name of arelation.

Y ou can COGROUP up to but no more than 127
relations at atime.

ALL Keyword. Use ALL if youwant all tuplestogotoa
single group; for example, when doing aggregates
across entire relations.

B =GROUPA ALL;
BY Keyword. Use this clause to group the relation by

field, tuple or expression.

B = GROUPA BY f1,

Page 58

Pig Latin Basics

expression

USING

‘collected'

'merge’

A tuple expression. Thisisthe group key or key field.
If the result of the tuple expressionisasingle field,
the key will be the value of the first field rather than a
tuple with one field. To group using multiple keys,
enclose the keysin parentheses:

B = GROUP A BY (keyl,key2);
Keyword

Usethe ‘collected’ clause with the GROUP operation
(works with one relation only).

The following conditions apply:

» Theloader must implement the
{ CollectablelL oader} interface.

« Datamust be sorted on the group key.

If your data and |oaders satisfy these conditions, use
the ‘collected’ clause to perform an optimized
version of GROUP; the operation will execute on the
map side and avoid running the reduce phase.

Use the ‘merge’ clause with the COGROUP
operation (works with two or more relations only).

The following conditions apply:

» No other operations can be done between the
LOAD and COGROUP statements.

» Datamust be sorted on the COGROUP key for
all tablesin ascending (ASC) order.

« Nullsare considered smaller than evertyhing. If
data contains null keys, they should occur before
anything else.

o Left-most loader must implement the
{ CollectablelL oader} interface aswell as
{OrderedL oadFunc} interface.

o All other loaders must implement
Indexablel oadFunc.

» Typeinformation must be provided in the
schemafor al the loaders.

Page 59

Pig Latin Basics

If your data and loaders satisfy these conditions, the
‘merge’ clause to perform an optimized version of
COGROUP; the operation will execute on the map
side and avoid running the reduce phase.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hado

« For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.7.3. Usage

The GROUP operator groups together tuples that have the same group key (key field). The
key field will be atupleif the group key has more than one field, otherwise it will be the
same type as that of the group key. The result of a GROUP operation is arelation that
includes one tuple per group. This tuple contains two fields:

« Thefirst field is named "group” (do not confuse this with the GROUP operator) and is
the same type as the group key.

« The second field takes the name of the original relation and is type bag.
« Thenames of both fields are generated by the system as shown in the example below.

Note the following about the GROUP/COGROUP and JOIN operators:

e The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates aflat set of output tuples

The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and GROUP/COGROUP Operataors).

6.7.4. Example
Suppose we haverelation A.

Page 60

perf.html#Parallel

Pig Latin Basics

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation B
has two fields. Thefirst field is named "group” and istypeint, the sasme asfield "age" in
relation A. The second fieldisname"A" after relation A and is type bag.

Continuing on, as shown in these FOREACH statements, we can refer to the fieldsin relation
B by names "group™" and "A" or by positional notation.

Page 61
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

6.7.5. Example

Suppose we have relation A.

In this example the tuples are grouped using an expression, f2*f3.

6.7.6. Example

Suppose we have two relations, A and B.

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schemafor relation X,
which has two fields, "group” and "A" (see the GROUP operator for information about the
field names).

Page 62
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

Relation X looks like this. A tupleis created for each unique key field. The tuple includes the
key field and two bags. Thefirst bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

ice)})

In this example tuples are co-grouped and the INNER keyword is used asymmetrically on
only one of the relations.

ice)})

6.7.7. Example

This example shows how to group using multiple keys.

6.7.8. Example: PARTITION BY
To use the Hadoop Partitioner add PARTITION BY clause to the appropriate operator:

Hereisthe code for SimpleCustomPartitioner:

Page 63

Pig Latin Basics

return (key. hashCode()) % nunPartitions;

}
6.8. IMPORT
See IMPORT (macros)

6.9. JOIN (inner)

Performs an inner join of two or more relations based on common field values.

6.9.1. Syntax

alias= JOIN diasBY {expression|(‘expression [, expression ...]")} (, diasBY {expression|(‘expression [,
expression ...])"} ...) [USING 'replicated' | 'skewed' | 'merge’ | 'merge-sparse’] [PARTITION BY partitioner]

[PARALLEL];

6.9.2. Terms
dias
BY

expression

USING

'replicated'

‘skewed'
'merge’

'merge-sparse’

The name of arelation.

Keyword
A field expression.

Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

Keyword

Use to perform replicated joins (see Replicated
Joins).

Use to perform skewed joins (see Skewed Joins).
Use to perform merge joins (see Merge Joins).

Use to perform merge-sparse joins (see Merge-Sparse
Joins).

Page 64

cont.html#import-macros
perf.html#Replicated-Joins
perf.html#Skewed-Joins
perf.html#Merge-Joins
perf.html#Merge-sparse-Joins
perf.html#Merge-sparse-Joins

Pig Latin Basics

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

e For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hado

o For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.9.3. Usage

Use the JOIN operator to perform an inner, equijoin join of two or more relations based on
common field values. The JOIN operator aways performs an inner join. Inner joinsignore
null keys, so it makes sense to filter them out before the join.

Note the following about the GROUP/COGROUP and JOIN operators:

e The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates aflat set of output tuples.

e The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and JOIN Operator).

Salf Joins

To perform self joinsin Pig load the same data multiple times, under different aliases, to
avoid naming conflicts.

In this example the same data is loaded twice using aliases A and B.

grunt> A = |l oad 'nydata';
grunt> B = | oad ' nydata';
grunt> C = join A by $0, B by $0;

grunt> explain C

6.9.4. Example
Suppose we have relations A and B.

Page 65

perf.html#Parallel

Pig Latin Basics

In thisexamplerelations A and B are joined by their first fields.

6.10. JOIN (outer)

Performs an outer join of two or more relations based on common field values.

6.10.1. Syntax

dias=JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY
right-alias-column [USING 'replicated’ | 'skewed' | 'merge’] [PARTITION BY partitioner] [PARALLEL n];

6.10.2. Terms
dias The name of arelation. Appliesto alias, left-alias and
right-alias.
alias-column The name of the join column for the corresponding

Page 66
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

BY
LEFT
RIGHT
FULL
OUTER
USING

'replicated'

‘skewed'
'merge’

PARTITION BY partitioner

PARALLEL n

6.10.3. Usage

relation. Appliesto left-alias-column and
right-alias-column.

Keyword

Left outer join.

Right outer join.

Full outer join.

(Optional) Keyword

Keyword

Use to perform replicated joins (see Replicated
Joins).

Only left outer join is supported for replicated joins.
Use to perform skewed joins (see Skewed Joins).
Use to perform merge joins (see Merge Joins).

Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hado

« For usage, see Example: PARTITION BY

Thisfeature CANNOT be used with skewed joins.

Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

Page 67

perf.html#Replicated-Joins
perf.html#Skewed-Joins
perf.html#Merge-Joins
perf.html#Parallel

Pig Latin Basics

Use the JOIN operator with the corresponding keywords to perform left, right, or full outer
joins. The keyword OUTER is optional for outer joins; the keywords LEFT, RIGHT and
FULL will imply left outer, right outer and full outer joins respectively when OUTER is
omitted. The Pig Latin syntax closely adheresto the SQL standard.

P ease note the following:

« Outer joinswill only work provided the relations which need to produce nulls (in the case
of non-matching keys) have schemas.

Outer joinswill only work for two-way joins; to perform a multi-way outer join, you will
need to perform multiple two-way outer join statements.

6.10.4. Examples

This example shows a left outer join.

This example shows afull outer join.

This example shows areplicated |eft outer join.

This example shows a skewed full outer join.

6.11. LIMIT
Limits the number of output tuples.

6.11.1. Syntax

dias=LIMIT dlias n;

Page 68

Pig Latin Basics

6.11.2. Terms

dias The name of arelation.

n The number of output tuples, either:

» aconstant (for example, 3)
» ascaar used in an expression (for example,
€.sum/100)

Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.

Note: Using a scalar instead of a constant in LIMIT
automatically disables most optimizations (only
push-before-foreach is performed).

6.11.3. Usage
Usethe LIMIT operator to limit the number of output tuples.

If the specified number of output tuplesis equal to or exceeds the number of tuplesin the
relation, al tuplesin the relation are returned.

If the specified number of output tuplesis less than the number of tuplesin the relation, then
n tuples are returned. There is no guarantee which n tuples will be returned, and the tuples
that are returned can change from one run to the next. A particular set of tuples can be
requested using the ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuplesin arelation. In most
cases aquery that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It isalways agood ideato use limit if you can.

6.11.4. Examples

In this example the Imit is express as a scalar.

load 'a.txt';

group a all;

foreach b generate COUNT(a) as sum
order a by $0;

l[imt d c.sun 100;

DPOOTO
I n

Page 69

Pig Latin Basics

Suppose we have relation A.

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

6.12. LOAD
Loads data from the file system.

6.12.1. Syntax

LOAD 'data [USING function] [AS schema];

Page 70
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

6.12.2. Terms

‘datal

USING

function

AS

schema

The name of the file or directory, in single quotes.

If you specify adirectory name, all thefilesin the
directory are loaded.

Y ou can use Hadoop globing to specify files at the
file system or directory levels (see Hadoop
globStatus for details on globing syntax).

Note: Pig uses Hadoop globbing so the functionality
isIDENTICAL. However, when you run from the
command line using the Hadoop fs command (rather
than the Pig LOAD operator), the Unix shell may do
some of the substitutions; this could alter the
outcome giving the impression that globing works
differently for Pig and Hadoop. For example;

e Thisworks

hadoop fs-Is

/mydata/20110423{00,01,02,03,04,05,06,07,08,09,{ 10..23} } 00//par
e Thisdoes not work

LOAD

'Imydata/20110423{ 00,01,02,03,04,05,06,07,08,09,{ 10..23} } 00//pat

Keyword.

If the USING clause is omitted, the default load
function PigStorage is used.

The load function.

e You can use abuilt in function (see Load/Store
Functions). PigStorage is the default load
function and does not need to be specified
(simply omit the USING clause).

« You can write your own load function if your
dataisin aformat that cannot be processed by
the built in functions (see User Defined
Functions).

Keyword.

A schemausing the AS keyword, enclosed in
parentheses (see Schemas).

Page 71

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)
func.html#Load-Store-Functions
func.html#Load-Store-Functions
udf.html
udf.html

Pig Latin Basics

The loader produces the data of the type specified by
the schema. If the data does not conform to the
schema, depending on the loader, either anull value
or an error is generated.

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming

the specified type.

6.12.3. Usage
Use the LOAD operator to load data from the file system.

6.12.4. Examples

Suppose we have a datafile called myfile.txt. The fields are tab-delimited. The records are
newline-separated.

In this example the default load function, PigStorage, |oads data from myfile.txt to form
relation A. Thetwo LOAD statements are equivalent. Note that, because no schemais
specified, the fields are not named and all fields default to type bytearray.

In this example a schemais specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

Page 72

Pig Latin Basics

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

6.13. MAPREDUCE

Executes native MapReduce jobs inside a Pig script.

6.13.1. Syntax

diasl = MAPREDUCE 'mr.jar' STORE dias2 INTO 'inputLocation' USING storeFunc LOAD
‘outputLocation' USING loadFunc AS schema [params, ... °];

6.13.2. Terms
diasl, dias2

mr.jar

STORE ... INTO ... USING

LOAD ... USING ... AS

The names of relations.

The MapReduce jar file (enclosed in single quotes).

Y ou can specify any MapReduce jar file that can be
run through the hadoop jar nynr.jar
par anms command.

The values for inputLocation and outputL ocation can
be passed in the params.
See STORE

Store alias2 into the inputL ocation using storeFunc,
which is then used by the MapReduce job to read its
data.

See LOAD

After running mrl.jar's MapReduce job, load back
the data from outputL ocation into aliasl using
loadFunc as schema.

Page 73

basic.html#STORE
basic.html#LOAD

Pig Latin Basics

‘params, ..." Extra parameters required for the mapreduce job
(enclosed in back tics).

6.13.3. Usage
Use the MAPREDUCE operator to run native MapReduce jobs from inside a Pig script.

The input and output locations for the MapReduce program are conveyed to Pig using the
STORE/LOAD clauses. Pig, however, does not pass thisinformation (nor require that this
information be passed) to the MapReduce program. If you want to pass the input and output
locations to the MapReduce program you can use the params clause or you can hardcode the
locations in the MapReduce program.

6.13.4. Example

This example demonstrates how to run the wordcount MapReduce progam from Pig. Note
that the files specified as input and output locations in the MAPREDUCE statement will
NOT be deleted by Pig automatically. You will need to delete them manually.

A
B

LOAD ' Wordcount | nput . t xt"';

MAPREDUCE ' wor dcount.jar' STORE A INTO "inputDir' LOAD 'outputDir'
AS (word: chararray, count: int) “org.nyorg. WrdCount inputDr
outputDir’;

6.14. ORDER BY
Sorts a relation based on one or more fields.

6.14.1. Syntax

dias = ORDER diasBY { * [ASC|DESC] | field_dlias [ASCIDESC] [, field_alias[ASC|DESC] ...] }
[PARALLEL nj;

6.14.2. Terms

dias The name of arelation.

* The designator for atuple.

field alias A field in therelation. The field must be asimple

type.

Page 74

Pig Latin Basics

ASC Sort in ascending order.
DESC Sort in descending order.
PARALLEL n Increase the parallelism of ajob by specifying the

number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.14.3. Usage

Note: ORDER BY isNOT stable; if multiple records have the same ORDER BY key, the
order in which these records are returned is not defined and is not guarantted to be the same
from one run to the next.

In Pig, relations are unordered (see Relations, Bags, Tuples, Fields):

» If you order relation A to producerelation X (X = ORDER A BY * DESC;) relations A
and X still contain the same data.

« If youretrieverelation X (DUMP X;) the datais guaranteed to be in the order you
specified (descending).

« However, if you further processrelation X (Y = FILTER X BY $0 > 1;) thereisno
guarantee that the data will be processed in the order you originally specified
(descending).

Pig currently supports ordering on fields with simple types or by tuple designator (*). You
cannot order on fields with complex types or by expressions.

A = LOAD 'nydata' AS (x: int, y: map[]);

B = ORDER A BY x; -- this is allowed because x is a sinple type

B = CORDER ABY Yy, -- this is not allowed because y is a conpl ex type
B = ORDER A BY y#'id'; this is not allowed because y# id is an

expr essi on
6.14.4. Examples
Suppose we have relation A.

A = LOAD 'data’ AS (al:int,a2:int,a3:int);

DUVP A,
(1, 2,3)

Page 75

perf.html#Parallel

Pig Latin Basics

In thisexamplerelation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

6.15. SAMPLE

Partitions a relation into two or more relations.

6.15.1. Syntax
SAMPLE dliassize;
6.15.2. Terms
dias The name of arelation.
size Sample size, either
e aconstant, rage O to 1 (for example, enter 0.1 for
10%)
e ascalar used in an expression
Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.
6.15.3. Usage

Use the SAMPLE operator to select arandom data sample with the stated sample size.
SAMPLE is aprobabalistic operator; there is no guarantee that the exact same number of
tuples will be returned for a particular sample size each time the operator is used.

Page 76

Pig Latin Basics

6.15.4. Example

In this example relation X will contain 1% of the datain relation A.

In this example, a scalar expression is used (it will sample approximately 1000 records from
the input).

6.16. SPLIT

Partitions a relation into two or more relations.

6.16.1. Syntax

SPLIT aliasINTO dias | F expression, alias | F expression [, alias |IF expression ...] [, alias OTHERWISE];

6.16.2. Terms

alias The name of arelation.

INTO Required keyword.

IF Required keyword.

expression An expression.

OTHERWISE Optional keyword. Designates a default relation.
6.16.3. Usage

Use the SPLIT operator to partition the contents of arelation into two or more rel ations based
on some expression. Depending on the conditions stated in the expression:

« A tuple may be assigned to more than one relation.

Page 77

Pig Latin Basics

« A tuple may not be assigned to any relation.

6.16.4. Example
In this example relation A is split into threerelations, X, Y, and Z.

6.16.5. Example

In thisexample, the SPLIT and FILTER statements are essentially equivalent. However,
because SPLIT isimplemented as "split the data stream and then apply filters' the SPLIT
statement is more expensive than the FILTER statement because Pig needs to filter and store
two data streams.

6.17. STORE

Stores or saves results to the file system.

6.17.1. Syntax

Page 78

Pig Latin Basics

STORE alias INTO 'directory’ [USING function];

6.17.2. Terms

dias

INTO

‘directory’

USING

function

6.17.3. Usage

The name of arelation.

Required keyword.

The name of the storage directory, in quotes. If the
directory aready exists, the STORE operation will
fail.

The output data files, named part-nnnnn, are written
to this directory.

Keyword. Use this clause to name the store function.

If the USING clause is omitted, the default store
function PigStorage is used.

The store function.

* You can use abuilt in function (see the
L oad/Store Functions). PigStorage is the default
store function and does not need to be specified
(simply omit the USING clause).

» You can write your own store function if your
dataisin aformat that cannot be processed by
the built in functions (see User Defined
Functions).

Use the STORE operator to run (execute) Pig Latin statements and save (persist) resultsto
the file system. Use STORE for production scripts and batch mode processing.

Note: To debug scripts during development, you can use DUMP to check intermediate

results.

6.17.4. Examples

In this example datais stored using PigStorage and the asterisk character (*) asthefield

Page 79

func.html#Load-Store-Functions
udf.html
udf.html
test.html#DUMP

Pig Latin Basics

delimiter.

In this example, the CONCAT function is used to format the data before it is stored.

Page 80
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

a:8,b:4,c:3

6.18. STREAM

Sends data to an external script or program.
6.18.1. Syntax

dlias= STREAM dias|[, dias...] THROUGH { command” | cmd_alias} [AS schemd] ;

6.18.2. Terms

alias The name of arelation.

THROUGH Keyword.

“command’ A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

cmd_alias The name of a command created using the DEFINE
operator (see DEFINE (UDFs, streaming) for
additional streaming examples).

AS Keyword.

schema A schemausing the AS keyword, enclosed in
parentheses (see Schemas).

6.18.3. Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:
A = LOAD 'dat a';

B = STREAM A THROUCH “streampl -n 57;

When used with acmd_alias, a stream statement could look like this, where mycmd is the
defined dlias.

Page 81

Pig Latin Basics

6.18.4. About Data Guar antees

Data guarantees are determined based on the position of the streaming operator in the Pig

script.

« Unordered data— No guarantee for the order in which the data is delivered to the
streaming application.

Grouped data— The data for the same grouped key is guaranteed to be provided to the
streaming application contiguously

Grouped and ordered data— The data for the same grouped key is guaranteed to be
provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.
However, you need to know the property of the datato be able to take advantage of its
structure.

6.18.5. Example: Data Guar antees

In this example the data is unordered.

In this example the datais grouped.

In this example the data is grouped and ordered.

Page 82

Pig Latin Basics

C = FOREACH B {
D = ORDER A BY ($3, $4);
GENERATE D

}

E = STREAM C THROUGH "stream pl *;

6.18.6. Example: Schemas
In this example a schemais specified as part of the STREAM statement.

X = STREAM A THROUGH “streampl ™ as (fl:int, f2:int, f3:int);
6.19. UNION

Computes the union of two or more relations.

6.19.1. Syntax

alias = UNION [ONSCHEMA] dlias, dias[, dias ...];

6.19.2. Terms

dias The name of arelation.

ONSCHEMA Use the ONSCHEMA clause to base the union on
named fields (rather than positional notation). All
inputs to the union must have a non-unknown
(non-null) schema.

6.19.3. Usage

Use the UNION operator to merge the contents of two or more relations. The UNION
operator:

« Does not preserve the order of tuples. Both the input and output relations are interpreted
as unordered bags of tuples.

» Does not ensure (as databases do) that all tuples adhere to the same schema or that they
have the same number of fields. In atypical scenario, however, this should be the case;
therefore, it isthe user's responsibility to either (1) ensure that the tuplesin the input
relations have the same schema or (2) be able to process varying tuplesin the output
relation.

Page 83

Pig Latin Basics

» Does not eliminate duplicate tuples.

Schema Behavior

The behavior of schemas for UNION (positional notation / data types) and UNION
ONSCHEMA (named fields / data types) is the same, except where noted.

Union on relations with two different sizes result in a null schema (union only):

Union columns with incompatible types result in a bytearray type:

Union columns of compatible type will produce an "escalate” type. The priority is:

e double> float > long > int > bytearray
tuplelbag|mapichararray > bytearray

Union of different inner types results in an empty complex type:

The alias of thefirst relation is always taken as the alias of the unioned relation field.

6.19.4. Example

In this example the union of relation A and B is computed.

Page 84

Pig Latin Basics

6.19.5. Example
This example shows the use of ONSCHEMA.

7. UDF Statements

7.1. DEFINE (UDFs, streaming)

Assigns an aliasto a UDF or streaming command.

7.1.1. Syntax: UDF and streaming

DEFINE dias{function | ['command" [input] [output] [ship] [cache] [stderr]] };

Page 85
Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.1.2. Terms

dias

function

“command

input

output

Pig Latin Basics

The name for a UDF function or the name for a
streaming command (the cmd_adlias for the STREAM
operator).

For use with functions.

The name of a UDF function.

For use with streaming.

A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

The clauses (input, output, ship, cache, stderr) are
described below. Note the following:

e All clauses are optional.

» The clauses can be specified in any order (for
example, stderr can appear before input)

» Each clause can be specified at most once (for
example, multiple inputs are not allowed)

For use with streaming.

INPUT ({stdin | 'path’} [USING seriaizer] [, {stdin |
'‘path’} [USING seridizer] ...])

Where:

« INPUT —Keyword.

» 'path’— A file path, enclosed in single quotes.

+ USING - Keyword.

» serializer — PigStreaming is the default serializer.

For use with streaming.

OUTPUT ({stdout | stderr | 'path’} [USING
deserializer] [, { stdout | stderr | 'path'} [USING
deseridlizer] ...])

Where:

 OUTPUT —Keyword.

» 'path'— A file path, enclosed in single quotes.

Page 86

Pig Latin Basics

ship

cache

stderr

7.1.3. Usage

e USING - Keyword.

o deseriadlizer — PigStreaming is the default
deseridlizer.

For use with streaming.
SHIP('path' [, ‘path’ ...])
Where:

« SHIP—Keyword.
» 'path'— A file path, enclosed in single quotes.

For use with streaming.
CACHE('dfs_path#dfs file' [, 'dfs_path#dfs file' ...])
Where:

« CACHE - Keyword.

» 'dfs path#dfs file' — A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt'

For use with streaming.

STDERR('/dir') or STDERR('/dir' LIMIT n)

Where:
» '/dir'isthelog directory, enclosed in single
quotes.

e (optional) LIMIT nisthe error threshold wheren
is an integer value. If not specified, the default
error threshold is unlimited.

Use the DEFINE statement to assign a name (alias) to a UDF function or to a streaming

command.

Use DEFINE to specify a UDF function when:

« Thefunction has along package name that you don't want to include in a script,
especialy if you call the function several timesin that script.

Page 87

Pig Latin Basics

« The constructor for the function takes string parameters. If you need to use different
constructor parameters for different callsto the function you will need to create multiple
defines — one for each parameter set.

Use DEFINE to specify a streaming command when:
e The streaming command specification is complex.

« The streaming command specification requires additional parameters (input, output, and
SO on).

7.1.3.1. About Input and Output

Serialization is needed to convert data from tuples to aformat that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming
application back into tuples. PigStreaming is the default serialization/deserialization function.

Streaming uses the same default format as PigStorage to serialize/deserialize the data. If you
want to explicitly specify aformat, you can do it as show below (see more examplesin the
Examples: Input/Output section).

If you need an alternative format, you will need to create a custom serializer/deserializer by
implementing the following interfaces.

Page 88

Pig Latin Basics

* This will be called on the front end during planning and not on
t he back
* end during execution.
*
* @eturn the {@ink LoadCaster} associated with this object.
* @hrows | OException if there is an exception during LoadCaster
*/
publ i c LoadCaster getlLoadCaster() throws | OException;

7.1.3.2. About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility
to explicitly specify al the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) isinstalled on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any
pre-installed binaries should be specified in the PATH.

Only files, not directories, can be specified with the ship option. One way to work around
this limitation isto tar all the dependenciesinto atar file that accurately reflects the structure
needed on the compute nodes, then have awrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the ship(
) clause, isthe view of your machine; the command specification is the view of the actual
cluster. The only guarantee is that the shipped files are available in the current working
directory of the launched job and that your current working directory is also on the PATH
environment variable.

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

Note the following:

« Itissafeonly to ship filesto be executed from the current working directory on the task
on the cluster.

OP = stream | P t hrough 'script';
or
DEFI NE CVD ' script' ship('/alb/script');
OP = stream | P t hrough ' C\VD ;

« Shipping filesto relative paths or absolute paths is undefined and mostly will fail since
you may not have permissions to read/write/execute from arbitraty paths on the actual
clusters.

Page 89

Pig Latin Basics

7.1.3.3. About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

7.1.3.4. About Auto-Ship

If the ship and cache options are not specified, Pig will attempt to auto-ship the binary in the

following way:

« If thefirst word on the streaming command is perl or python, Pig assumes that the binary
isthe first non-quoted string it encounters that does not start with dash.

» Otherwise, Pig will attempt to ship the first string from the command line aslong asiit
doesnot comefrom/ bi n, /usr/bin, /usr/local/bin.Pigwill determinethis
by scanning the path if an absolute path is provided or by executing whi ch. The paths
can be made configurable using the set stream.skippath option (you can use multiple set
commands to specify more than one path to skip).

If you don't supply a DEFINE for a given streaming command, then auto-shipping is turned
off.

Note the following:

« If Pig determines that it needs to auto-ship an absolute path it will not ship it a al since
there is no way to ship filesto the necessary location (lack of permissions and so on).

OP = stream | P through “/al/b/c/script’;
or
OP = stream | P through “perl /al/b/c/script.pl’;

« Pig will not auto-ship filesin the following system directories (this is determined by
executing 'which <file>' command).

[bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin
» To auto-ship, the filein question should be present in the PATH. So if thefileisin the
current working directory then the current working directory should be in the PATH.

7.1.4. Examples: Input/Output

In this example PigStreaming is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

Page 90

cmds.html#set

Pig Latin Basics

In this example PigStreaming is used as the serialization/deserialization function, but a
commais used as the delimiter.

In this example user defined serialization/deserialization functions are used with the script.

7.1.5. Examples. Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

In this example cache is used to specify afile located on the cluster compute nodes.

7.1.6. Example: DEFINE with STREAM

In this example acommand is defined for use with the STREAM operator.

7.1.7. Examples: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

Page 91

Pig Latin Basics

DEFINE Y 'streampl' stderr('<dir> |imt 100);

X = STREAM A THROUGH Y;

In this example a function is defined for use with the FOREACH ... GENERATE operator.
REQ STER /src/ myfunc. j ar

DEFI NE nyFunc myfunc. MyEval func(' foo');

A = LOAD ' students';

B = FOREACH A GENERATE nyFunc($0)

7.2. REGISTER

Registers a JAR file so that the UDFs in the file can be used.

7.2.1. Syntax

REGISTER path;

7.2.2. Terms

path The path to the JAR file (the full location URI is
reguired). Do not place the name in quotes.

7.2.3. Usage
Pig Scripts

Use the REGISTER statement inside a Pig script to specify a JAR file or a Python/JavaScript
module. Pig supports JAR files and modules stored in local file systems as well as remote,
distributed file systems such as HDFS and Amazon S3 (see Pig Scripts).

Additionally, JAR files stored in local file systems can be specified as a glob pattern using
“*”_ Pig will search for matching jarsin the local file system, either the relative path (relative
to your working directory) or the absolute path. Pig will pick up all JARs that match the glob.

Command Line

Y ou can register additional files (to use with your Pig script) viathe command line using the
-Dpig.additional .jars option. For more information see User Defined Functions.

Page 92

start.html#Pig-Scripts
udf.html

Pig Latin Basics

7.2.4. Examples

In this example REGISTER states that the JavaScript module, myfunc.js, islocated in the
/src directory.

In this example additional JAR files are registered via the command line.

In thisexample a JAR file stored in HDFS is registered.

This example shows how to specify a glob pattern using either arelative path or an absolute

Page 93

	1 Conventions
	2 Reserved Keywords
	3 Case Sensitivity
	4 Data Types and More
	4.1 Identifiers
	4.2 Relations, Bags, Tuples, Fields
	4.2.1 Referencing Relations
	4.2.2 Referencing Fields
	4.2.3 Referencing Fields that are Complex Data Types

	4.3 Data Types
	4.3.1 Simple and Complex
	4.3.2 Tuple
	4.3.2.1 Syntax
	4.3.2.2 Terms
	4.3.2.3 Usage
	4.3.2.4 Example

	4.3.3 Bag
	4.3.3.1 Syntax: Inner bag
	4.3.3.2 Terms
	4.3.3.3 Usage
	4.3.3.4 Example: Outer Bag
	4.3.3.5 Example: Inner Bag

	4.3.4 Map
	4.3.4.1 Syntax (<> denotes optional)
	4.3.4.2 Terms
	4.3.4.3 Usage
	4.3.4.4 Example

	4.4 Nulls and Pig Latin
	4.4.1 Nulls, Operators, and Functions
	4.4.2 Nulls and Constants
	4.4.3 Operations That Produce Nulls
	4.4.3.1 Example: Accessing a field that does not exist in a tuple

	4.4.4 Nulls and Load Functions
	4.4.5 Nulls and GROUP/COGROUP Operators
	4.4.6 Nulls and JOIN Operator

	4.5 Constants
	4.6 Expressions
	4.6.1 Field Expressions
	4.6.2 Star Expressions
	4.6.3 Project-Range Expressions
	4.6.4 Boolean Expressions
	4.6.5 Tuple Expressions
	4.6.6 General Expressions

	4.7 Schemas
	4.7.1 Schemas with LOAD and STREAM
	4.7.2 Schemas with FOREACH
	4.7.3 Schemas for Simple Data Types
	4.7.3.1 Syntax
	4.7.3.2 Terms
	4.7.3.3 Examples

	4.7.4 Schemas for Complex Data Types
	4.7.5 Tuple Schemas
	4.7.5.1 Syntax
	4.7.5.2 Terms
	4.7.5.3 Examples

	4.7.6 Bag Schemas
	4.7.6.1 Syntax
	4.7.6.2 Terms
	4.7.6.3 Examples

	4.7.7 Map Schemas
	4.7.7.1 Syntax (<> demotes optional)
	4.7.7.2 Terms
	4.7.7.3 Examples

	4.7.8 Schemas for Multiple Types
	4.7.8.1 Example

	5 Arithmetic Operators and More
	5.1 Arithmetic Operators
	5.1.1 Description
	5.1.1.1 Examples
	5.1.1.2 Types Table: addition (+) and subtraction (-) operators
	5.1.1.3 Types Table: multiplication (*) and division (/) operators
	5.1.1.4 Types Table: modulo (%) operator

	5.2 Boolean Operators
	5.2.1 Description
	5.2.1.1 Example

	5.3 Cast Operators
	5.3.1 Description
	5.3.1.1 Syntax
	5.3.1.2 Terms
	5.3.1.3 Usage

	5.3.2 Examples
	5.3.3 Casting Relations to Scalars

	5.4 Comparison Operators
	5.4.1 Description
	5.4.2 Examples
	5.4.3 Types Table: equal (==) operator
	5.4.4 Types Table: not equal (!=) operator
	5.4.5 Types Table: matches operator

	5.5 Type Construction Operators
	5.5.1 Description
	5.5.2 Examples

	5.6 Dereference Operators
	5.6.1 Description
	5.6.2 Examples

	5.7 Disambiguate Operator
	5.8 Flatten Operator
	5.9 Null Operators
	5.9.1 Description
	5.9.2 Examples
	5.9.3 Types Table

	5.10 Sign Operators
	5.10.1 Description
	5.10.2 Examples

	5.11 Types Table: negative (-) operator

	6 Relational Operators
	6.1 COGROUP
	6.2 CROSS
	6.2.1 Syntax
	6.2.2 Terms
	6.2.3 Usage
	6.2.4 Example

	6.3 DEFINE
	6.4 DISTINCT
	6.4.1 Syntax
	6.4.2 Terms
	6.4.3 Usage
	6.4.4 Example

	6.5 FILTER
	6.5.1 Syntax
	6.5.2 Terms
	6.5.3 Usage
	6.5.4 Examples

	6.6 FOREACH
	6.6.1 Syntax
	6.6.2 Terms
	6.6.3 Usage
	6.6.4 Example: Projection
	6.6.5 Example: Nested Projection
	6.6.6 Example: Schema
	6.6.7 Example: Applying Functions
	6.6.8 Example: Flatten
	6.6.9 Example: Nested Block

	6.7 GROUP
	6.7.1 Syntax
	6.7.2 Terms
	6.7.3 Usage
	6.7.4 Example
	6.7.5 Example
	6.7.6 Example
	6.7.7 Example
	6.7.8 Example: PARTITION BY

	6.8 IMPORT
	6.9 JOIN (inner)
	6.9.1 Syntax
	6.9.2 Terms
	6.9.3 Usage
	6.9.4 Example

	6.10 JOIN (outer)
	6.10.1 Syntax
	6.10.2 Terms
	6.10.3 Usage
	6.10.4 Examples

	6.11 LIMIT
	6.11.1 Syntax
	6.11.2 Terms
	6.11.3 Usage
	6.11.4 Examples

	6.12 LOAD
	6.12.1 Syntax
	6.12.2 Terms
	6.12.3 Usage
	6.12.4 Examples

	6.13 MAPREDUCE
	6.13.1 Syntax
	6.13.2 Terms
	6.13.3 Usage
	6.13.4 Example

	6.14 ORDER BY
	6.14.1 Syntax
	6.14.2 Terms
	6.14.3 Usage
	6.14.4 Examples

	6.15 SAMPLE
	6.15.1 Syntax
	6.15.2 Terms
	6.15.3 Usage
	6.15.4 Example

	6.16 SPLIT
	6.16.1 Syntax
	6.16.2 Terms
	6.16.3 Usage
	6.16.4 Example
	6.16.5 Example

	6.17 STORE
	6.17.1 Syntax
	6.17.2 Terms
	6.17.3 Usage
	6.17.4 Examples

	6.18 STREAM
	6.18.1 Syntax
	6.18.2 Terms
	6.18.3 Usage
	6.18.4 About Data Guarantees
	6.18.5 Example: Data Guarantees
	6.18.6 Example: Schemas

	6.19 UNION
	6.19.1 Syntax
	6.19.2 Terms
	6.19.3 Usage
	6.19.4 Example
	6.19.5 Example

	7 UDF Statements
	7.1 DEFINE (UDFs, streaming)
	7.1.1 Syntax: UDF and streaming
	7.1.2 Terms
	7.1.3 Usage
	7.1.3.1 About Input and Output
	7.1.3.2 About Ship
	7.1.3.3 About Cache
	7.1.3.4 About Auto-Ship

	7.1.4 Examples: Input/Output
	7.1.5 Examples: Ship/Cache
	7.1.6 Example: DEFINE with STREAM
	7.1.7 Examples: Logging

	7.2 REGISTER
	7.2.1 Syntax
	7.2.2 Terms
	7.2.3 Usage
	7.2.4 Examples

