Formula Evaluation

by Amol Deshmukh

1. Introduction

The POI formula evaluation code enables you to calculate the result of formulas in Excels
sheets read-in, or created in POI. This document explains how to use the APl to evaluate
your formulas.

In versions of POI before 3.0.3, this code lived in the scratchpad area of the POl SVN repository. If using an such an older
version of POI, ensure that you have the scratchpad jar or the scratchpad build area in your classpath before experimenting
with this code. Users of all versions of POl may wish to make use of arecent SVN checkout, as new functions are currently
being added fairly frequently.

2. Status

The code currently provides implementations for all the arithmatic operators. It also provides
implementations for approx. 100 built in functions in Excel. The framework however makes
is easy to add implementation of new functions. See the Formula evaluation development
quide for details.

Both HSSFWorkbook and X SSFWorkbook are supported, so you can evauate formulas on
both .xIsand .xIsx files.

Note that user-defined functions are not supported, and is not likely to done any time soon...
at least, not till thereisa VB implementation in Javal
3. User APl How-TO

The following code demonstrates how to use the FormulaEvaluator in the context of other
POI excel reading code.

There are several ways in which you can use the FormulaEval utator API.

3.1. Using FormulaEvaluator .evaluate(Cell cell)

Page 1

eval-devguide.html
eval-devguide.html

Formula Evaluation

This evaluates a given cell, and returns the new value, without affecting the cell

FilelnputStreamfis = new Fil el nput Stream("c:/tenp/test.xls");
Wor kbook wh = new HSSFWor kbook(fi s);

Sheet sheet = wb. get Sheet At (0);

For mul aEval uat or eval uator = new For nul aEval uat or (sheet, wb);

/1 suppose your formula is in B3

Cel | Ref erence cel | Reference = new Cel | Ref erence("B3");
Row row = sheet. get Row cel | Ref erence. get Row)) ;

Cell cell = row getCell (cell Reference.getCol ());

eval uat or. set Current Row(r ow) ;
For mul aEval uat or . Cel | Val ue cel | Val ue = eval uat or . eval uat e(cell);

switch (cell Val ue. get Cel | Type()) {

case Cel|l.CELL_TYPE BOOLEAN:
System out . printl n(cel | Val ue. get Bool eanVal ue());
br eak;

case Cel|.CELL_TYPE _NUMERI C:
System out. println(cell Val ue. get Nunber Val ue()) ;
br eak;

case Cell.CELL _TYPE STRI NG
System out. println(cell Val ue. getStringVal ue());
br eak;

case Cel|.CELL_TYPE_BLANK:
br eak;

case Cel|l.CELL_TYPE_ERROR
br eak;

/] CELL_TYPE_FORMJULA wi ||l never happen
case Cell.CELL_TYPE_FORMULA:
br eak;

}

Thus using the retrieved value (of type FormulaEvaluator.CellVaue - a nested class)
returned by FormulaEvaluator is similar to using a Cell object containing the value of the
formula evaluation. CellValue is a ssmple value object and does not maintain reference to the
origina cell.

3.2. Using FormulaEvaluator .evaluateFor mulaCell(Cell cell)

evaluateFormulaCell(Cell cell) will check to see if the supplied cell is a formula cell. If it
isn't, then no changes will be made to it. If it is, then the formula is evaluated. The value for
the formula is saved alongside it, to be displayed in excel. The formula remains in the cell,
just with anew value

The return of the function is the type of the formula result, such as

Page 2

Formula Evaluation

Cell.CELL_TYPE_BOOLEAN

FilelnputStreamfis = new Fil el nput Stream("/sonmepat h/test.xls");
Wor kbook wh = new HSSFWor kbook(fi s);

Sheet sheet = wb. get Sheet At (0);

For mul aEval uat or eval uator = new For nul aEval uat or (sheet, wb);

/1 suppose your formula is in B3

Cel | Ref erence cel | Reference = new Cel | Ref erence("B3");
Row row = sheet. get Row cel | Ref erence. get Row)) ;

Cell cell = row getCell (cell Reference.getCol ());

eval uat or. set Current Row(r ow) ;

if (cell!=null) {
swi tch (eval uator. eval uat eFornmul aCel | (cell)) {

case Cel|l.CELL_TYPE_ BOOLEAN:
System out. println(cell.getBool eanCel | Val ue());
br eak;

case Cel|.CELL_TYPE _NUMERI C.
System out. println(cell.getNunberCel | Val ue());
br eak;

case Cell.CELL_TYPE_STRI NG
Systemout.println(cell.getStringCellValue());
br eak;

case Cel|.CELL_TYPE_BLANK:
br eak;

case Cel|l.CELL_TYPE_ERROR
Systemout.println(cell.getErrorCell Val ue());
br eak;

/!l CELL_TYPE FORMJULA wi |l never occur
case Cell.CELL_TYPE FORMJLA:
br eak;

3.3. Using FormulaEvaluator .evaluatel nCell(Cell cell)

evaluatelnCell(Cell cell) will check to see if the supplied cell is a formula cell. If it isn't,
then no changes will be made to it. If it is, then the formula is evaluated, and the new value
saved into the cell, in place of the old formula.

FilelnputStreamfis = new Fil el nput Strean("/sonepat h/test. xls");
Wor kbook wh = new HSSFWor kbook(fi s);

Sheet sheet = wb. get Sheet At (0);

For mul aEval uat or eval uat or = new For nul aEval uat or (sheet, wb);

/1 suppose your formula is in B3
Cel | Ref erence cel | Reference = new Cel | Ref erence("B3");
Row row = sheet. get Row cel | Ref erence. get Row)) ;

Page 3

Formula Evaluation

Cell cell = row getCell (cell Reference.getCol ());
eval uat or. set Curr ent Row(r ow) ;

if (cell!=null) {
switch (eval uator.evaluatelnCell (cell).getCell Type()) {

case Cel|l.CELL_TYPE_BOOLEAN:
System out. println(cell.getBool eanCel | Val ue());
br eak;

case Cel|l.CELL_TYPE_NUMERI C
System out. println(cell.getNunber Cell Val ue());
br eak;

case Cell.CELL_TYPE_STRI NG
Systemout.println(cell.getStringCellVal ue());
br eak;

case Cel|l.CELL_TYPE BLANK:
br eak;

case Cel|l.CELL_TYPE_ERROR
Systemout.println(cell.getErrorCell Val ue());
br eak;

/1 CELL_TYPE FORMULA will never occur
case Cell.CELL_TYPE FORMJLA:
br eak;

3.4. Re-calculating all formulasin a Workbook

FilelnputStreamfis = new Fil el nput Strean("/sonmepat h/test.xls");

Wor kbook wb = new HSSFWor kbook(fi s);

for(int sheet Num = 0; sheet Num < wh. get Nunber Of Sheet s(); sheet Num++) {
Sheet sheet = wb. get Sheet At (sheet Num ;
For mul aEval uat or eval uat or = new For nul aEval uat or (sheet, wh);

for(lterator rit = sheet.rowiterator(); rit.hasNext();) {
Row r = (Row)rit.next();
eval uat or. set Current Row(r);

for(lterator cit = r.celllterator(); cit.hasNext();) {
Cell ¢ = (Cell)cit.next();

if(c.getCell Type() == Cell.CELL_TYPE_FORMULA) {
eval uat or . eval uat eFormul aCel | (¢);
}

}
wh. write(new Fil eQut put St rean("/sonepat h/ changed. x| s"));

4. Performance Notes
» Generally you should have to create only one FormulaEvaluator instance per sheet, but

Page 4

Formula Evaluation

therereally is no overhead in creating multiple FormulaEvaluators per sheet other than
that of the FormulaEvaluator object creation.

» Also note that FormulaEvaluator maintains a reference to the sheet and workbook, so
ensure that the evaluator instance is available for garbage collection when you are done
with it (in other words don't maintain long lived reference to FormulaEvaluator if you
don't really need to - unless all references to the sheet and workbook are removed, these
don't get garbage collected and continue to occupy potentially large amounts of memory).

« CedlValueinstances however do not maintain reference to the Cell or the sheet or
workbook, so these can be long-lived objects without any adverse effect on performance.

Page 5

	1 Introduction
	2 Status
	3 User API How-TO
	3.1 Using FormulaEvaluator.evaluate(Cell cell)
	3.2 Using FormulaEvaluator.evaluateFormulaCell(Cell cell)
	3.3 Using FormulaEvaluator.evaluateInCell(Cell cell)
	3.4 Re-calculating all formulas in a Workbook

	4 Performance Notes

