The New Halloween Document

by Andrew C. Oliver, Glen Stampoultzis, Nick Burch, Sergei Kozello

1. How to usethe HSSF API

1.1. Capabilities

This release of the how-to outlines functionality for the current svn trunk. Those looking for
information on previous releases should look in the documentation distributed with that
release.

HSSF allows numeric, string, date or formuala cell values to be written to or read from an
XLS file. Also in this release is row and column sizing, cell styling (bold, italics,
borders,etc), and support for both built-in and user defined data formats. Also available is an
event-based API for reading XLS files. It differs greatly from the read/write APl and is
intended for intermediate devel opers who need a smaller memory footprint.

1.2. Different APIs

There are afew different ways to access the HSSF API. These have different characteristics,
so you should read up on all to select the best for you.

User APl (HSSF and X SSF)

Event APl (HSSF Only)

Event APl with extensions to be Record Aware (HSSF Only)
XSSF and SAX (Event API)

Low Level API

2. General Use
2.1. User APl (HSSF and XSSF)

2.1.1. Writing a new file

The high level API (package: org.apache.poi.ss.usermodel) is what most people should use.
Usageisvery smple.

Page 1

The New Halloween Document

Workbooks are created by creating an instance of org.apache.poi.ss.usermodel.Workbook.
Either create a concrete class directly (org.apache.poi.hssf.usermodel.HSSFWorkbook or
org.apache.poi.xssf.usermodel X SSFWorkbook), or wuse the handy factory class
org.apache.poi.ss.usermodel .WorkbookFactory.

Sheets are created by calling createSheet() from an existing instance of Workbook, the
created sheet is automatically added in sequence to the workbook. Sheets do not in
themselves have a sheet name (the tab at the bottom); you set the name associated with a
sheet by calling Workbook.setSheetName(sheetindex," SheetName" ,encoding). For HSSF,
the name may be in 8hit format
(HSSFWorkbook.ENCODING_COMPRESSED _UNICODE) or Unicode
(HSSFWorkbook.ENCODING_UTF_16). Default encoding for HSSF is 8bit per char. For
X SSF, the name is automatically handled as unicode.

Rows are created by calling createRow(rowNumber) from an existing instance of Sheet.
Only rows that have cell values should be added to the sheet. To set the row's height, you just
call setRowHeight(height) on the row object. The height must be given in twips, or 1/20th of
apoint. If you prefer, thereis also a setRowHeightlnPoints method.

Cells are created by calling createCell(column, type) from an existing Row. Only cells that
have values should be added to the row. Cells should have their cell type set to either
Cell.CELL_TYPE_NUMERIC or Cell.CELL_TYPE_STRING depending on whether they
contain a numeric or textual value. Cells must also have a value set. Set the value by calling
setCellVaue with either a String or double as a parameter. Individual cells do not have a
width; you must call setColumnWidth(colindex, width) (use units of 1/256th of a character)
on the Sheet object. (You can't do it on an individual basisin the GUI either).

Cells are styled with CellStyle objects which in turn contain a reference to an Font object.
These are created via the Workbook object by calling createCellStyle() and createFont().
Once you create the object you must set its parameters (colors, borders, etc). To set afont for
an CellStyle call setFont(fontobj).

Once you have generated your workbook, you can write it out by calling write(outputStream)
from your instance of Workbook, passing it an OutputStream (for instance, a
FileOutputStream or ServletOutputStream). You must close the OutputStream yourself.
HSSF does not close it for you.

Here is some example code (excerpted and adapted from org.apache.poi.hssf.dev.HSSF test
class):

short rownuny

/] create a new file

Page 2

The New Halloween Document

Fi | eCut put Stream out = new Fil eQut put St ream(" wor kbook. x| s");
/1 create a new wor kbook

Wor kbook wb = new HSSFWor kbook() ;

/] create a new sheet

Sheet s = wb. createSheet();

/1l declare a row object reference

Row r = null;

/1 declare a cell object reference

Cell ¢ = null;

/] create 3 cell styles

Cell Style cs = wh.createCel |l Styl e();

Cell Style cs2 = wb.createCel |l Style();
Cell Style cs3 = wb.createCel |l Style();
Dat aFormat df = wb. creat eDat aFormat () ;

/'l create 2 fonts objects
Font f = wb.createFont();
Font f2 = wh.createFont();

/[/set font 1 to 12 point type

f . set Font Hei ght | nPoi nt s((short) 12);
[/ make it blue

f.setCol or((short)Oxc);

/1 make it bold

[larial is the default font

f . set Bol dwei ght (Font . BOLDWEI GHT_BOLD) ;

/set font 2 to 10 point type

2. set Font Hei ght | nPoi nt s((short) 10);
/make it red

2.setCol or((short)Font. COLOR RED);
/make it bold

f 2. set Bol dwei ght (Font . BOLDWEI GHT_BOLD) ;

/
f
/
f
/

f2.setStrikeout(true);

//set cell stlye

cs. set Font (f);

//set the cell format

cs. set Dat aFor nmat (df . get For mat (" #, ##0.0")) ;

//set a thin border

cs2. set BorderBotton{cs2. BORDER THI N) ;

[1fill wfg fill color

cs2.setFill Pattern((short) Cell Style. SOLI D FOREGROUND) ;
/lset the cell format to text see DataFormat for a full Iist
cs2. set Dat aFor mat (HSSFDat aFor mat . get Bui [ti nFormat ("text"));

// set the font
cs2. set Font (f2);

// set the sheet nane in Unicode
wh. set Sheet Nane(0, "\u0422\ u0435\ u0441\ u0442\ u043E\ u0432\ u0430\ uO44F " +

"\ u0421\ u0442\ u0440\ u0430\ u043D\ u0438\ u0447\ u043A\ u0430");
/1 in case of plain ascii

Page 3

The New Halloween Document

/1 wb. set Sheet Nane(0, "HSSF Test");

/1 create a sheet with 30 rows (0-29)

int rownum

for (rownum = (short) 0; rownum < 30; rownumt+)

/] create a row

r = s.creat eRow rownunj ;
/1 on every other row
if ((rownum % 2) == 0)

/1 make the row hei ght bigger (in twips - 1/20 of a point)
r.set Hei ght ((short) 0x249);

}
[1r.set RowNunm((short) rownun;
/1 create 10 cells (0-9) (the += 2 becones apparent |ater
for (short cellnum= (short) O; cellnum< 10; cell num += 2)
{
/1 create a numeric cell
c =r.createCell (cellnun;
/1 do sone goofy math to denonstrate decinals
c.set Cel I Val ue(rownum * 10000 + cel |l num
+ (((doubl e) rownum/ 1000)
+ ((doubl e) cellnum/ 10000)));
String cell Val ue;
/'l create a string cell (see why += 2 in the
c =r.createCell ((short) (cellnum+ 1));
/1 on every other row
if ((rownum % 2) == 0)
/1 set this cell to the first cell style we defined
c.setCel |l Styl e(cs);
/1 set the cell's string value to "Test"
c.setCel |l Val ue("Test");
el se
c.setCell Styl e(cs2);
/1l set the cell's string value to "\u0422\ u0435\ u0441\ uo442"
c.set Cel | Val ue("\u0422\ u0435\ u0441\ uo442");
}
/1 make this colum a bit w der
s. set Col umW dt h((short) (cellnum+ 1), (short) ((50 * 8) / ((double) 1/ 20)))
}

}

//draw a thick black border on the row at the bottom usi ng BLANKS
[/l advance 2 rows
r ownumt+;

Page 4

The New Halloween Document

r ownum+;

r = s.creat eRow rownunj;

/1 define the third style to be the default

/1 except with a thick black border at the bottom
cs3. set Border Bot t om(cs3. BORDER_THI CK) ;

[/create 50 cells
for (short cellnum= (short) O; cellnum < 50; cellnumt+)

{

//create a blank type cell (no val ue)

c =r.createCell (cellnun);

/1l set it to the thick black border style
} c.setCell Styl e(cs3);

//end draw t hi ck bl ack border

/] denonstrate addi ng/ nam ng and del eti ng a sheet
/] create a sheet, set its title then delete it

s = wh. createSheet ();

wb. set Sheet Nane(1, "Del et edSheet");

wb. r enoveSheet At (1) ;

//end del eted sheet

/1 write the workbook to the output stream

/1 close our file (don't blow out our file handles
wb. wite(out);

out . cl ose();

2.1.2. Reading or modifying an existing file

Reading in a file is equally smple. To read in a file, create a new instance of
org.apache.poi.poifs.Filesystem, passing in an open InputStream, such as a FilelnputStream
for your XLS, to the constructor. Construct a new instance of
org.apache.poi.hssf.usermodel . HSSFWorkbook passing the Filesystem instance to the
constructor. From there you have access to al of the high level model objects through their
assessor methods (workbook.getSheet(sheetNum), sheet.getRow(rownum), etc).

Modifying the file you have read in is ssmple. Y ou retrieve the object via an assessor method,
remove it via a parent object's remove method (sheet.removeRow(hssfrow)) and create
objects just as you would if creating a new xIs. When you are done modifying cells just call
workbook.write(outputstream) just as you did above.

An example of this can be seen in org.apache.poi.hssf.usermodel .exampl es.HSSFReadWrite.

Page 5

http://svn.apache.org/repos/asf/poi/trunk/src/examples/src/org/apache/poi/hssf/usermodel/examples/HSSFReadWrite.java

The New Halloween Document

2.2. Event API (HSSF Only)

The event API is newer than the User API. It isintended for intermediate developers who are
willing to learn a little bit of the low level API structures. Its relatively simple to use, but
requires a basic understanding of the parts of an Excel file (or willingness to learn). The
advantage provided is that you can read an XL S with arelatively small memory footprint.

One important thing to note with the basic Event APl isthat it triggers events only for things
actualy stored within the file. With the XLS file format, it is quite common for things that
have yet to be edited to simply not exist in the file. This means there may well be apparent
"gaps" in the record stream, which you either need to work around, or use the Record Aware
extension to the Event API.

To use this API you construct an instance of org.apache.poi.hssf.eventmodel.HSSFRequest.
Register a class you create that supports the org.apache.poi.hssf.eventmodel.HSSFListener
interface using the HSSFRequest.addL istener(yourlistener, recordsid). The recordsid should
be a static reference number (such as BOFRecord.sid) contained in the classes in
org.apache.poi.hssf.record. The trick is you have to know what these records are.
Alternatively you can call HSSFRequest.addListenerForAllRecords(mylistener). In order to
learn about these records you can ether read al of the javadoc in the
org.apache.poi.hssf.record package or you can just hack up a copy of
org.apache.poi.hssf.dev.EFHSSF and adapt it to your needs. TODO: better documentation on
records.

Once you've registered your listeners in the HSSFRequest object you can construct an
instance of org.apache.poi.poifs.filesystem.FileSystem (see POIFS howto) and pass it your
XLS file inputstream. Y ou can either pass this, along with the request you constructed, to an
instance of HSSFEventFactory via the HSSFEventFactory.processWorkbook Events(request,
Filesystem) method, or you can get an instance of DocumentlinputStream from
Filesystem.createDocumentl nputStream("Workbook™) and pass it to
HSSFEventFactory.processEvents(request, inputStream). Once you make this call, the
listeners that you constructed receive calls to their processRecord(Record) methods with each
Record they are registered to listen for until the file has been completely read.

A code excerpt from org.apache.poi.hssf.dev.EFHSSF (which is in CVS or the source
distribution) is reprinted below with excessive comments:

/**
* Thi s exanpl e shows how to use the event APl for reading a file.
*/
public class Event Exanpl e
i mpl ement s HSSFLi st ener
{

Page 6

The New Halloween Document

private SSTRecord sstrec;

/**

* This nmethod |istens for inconming records and handl es them as required.
* @aramrecord The record that was found while reading.

*/

public void processRecord(Record record)
switch (record.getSid())

/1 the BOFRecord can represent either the beginning of a sheet or the workb
case BOFRecord. si d:

BOFRecord bof = (BOFRecord) record;

i f (bof.getType() == bof. TYPE WORKBOOK)

System out . printl n("Encount ered wor kbook");
/1 assigned to the class |evel nmenber
} else if (bof.getType() == bof. TYPE WORKSHEET)
{

System out . printl n("Encountered sheet reference");

br eak;
case BoundSheet Record. si d:
BoundSheet Record bsr = (BoundSheet Record) record;
gyst Em out.println("New sheet naned: " + bsr.get Sheetnane());
reak;
case RowRecord. si d:
RowRecord row ec = (RowRecord) record;
System out. println("Row found, first columm at
+ rowec.getFirstCol () + " last colum at

+ row ec. get Last Col
br eak;
case Nunber Record. si d:
Nurmber Record nunrec = (Nunber Record) record;
Systemout.printlin("Cell found with value "
+ " at row " + nunrec.getRow() +

+ nunrt ec. get Val ue()
" and colum " + nunrtec. get Col
br eak;
/1 SSTRecords store a array of unique strings used in Excel.
case SSTRecord. si d:
sstrec = (SSTRecord) record,;

for (int k = 0; k < sstrec.get Nunni queStrings(); k++)
{
Systemout.println("String table value " + k + " =" + sstrec.getSt

br eak;
case Label SSTRecord. si d:
Label SSTRecord | rec = (Label SSTRecord) record;
Systemout.printin("String cell found wi th val ue
+ sstrec.getString(lrec. get SSTI ndex()));

br eak;

}
/**

* Read an excel file and spit out what we find.

Page 7

The New Halloween Document

*

* @aram ar gs Expect one argunent that is the file to read
* @hrows | OException Wen there is an error processing the file.
*/

public static void main(String[] args) throws | OException

/1l create a new file input streamwith the input file specified
[/l at the command |ine

FilelnputStream fin = new Fil el nput Strean{args[O0]);

/] create a new org. apache. poi . poifs.filesystem Fil esystem

PO FSFi | eSystem poi fs = new PO FSFi | eSysten(fin);

/1 get the Workbook (excel part) streamin a |nputStream

| nput St ream di n = poi fs. creat eDocunent | nput St r ean{ " Wr kbook") ;
/1 construct out HSSFRequest obj ect

HSSFRequest req = new HSSFRequest () ;

/1 lazy listen for ALL records with the |istener shown above
req. addLi st ener For Al | Recor ds(new Event Exanpl e());

/1l create our event factory

HSSFEvent Fact ory factory = new HSSFEvent Factory();

/] process our events based on the docunent input stream
factory. processEvents(req, din);

/] once all the events are processed close our file input stream
fin.close();

/1 and our docurent input stream (don't want to | eak these!)

di n. cl ose();

System out. println("done.");

}
2.3. Record Aware Event APl (HSSF Only)

This is an extension to the norma Event API. With this, your listener will be called with
extra, dummy records. These dummy records should alert you to records which aren't present
in thefile (eg cells that have yet to be edited), and allow you to handle these.

There are three dummy records that your HSSFListener will be called with:

» org.apache.poi.hssf.eventusermodel .dummyrecord.MissingRowDummyRecord
Thisis called during the row record phase (which typically occurs before the cell
records), and indicates that the row record for the given row is not present in thefile.

» org.apache.poi.hssf.eventusermodel.dummyrecord.MissingCell DummyRecord
Thisiscalled during the cell record phase. It is called when a cell record is encountered
which leaves a gap between it an the previous one. Y ou can get multiple of these, before
the real cell record.

« org.apache.poi.hssf.eventusermodel.dummyrecord.L astCel | Of RowDummyRecord
Thisis called after the last cell of agiven row. It indicates that there are no more cells for
the row, and also tells you how many cells you have had. For arow with no cells, this
will be the only record you get.

To use the Record Aware Event API, you should «create an

Page 8

The New Halloween Document

org.apache.poi.hssf.eventusermodel .MissingRecordAwareHSSFListener, and pass it your
HSSFListener. Then, register the MissingRecordAwareHSSFListener to the event model, and
start that as normal.

One example use for this API is to write a CSV outputter, which aways outputs a minimum

number of columns, even where the file doesn't contain some of the rows or cells. It can be

found at

/ src/ exanpl es/ src/ or g/ apache/ poi / hssf/ event user nodel / exanpl es/ XLS2CSVnr a.
and may be called on the command line, or from within your own code. The latest version is

always available from subversion.

In POI versions before 3.0.3, this code lived in the scratchpad section. If you're using one of
these older versions of POI, you will either need to include the scratchpad jar on your
classpath, or build from a subversion checkout.

2.4. XSSF and SAX (Event API)

If memory footprint is an issue, then for XSSF, you can get at the underlying XML data, and
process it yourself. This is intended for intermediate developers who are willing to learn a
little bit of low level structure of .xlsx files, and who are happy processing XML in java. Its
relatively simple to use, but requires a basic understanding of the file structure. The
advantage provided is that you can read a XLSX file with a relatively small memory
footprint.

One important thing to note with the basic Event APl isthat it triggers events only for things
actualy stored within the file. With the XLSX file format, it is quite common for things that
have yet to be edited to simply not exist in the file. This means there may well be apparent
"gaps" in the record stream, which you need to work around.

To use this APl you construct an instance of org.apache.poi.xssf.eventmodel. X SSFReader.
This will optionally provide a nice interace on the shared strings table, and the styles. It
provides methods to get the raw xml data from the rest of the file, which you will then pass to
SAX.

This example shows how to get at a single known sheet, or at all sheetsin thefile. It is based
on the example in svn
src/exampl es/src/org/apache/poi/xssf/eventusermodel /exmapl es/FromHowTo.java

i mport java.io.lnputStream
i mport java.util.lterator;

i nport org. apache. poi . xssf. event user nodel . XSSFReader
i mport org.apache. poi . xssf. nodel . SharedSt ri ngsTabl e;

Page 9

http://svn.apache.org/repos/asf/poi/trunk/src/examples/src/org/apache/poi/hssf/eventusermodel/examples/
../subversion.html

The New Halloween Document

i mport org.apache. poi . openxmni 4j . opc. Package;
i mport org.xm.sax.Attri butes;

i mport org.xm .sax. Cont ent Handl er

i mport org.xm . sax. | nput Sour ce;

i mport org.xm .sax. SAXExcepti on

i mport org.xm .sax. XM_Reader

i mport org.xm . sax. hel pers. Def aul t Handl er

i mport org.xm . sax. hel pers. XM_Reader Fact ory;

public class Exanpl eEvent User Mode
public void processOneSheet (String fil enane) throws Exception {
Package pkg = Package. open(fil enane);
XSSFReader r = new XSSFReader (pkg);
SharedStri ngsTabl e sst = r. get SharedStri ngsTabl e();

XM_Reader parser = fetchSheet Parser(sst);

/1 r1d2 found by processing the Wrkbook

/1l Seenms to either be rld# or rSheet#

I nput St ream sheet2 = r. get Sheet ("rld2");

| nput Sour ce sheet Source = new | nput Sour ce(sheet 2);
par ser. par se(sheet Sour ce) ;

sheet 2. cl ose();

}

public void processAll Sheets(String filenanme) throws Exception {
Package pkg = Package. open(fil enane);
XSSFReader r = new XSSFReader (pkg);
SharedStri ngsTabl e sst = r. get SharedStri ngsTabl e() ;

XM_Reader parser = fetchSheet Parser(sst);

I'terator<lnputStrean> sheets = r.get Sheet sDat a();
whi | e(sheets. hasNext ())
System out. println("Processing new sheet:\n");
| nput St ream sheet = sheets. next();
| nput Sour ce sheet Source = new | nput Sour ce(sheet);
par ser. par se(sheet Sour ce) ;
sheet . cl ose();
Systemout.println("");

}

publ i c XM_Reader fetchSheet Parser(SharedStringsTabl e sst) throws SAXException {
XM_Reader parser =
XM_Reader Fact ory. cr eat eXM_Reader (
"org. apache. xer ces. par sers. SAXPar ser"

)
Cont ent Handl er handl er = new Sheet Handl er (sst);

par ser. set Cont ent Handl er (handl er) ;
return parser;

/**

Page 10

The New Halloween Document

* See org.xm .sax. hel pers. Def aul t Handl er j avadocs
*/

private static class Sheet Handl er extends Defaul t Handl er {
private SharedStringsTabl e sst;
private String | ast Contents;
private bool ean nextlsString;

privat e Sheet Handl er (Shar edStri ngsTabl e sst) {
this.sst = sst;
}

public void startElenent(String uri, String |ocal Name, String nane,
Attributes attributes) throws SAXException {
/1l ¢ => cell
i f(nane. equal s("c")) {
/1 Print the cell reference
Systemout.print(attributes.getValue("r") + " ;
/!l Figure out if the value is an index in the SST
String cell Type = attributes. getValue("t");
if(cell Type '= null && cell Type. equal s("s")) {
nextlsString = true;
} else {
} nextlsString = fal se;

// Clear contents cache

| ast Contents = ;

}

public void endEl enent (String uri, String |ocal Nane, String nane)
t hrows SAXException {
/1l Process the last contents as required.
/1 Do now, as characters() may be called nore than once
i f(nextlsString) {
int idx = Integer.parselnt(lastContents);
| ast Contents = new XSSFRi chText String(sst.getEntryAt(id

/ v => contents of a cell
/ Qutput after we've seen the string contents
f (nanme. equal s("v")) {

System out . println(l ast Contents);

}
/
/
i

}
}

public void characters(char[] ch, int start, int |ength)
t hrows SAXException {
| ast Contents += new String(ch, start, |ength);

}

public static void main(String[] args) throws Exception {
Fr omHowTo howt o = new FronmHowTo() ;
howt 0. pr ocessOneSheet (args[0]) ;

Page 11

The New Halloween Document

howt 0. processAl | Sheet s(args[0]);
}

2.5. Low Level APIs

The low level API is not much to look at. It consists of lots of "Records' in the
org.apache.poi.hssf.record.* package, and set of hel per classes in
org.apache.poi.hssf.model.*. The record classes are consistent with the low level binary
structures inside a BIFF8 file (which is embedded in a POIFS file system). You probably
need the book: "Microsoft Excel 97 Developer's Kit" from Microsoft Press in order to
understand how these fit together (out of print but easily obtainable from Amazon's used
books). In order to gain a good understanding of how to use the low level APIs should view
the source in org.apache.poi.hssf.usermodel .* and the classes in org.apache.poi.hssf.model .*.
Y ou should read the documentation for the POIFS libraries as well.

2.6. Generating XLSfrom XML

If you wish to generate an XLS file from some XML, it is possible to write your own XML
processing code, then use the User API to write out the document.

The other option is to use Cocoon. In Cocoon, there is the HSSF Serializer, which takes in
XML (in the gnumeric format), and outputs an XL Sfile for you.

2.7. HSSF Class/Test Application

The HSSF application is nothing more than a test for the high level API (and indirectly the
low level support). The main body of its code is repeated above. To runit:

» download the poi-aphabuild and untar it (tar xvzf tarball.tar.gz)
e set up your classpath asfollows: export HSSFDI R={ wher ever you put

HSSF' s jar files} export LOAJID R={wherever you put LOHAJ' s

jar files} export

CLASSPATH=$CLASSPATH: $HSSFDI R/ hssf . j ar: $HSSFDI R/ poi - poi fs. j ar: $HSSFDI R
e typejava org. apache. poi. hssf.dev. HSSF ~/ nyxls.xls wite

This should generate atest sheet in your home directory called " ny x| s. x| s".

« Typejava org. apache. poi . hssf.dev. HSSF ~/input. x|l s
out put . xl s
Thisisthe read/write/modify test. It reads in the spreadsheet, modifies a cell, and writes it
back out. Failing thistest is not necessarily abad thing. If HSSF tries to modify a
non-existant sheet then thiswill most likely fail. No big deal.

Page 12

http://cocoon.apache.org/
http://cocoon.apache.org/2.1/userdocs/xls-serializer.html

The New Halloween Document

2.8. Logging facility

POI can dynamically select its logging implementation. POI tries to create a logger using the
System property named "org.apache.poi.util.POILogger”. Out of the box this can be set to
one of three values:

 org.apache.poi.util.CommonsL ogger
 org.apache.poi.util.NullLogger
« org.apache.poi.util.SystemOutL ogger

If the property is not defined or pointsto an invalid classthen the NullLogger is used.

Refer to the commons logging package level javadoc for more information concerning how
to configure commons logging.

2.9. HSSF Developer's Tools

HSSF has a number of tools useful for developers to debug/develop stuff using HSSF (and
more generaly XLS files). Weve dready discussed the app for testing HSSF
read/write/modify capabilities; now welll talk a bit about BiffViewer. Early on in the
development of HSSF, it was decided that knowing what was in a record, what was wrong
with it, etc. was virtually impossible with the available tools. So we developed BiffViewer.
You can find it a org.apache.poi.hssf.dev.BiffViewer. It performs two basic functions and a
derivative.

The first is "biffview". To do this you run it (assumes you have everything setup in your
classpath and that you know what you're doing enough to be thinking about this) with an xIs
file as a parameter. It will give you alisting of al understood records with their data and a
list of not-yet-understood records with no data (because it doesn't know how to interpret
them). Thislisting is useful for several things. First, you can look at the values and SEE what
iswrong in quasi-English. Second, you can send the output to afile and compareit.

The second function is "big freakin dump", just pass a file and a second argument matching
"bfd" exactly. Thiswill just make a big hexdump of thefile.

Lastly, there is "mixed" mode which does the same as regular biffview, only it includes hex
dumps of certain records intertwined. To use that just pass a file with a second argument
matching "on" exactly.

In the next release cycle welll also have something called a FormulaViewer. The class is
already there, but its not very useful yet. When it does something, we'll document it.

2.10. What's Next?

Page 13

http://jakarta.apache.org/commons/logging/api/index.html

The New Halloween Document

Further effort on HSSF is going to focus on the following major areas:

« Performance: POI currently uses alot of memory for large sheets.
e Charts: Thisisahard problem, with very little documentation.

So jumpin!

Page 14

../guidelines.html

	1 How to use the HSSF API
	1.1 Capabilities
	1.2 Different APIs

	2 General Use
	2.1 User API (HSSF and XSSF)
	2.1.1 Writing a new file
	2.1.2 Reading or modifying an existing file

	2.2 Event API (HSSF Only)
	2.3 Record Aware Event API (HSSF Only)
	2.4 XSSF and SAX (Event API)
	2.5 Low Level APIs
	2.6 Generating XLS from XML
	2.7 HSSF Class/Test Application
	2.8 Logging facility
	2.9 HSSF Developer's Tools
	2.10 What's Next?

