JoinManager Tests

Spec Tests
Test Name & Motivation
Description
Category
Specification Requirements

com.sun.jini.qa.spec.

joinmanager.

Register

Verifies that when a join manager is created, the service input to the constructor is registered with all lookup services the join manager is configured to discover.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify the test service input to the join manager constructor is registered with all lookup services the join manager is configured discover
A1,M1
JU.2

com.sun.jini.qa.spec.

joinmanager.

RegisterProp

Verifies that when a join manager is created, the service input to the constructor is registered with all currently running lookup services the join manager is configured to discover. And then verifies that the join manager will register the service with any such lookup service that happens to come on line later, after registration with the initial set of lookup services has occurred.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the member groups of the lookup services started in step 1

3. Verify the test service input to the join manager constructor is registered with all the lookup services started in step 1

4. Start M more lookup services whose member groups are the same as the member of groups of the lookup services started in step 1

5. Verify the test service input to the join manager constructor is registered with the new lookup services started in step 4
A1,M1
JU.2

com.sun.jini.qa.spec.

joinmanager.

RegisterAttributes

Verifies that when a join manager is created, the service and the corresponding set of attributes input to the constructor are registered with all lookup services the join manager is configured to discover.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager inputting an instance of a test service, a non-null set of attributes with which to register the service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify the test service input to the join manager constructor is registered with all lookup services the join manager is configured discover

4. Verify that the test service’s corresponding set of attributes are associated with the test service in each lookup service in which the test service is registered
A1,M1
JU.2

com.sun.jini.qa.spec.

joinmanager.

Equality

Verifies that the equals method of the JoinManager class returns true if and only if two instances of JoinManager refer to the same object. That is, x and y are equal instances of JoinManager if and only if x == y is true.
1. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service and null to all other arguments

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service and null to all other arguments

3. For each instance of JoinManager created, verify that the equals method returns the appropriate result depending on the particualr instances of JoinManager being compared. That is, if x==y, then x.equals(y) must be true; and if !(x==y), then !x.equals(y)
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ServiceIDNotify

Verifies that when the version of the JoinManager constructor that takes a ServiceIDListener in its argument list is used to register a service with N lookup services, the join manager will send to that listener one and only one notification referencing the ServiceID of the service – as generated according to the algorithm documented in the specification of the lookup service.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify that the ServiceIDListener receives only 1 ServiceID notification from the join manger
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

LDMNullPublicGroup

Verifies that when null is input to the discoveryMgr parameter of either version of the JoinManager constructor, the join manager constructs and employs an instance of LookupDiscoveryManager configured to discover only those lookup services that are members of the un-named public group.
1. Start no lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service and null to all other arguments

3. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service and null to all other arguments

4. For each instance of the join manager created during setup, do the following:

· Retrieve the instance of the DiscoveryManagement interface being employed by that join manager

· Verify the retrieved instance of DiscoveryManagement is an instance of the LookupDiscoveryManager utility class

· Verify the retrieved instance of DiscoveryManagement is configured to discover only lookup services belonging to the public group
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetDiscoveryManager

Verifies that the method getDiscoveryManager returns the instance of DiscoveryManagement passed into the constructor of JoinManager.
1. Start no lookup services

2. Create an instance of DiscoveryManagement that is to be passed in to the join manager’s constructor

3. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service and the instance of DiscoveryManagement created in step 2

4. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service and the instance of DiscoveryManagement created in step 2

5. For each instance of the join manager created during setup, do the following:

· Retrieve the instance of the DiscoveryManagement interface being employed by that join manager

· Verify the retrieved instance of DiscoveryManagement is equal to the instance of DiscoveryManagement passed in to the join manager’s constructor

A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetLeaseRenewalManager

Verifies that the method getLeaseRenewalManager returns the instance of LeaseRenewalManager passed into the constructor of JoinManager.
1. Start no lookup services

2. Create an instance of LeaseRenewalManager that is to be passed in to the join manager’s constructor

3. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service and the instance of LeaseRenewalManager created in step 2

4. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service and the instance of LeaseRenewalManager created in step 2

5. For each instance of the join manager created during setup, do the following:

· Retrieve the instance of LeaseRenewalManager being employed by that join manager

· Verify the retrieved instance of LeaseRenewalManager is equal to the instance of LeaseRenewalManager passed in to the join manager’s constructor

JU.4

com.sun.jini.qa.spec.

joinmanager.

GetJoinSetCallback

Verifies that when the version of the JoinManager constructor that takes a ServiceIDListener in its argument list is used to construct a join manager that registers a service with N lookup services, the method getJoinSet returns an array containing the same lookup services with which the service was registered by the join manager.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify that the set of lookup services returned by an invocation of getJoinset is the same as the set of lookup services with which the test service was registered by the join manager created in step 2
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetJoinSetServiceID

Verifies that when the version of the JoinManager constructor that takes a ServiceID in its argument list is used to construct a join manager that registers a service with N lookup services, the method getJoinSet returns an array containing the same lookup services with which the service was registered by the join manager.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify that the set of lookup services returned by an invocation of getJoinset is the same as the set of lookup services with which the test service was registered by the join manager created in step 2
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetJoinSetCallbackNew

Verifies that when the version of the JoinManager constructor that takes a ServiceIDListener in its argument list is used to construct a join manager that registers a service with N lookup services, each time the method getJoinSet is invoked, it returns a new array containing the same lookup services with which the service was registered by the join manager.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceIDListener (callback), inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify that each invocation of the method getJoinset returns a new array that contains the same lookup services as those with which the test service was registered by the join manager created in step 2
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetJoinSetServiceIDNew

Verifies that when the version of the JoinManager constructor that takes a ServiceID in its argument list is used to construct a join manager that registers a service with N lookup services, each time the method getJoinSet is invoked, it returns a new array containing the same lookup services with which the service was registered by the join manager.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

3. Verify that each invocation of the method getJoinset returns a new array that contains the same lookup services as those with which the test service was registered by the join manager created in step 2
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetAttributes

Verifies that when a join manager is constructed with a given set of attributes, the method getAttributes returns a set of attributes whose contents are equal to the contents of the set of attributes with which the join manager was constructed.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

4. Invoke the method getAttributes and verify that the contents of the array returned by that method are equal to the contents of the array of attributes input to the constructor in step 3
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

GetAttributesNew

Verifies that when a join manager is constructed with a given set of attributes, each invocation of the getAttributes method returns a new array whose contents are equal to the contents of the set of attributes with which the join manager was constructed.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

4. Invoke the method getAttributes and verify that the contents of the set returned by that method are equal to the set of attributes input to the constructor in step 3

5. Invoke the method getAttributes a second time and verify that the array returned from the first invocation is not the same array as that returned by the second invocation; additionally, verify that the contents of the array returned from the second invocation are equal to the contents of the array of attributes input to the constructor in step 3
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributes

Verifies that when the method addAttributes is invoked to augment the set of attributes with which the join manager is currently configured, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes

4. From the set of attributes created in steps 2 and 3, construct the set of attributes with which one would expect (based on the semantics of the addAttributes method) the join manager to be configured after the initial set of attributes is augmented with the new set of attributes

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Through the invocation of the method addAttributes, augment the original set of attributes with which the join manager is configured, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 4
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributesDup

Verifies that when the method addAttributes is invoked with a set of attributes that either duplicate elements with which the join manager is already configured, or that duplicate elements in the set itself (or both), the join manager is re-configured with the appropriate set of attributes, containing no duplicates. That is, duplicates are removed.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes. Make sure this set contains elements that duplicate elements of the initial set created in step 2, or that duplicate other elements in the set being constructed in this step, or both

4. From the set of attributes created in steps 2 and 3, construct the set of attributes with which one would expect (based on the semantics of the addAttributes method) the join manager to be configured after the initial set of attributes is augmented with the new set of attributes.

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Through the invocation of the method addAttributes, augment the original set of attributes with which the join manager is configured, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 4
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributesProp

Verifies that when the method addAttributes is invoked to augment the set of attributes with which the join manager (and the associated service) is currently configured, the join manager propagates the appropriate set of new attributes (no duplicates) to each lookup service with which the associated service is registered.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes. Make sure this set contains elements that duplicate elements of the initial set created in step 2, or that duplicate other elements in the set being constructed in this step, or both

4. From the set of attributes created in steps 2 and 3, construct the set of attributes one would expect – after an invocation of addAttributes, and after the attribute propagation called for by the semantics of that method has occurred – to be associated with the test service in each lookup service with which the test service is registered

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

6. Through the invocation of the method addAttributes, augment the original set of attributes with which the join manager is configured, and verify that each element of the expected set of attributes constructed in step 4 is associated with the test service in each lookup service with which the test service is registered; which should be equivalent to verifying that the appropriate attributes (no duplicates) are propagated to each lookup service
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributesPropNew

Verifies that when the addAttributes method is invoked, the join manager will not only propagate the appropriate new attributes (no duplicates) to each lookup service with which the associated service is currently registered, but will also propagate those attributes to each new lookup service that may come on line later, after the service’s attributes have already been augmented and propagated to the previously existing lookup services.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes. Make sure this set contains elements that duplicate elements of the initial set created in step 2, or that duplicate other elements in the set being constructed in this step, or both

4. From the set of attributes created in steps 2 and 3, construct the set of attributes one would expect – after an invocation of addAttributes, and after the attribute propagation called for by the semantics of that method has occurred – to be associated with the test service in each lookup service with which the test service is or will be registered

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the member groups of the lookup services started in step 1

6. Invoke addAttributes and verify that the new attributes have been propagated to each lookup service with which the test service is currently registered

7. Start M more lookup services whose member groups are the same as the member of groups of the lookup services started in step 1

8. Verify that the new attributes have been propagated to each of the new lookup services started in step 7
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributesNullElement

Verifies that when at least 1 element of the parameter input to any version of addAttributes is null, a NullPointer

Exception is thrown.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes, and which contains at least 1 null element

4. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

5. Using the set of attributes constructed in step 3, invoke all versions of addAttributes and verify that a NullPointerException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributesNullSet

Verifies that when null is input to any version of addAttributes, a NullPointer

Exception is thrown.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

4. Invoke all versions of the addAttributes method with a null input parameter, and verify that a NullPointerException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

AddAttributes

 ServiceControlled

Verifies that when addAttributes is invoked with true input to the checkSC parameter, and with an attribute set parameter containing at least 1 element that implements the net.jini.lookup.

entry.

ServiceControlled interface, a SecurityException is thrown.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to augment the first set of attributes, and which contains at least element that implements the net.jini.lookup.entry.ServiceControlled interface

4. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

5. Using the set of attributes constructed in step 3, invoke addAttributes inputting true for the checkSC parameter, and verify that a SecurityException is thrown

com.sun.jini.qa.spec.

joinmanager.

SetAttributes

Verifies that when setAttributes is invoked, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes in which at least 1 element is not contained in the set created in step 2

4. From the attributes created in steps 2 and 3, and based on the semantics of setAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to setAttributes
5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Invoke setAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 4
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

SetAttributesDup

Verifies that when setAttributes is invoked with a set of attributes that either duplicate elements with which the join manager is already configured, or that duplicate elements in the set itself (or both), the join manager is re-configured with the appropriate set of attributes, containing no duplicates. That is, duplicates are removed.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to replace the first set of attributes. Make sure this set contains at least 1 element from the initial set created in step 2, or contains elements that are duplicates of other elements in the set being constructed in this step, or both

4. From the attributes created in steps 2 and 3, and based on the semantics of setAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to setAttributes.

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Invoke setAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 4
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

SetAttributesProp

Verifies that when setAttributes is invoked, the join manager propagates the appropriate set of new attributes (no duplicates) to each lookup service with which the associated service is registered.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to replace the first set of attributes. Make sure this set contains at least 1 element from the initial set created in step 2, or contains elements that are duplicates of other elements in the set being constructed in this step, or both

4. From the attributes created in steps 2 and 3, construct the set of attributes one would expect – after an invocation of setAttributes, and after the attribute propagation called for by the semantics of that method has occurred – to be associated with the test service in each lookup service with which the test service is registered

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

6. Invoke setAttributes, and verify that each element of the expected set of attributes constructed in step 4 is associated with the test service in each lookup service with which the test service is registered; that is, verify that the appropriate attributes (no duplicates) are propagated to each lookup service
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

SetAttributesPropNew

Verifies that when setAttributes is invoked, the join manager will not only propagate the appropriate new attributes (no duplicates) to each lookup service with which the associated service is currently registered, but will also propagate those attributes to each new lookup service that may come on line later, after the service’s attributes have already been replaced and propagated to the previously existing lookup services.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes – different from the first – with which to replace the first set of attributes. Make sure this set contains at least 1 element from the initial set created in step 2, or contains elements that are duplicates of other elements in the set being constructed in this step, or both

4. From the attributes created in steps 2 and 3, construct the set of attributes one would expect – after an invocation of setAttributes, and after the attribute propagation called for by the semantics of that method has occurred – to be associated with the test service in each lookup service with which the test service is registered

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the member groups of the lookup services started in step 1

6. Invoke addAttributes and verify that the new attributes have been propagated to each lookup service with which the test service is currently registered

7. Start M more lookup services whose member groups are the same as the member of groups of the lookup services started in step 1

8. Verify that the new attributes have been propagated to each of the new lookup services started in step 7
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

SetAttributesNullElement

Verifies that when setAttributes is invoked with an attribute set containing at least 1 null element, a NullPointer

Exception is thrown.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a new set of attributes in which at least 1 element is null
4. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

5. Invoke setAttributes with using the set of attributes constructed in step 3, and verify that a NullPointerException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

SetAttributesNullSet

Verifies that when null is input to setAttributes, a NullPointer

Exception is thrown.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

4. Invoke setAttributes with a null input parameter, and verify that a NullPointerException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributes

Verifies that when modifyAttributes is invoked to change each element of the initial set of attributes with which the join manager is currently configured to an attribute with a new value, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change. For this test, this set should cause all elements of the initial set of attributes to be selected for modification

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the fields of each element of the set should be non-null and should differ in value from the corresponding field of the corresponding element in the initial set of attributes

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesOne

Verifies that when modifyAttributes is invoked to change only one element of the initial set of attributes with which the join manager is currently configured to an attribute with a new value, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change. For this test, this set should cause only 1 element of the initial set of attributes to be selected for modification

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the fields of each element of the set should be non-null and should differ in value from the corresponding field of the corresponding element in the initial set of attributes

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesAllToOne

Verifies that when modifyAttributes is invoked to change all elements of the initial set of attributes with which the join manager is currently configured to a single attribute with a new value, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that will select the attributes to modify in the initial set of attributes. For this test, this set should cause all of the elements initial set to be changed to the same attribute (with duplicates removed)

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the element of this set that corresponds to the elements to change in the initial set should be non-null and should differ in value from the corresponding field in all of the elements in the initial set

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesDeleteOne

Verifies that when modifyAttributes is invoked to delete a single element of the initial set of attributes with which the join manager is currently configured, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that will select the attribute to delete from the initial set of attributes. For this test, this set should cause only 1 element of the initial set of attributes to be selected for deletion

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the element of this set that corresponds to the element to delete from the initial set should be null
5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesDeleteAll

Verifies that when modifyAttributes is invoked to delete elements of the initial set of attributes with which the join manager is currently configured, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that will select the attributes to delete from the initial set of attributes. For this test, this set should cause all elements in the initial set of attributes to be selected for deletion

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, each element of this set should be null
5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesDup

Verifies that when modifyAttributes is invoked using a set of templates whose elements are each a duplicate of only one element of the initial set of attributes with which the join manager is currently configured, and using a set of modification attributes whose elements are all duplicates of each other, the join manager is re-configured with the appropriate set of attributes.
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change. For this test, this set should contain more than 1 element in which each element is a duplicate of one of the elements of the set created in step 2

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, all elements of the set should be duplicates of each other, and the fields of each element should be non-null and should differ in value from the corresponding field of the element in the initial set that is to be modified

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes with which one would expect the join manager to be configured after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

7. Invoke modifyAttributes, and verify that the contents of the new set of attributes with which the join manager is configured are equal to the contents of the expected set of attributes constructed in step 5
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesProp

Verifies that when modifyAttributes is invoked to change each element of the initial set of attributes with which the join manager is currently configured to an attribute with a new value, the join manager propagates the appropriate set of attributes to each lookup service with which the associated service is registered.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change. This set should contain at least 1 duplicate element, and should cause all elements in the initial set to be selected for modification.

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the fields of each element of the set should be non-null and should contain values that are unique (relative to the other elements in the set) and which differ in value from the corresponding field of the corresponding element in the initial set of attributes

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes one would after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1

7. Invoke modifyAttributes, and verify that the join manager propagates the expected set of attributes to each lookup service with which the test service is registered
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributesPropNew

Verifies that when modifyAttributes is invoked to change each element of the initial set of attributes with which the join manager is currently configured to an attribute with a new value, the join manager not only propagates the appropriate set of attributes to each lookup service with which the associated service is registered, but also propagates those attributes to each new lookup service that may come on line later, after the service’s attributes have already been changed and propagated to the previously existing lookup services.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change. This set should contain at least 1 duplicate element, and should cause all elements in the initial set to be selected for modification.

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, the fields of each element of the set should be non-null and should contain values that are unique (relative to the other elements in the set) and which differ in value from the corresponding field of the corresponding element in the initial set of attributes

5. From the attributes created in steps 2, 3, and 4, and based on the semantics of modifyAttributes, construct the set of attributes one would after a call to modifyAttributes
6. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover the member groups of the lookup services started in step 1

7. Invoke modifyAttributes, and verify that the join manager propagates the expected set of attributes to each lookup service with which the test service is initially registered

8. Start M more lookup services whose member groups are the same as the member of groups of the lookup services started in step 1

9. Verify that the attributes whose propagation was verified in step 7 are also propagated to each of the new lookup services started in step 8
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributes

 LengthMismatch

Verifies that when modifyAttributes is invoked with a set of attribute templates and a set of modification attributes whose lengths do not match, an IllegalArgument

Exception is thrown..
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change.

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain a different number of elements than the set created in step 3.

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Invoke modifyAttributes using the set of attributes constructed in steps 3 and 4, and verify that an IllegalArgumentException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributes

 ClassMismatch

Verifies that when modifyAttributes is invoked with a set of attribute templates and a set of modification attributes in which at least 1 element in the set of modification attributes is neither the same class as, nor a super class of, the corresponding element in the set of templates, an IllegalArgument

Exception is thrown..
1. Start no lookup services

2. Create a set of attributes with which to associate a test service

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to change.

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, at least one element of this set should be neither the same class as, nor a superclass of, the corresponding element in the set of attributes created in step 3.

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Invoke modifyAttributes using the set of attributes constructed in steps 3 and 4, and verify that an IllegalArgumentException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec.

joinmanager.

ModifyAttributes

 ServiceControlled

Verifies that when modifyAttributes is invoked with true input to the checkSC parameter, and with an attribute modification set containing at least 1 element that implements the net.jini.lookup.

entry.

ServiceControlled interface, a SecurityException is thrown.
1. Start no lookup services

2. Create a set of attributes – containing at least 1 element that implements the net.jini.lookup.entry.ServiceControlled interface - with which to initially configure the join manager

3. Create a set of attribute templates that can be used to select from the initial set of attributes the attributes to attempt to change

4. Create a new set of attributes containing the modifications to make to the initial set of attributes. This set should contain the same number of elements as the set created in step 3. Additionally, at least one element of this set should be neither the same class as, nor a superclass of, the corresponding element in the set of attributes created in step 3.

5. Create an instance of JoinManager inputting an instance of a test service, the set of attributes created in step 2, and a non-null instance of a lookup discovery manager configured to discover a finite, unique set of member groups (not ALL_GROUPS, not NO_GROUPS, not public)

6. Invoke modifyAttributes using the set of attributes constructed in steps 3 and 4, and verify that a SecurityException is thrown
A1,M1
JU.4

com.sun.jini.qa.spec

.joinmanager.

TerminateLeases

Verifies that when a join manager is terminated (through an invocation of the terminate method), all leases managed on behalf of the associated service are cancelled.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager inputting an instance of a test service, a set of attributes (either null or non-null), and a non-null instance of a lookup discovery manager configured to discover the lookup services started in step 1, and a null instance of a lease renewal manager

3. Verify that the test service is registered (its leases are being managed) with each lookup service started in step 1

4. Invoke the terminate method on the join manager created in step 2

5. Verify that the test service is no longer registered (the leases are no longer being managed) with any of the lookup services started in step 1
A1,M1
JU.4

com.sun.jini.qa.spec

.joinmanager.

TerminateDiscovery

Verifies that when a join manager is terminated (through an invocation of the terminate method), if the discovery manager employed by the join manager was created by the join manager itself, all discovery processing being performed by that manager on behalf of the associated service will also be terminated.
1. Start N lookup services whose member groups are finite (not ALL_GROUPS, and not NO_GROUPS) and unique (not public) relative to the member groups of all other lookup services running within the same multicast radius of the lookup services

2. Create an instance of JoinManager inputting an instance of a test service, a set of attributes (either null or non-null), and both a null instance of a lookup discovery manager, and a null instance of a lease renewal manager

3. Retrieve the default discovery manager created by the join manager created in step 2

4. Change the set of groups the default discovery manager should discover from the un-named public group to the set of groups the lookup services started in step 1 currently belong

5. Turn on discovery processing in the join manager’s discovery manager by setting a discovery listener in that discovery manager

6. Verify that the lookup services started in step 1 were discovered by the join manager’s discovery manager

7. Start a new lookup service belonging the same member groups as the lookup services started in step 1

8. Verify that the lookup service started in step 7 is also discovered by the join manager’s discovery manager (this verifies that the discovery manager, when not terminated, will discover any new lookup services created after the initial setup)

9. Invoke the terminate method on the join manager created in step 2

10. Start a new lookup service belonging the same member groups as the lookup services started in step 1 and the lookup service started in step 7

11. Verify that all discovery processing in the terminated join manager was also terminated; do this by verifying that the lookup service started in step 10 – after the join manager was terminated – is not discovered by the terminated join manager’s discovery manager
A1,M1
JU.4

Impl Tests

Test Name & Motivation
Description
Category
Specification Requirements

com.sun.jini.qa.impl

.joinmanager.

TerminateSemantics

Verifies that when an instance of JoinManager is terminated (through an invocation of the terminate method), all future invocations of the public methods of that instance are undefined. In particular, specific to the implementation of JoinManager addressed by TerminateSemantics, this test verifies that an IllegalStateException will result upon the invocation of any public method of that instance of JoinManager made after termination has occurred.

1. Start no lookup services

2. Create an instance of JoinManager using the version of the constructor that takes a ServiceID, inputting an instance of a test service and null to all other arguments

3. Create an instance of JoinManager inputting an instance of a test service, a set of attributes (either null or non-null), and null to all other arguments

4. Invoke the terminate method on the join manager created in step 2

5. Verify that the invocation of any of the public methods of the join manager created in step 2 (and terminated in step 4) will result in an IllegalStateException
A1,M4
JU.4

/vob/qa/src/com/sun/jini/qa/doc/joinmanager-test.doc

