LookupDiscovery Tests

Test Name & Motivation
Description
Categorization
Specification Requirements

LookupDiscoverServiceEqualityTest (LDSET)
1. Start LUS1 and LUS2

2. Start LDS1 and LDS2 that join both LUS1 & 2

3. Get reference to LDS1 (LDS1R1) from LUS1

4. Get reference to LDS1 (LDS1R2) from LUS2

5. Verify that LDS1R1.equals(LDS1R1) returns true [LDS 1]

6. Verify that LDS1R2.equals(LDS1R2) returns true

7. Verify that LDS1R1.equals(LDS1R2) returns true

8. Verify that LDS1R2.equals(LDS1R1) returns true

9. Get reference to LDS2 (LDS2R1) from LUS1

10. Get reference to LDS2 (LDS2R2) from LUS2

11. Verify that LDS2R1.equals(LDS2R1) returns true

12. Verify that LDS2R2.equals(LDS2R2) returns true

13. Verify that LDS2R1.equals(LDS2R2) returns true

14. Verify that LDS2R2.equals(LDS2R1) returns true

15. Verify that LDS1R1.equals(LDS2R1) returns false

16. Verify that LDS1R1.equals(LDS2R2) returns false

17. Verify that LDS1R2.equals(LDS2R1) returns false

18. Verify that LDS1R2.equals(LDS2R2) returns false

19. Verify that LDS2R1.equals(LDS1R1) returns false

20. Verify that LDS2R1.equals(LDS1R2) returns false

21. Verify that LDS2R2.equals(LDS1R1) returns false

22. Verify that LDS2R2.equals(LDS1R2) returns false

LookupDiscoverServiceInterfaceTest (LDSIFT)
1. Start LUS

2. Start LDS that joins LUS

3. Obtain reference to LDS

4. Pass LDS lease to a LeaseRenewalManager (LRM)

5. Call LDS.register(null, null, REL, null, Lease.FOREVER) [LDS 2, 5, 8, 10, 12, 13, 15, 16]

6. Verify that a LookupDiscoveryServiceRegistration (LDR) object is returned [LDSR 19]

7. Call LDS.register(ARRAY, null, REL, null, Lease.FOREVER) where ARRAY contains null entries [LDS 6]

8. Verify that an IllegalArgumentException is thrown [1]

9. Call LDS.register(ARRAY, null, REL, null, Lease.FOREVER) where ARRAY contains duplicate entries [LDS 11]

10. Verify that an LDSR object is returned

11. Call LDS.register(null, ARRAY, REL, null, Lease.FOREVER) where ARRAY contains null entries [LDS 10]

12. Verify that an IllegalArgumentException is thrown [1]

13. Call LDS.register(null, ARRAY, REL, null, Lease.FOREVER) where ARRAY contains duplicate entries

14. Verify that an LDSR object is returned

15. Call LDS.register(null, null, null, null, Lease.FOREVER)

16. Verify that a NullPointerException is thrown [LDS 14]

17. Call LDS.register(null, null, REL, null, -123)

18. Verify that a IllegalArgumentException is thrown [LDS 18]

19. Call LDS.register(null, null, REL, null, Lease.ANY)

20. Verify that an LDSR object is returned

Notes:

[1] Not specified behavior

LookupDiscoverRegistrationEqualityTest (LDSRET)
1. Start LUS

2. Start LDS1 and LDS2 to join LUS

3. Get reference to LDS1 (LDS1R1) and LDS2 (LDS2R1)

4. Call LDS1.register(null, null, REL, null, Lease.ANY) (LDSR1)

5. Verify that LDSR1.equals(LDSR1) returns true [LDS 29]

6. Call LDS1.register(null, null, REL, null, Lease.ANY) (LDSR2)

7. Verify that LDSR1.equals(LDSR2) returns false

8. Verify that LDSR2.equals(LDSR1) returns false

9. Verify that LDSR2.equals(LDSR2) returns true

10. Call LDS2.register(null, null, REL, null, Lease.ANY) (LDSR3)

11. Verify that LDSR3.equals(LDSR3) returns true

12. Verify that LDSR3.equals(LDSR1) returns false

13. Verify that LDSR3.equals(LDSR2) returns false

14. Verify that LDSR1.equals(LDSR3) returns false

15. Verify that LDSR2.equals(LDSR3) returns false

LookupDiscoverRegistrationLocalInterfaceTest (LDSRLIFT)
1. Start LUS

2. Start LDS that joins LUS

3. Get a reference to LDS

4. Call LDS.register(null, null, REL, null, Lease.FOREVER) (LDSR) where REL is a no-op

5. Verify that LDSR.getEventRegistration returns an EventRegistration (ER) object [LDS 31]

6. Verify that LDSR.getLease() returns a Lease object [LDS 32]

7. Verify that lease objects from LDSR.getLease() and ER.getLease() reference the same object [LDS 33]

LookupDiscoverRegistrationGroupInterfaceTest (LDSRGIFT)
1. Start LUS

2. Start LDS that joins LUS

3. Get reference to LDS

4. Call LDS.register([], [], REL, null, Lease.FOREVER) (LDSR) where REL is a no-op and [] denotes an empty array

5. Verify that LDSR.getRegistrars returns the empty set [LDS 34]

6. Verify that LDS.getGroups returns the empty set [LDS 35, 36]

7. Call setGroups(LD.NO_GROUPS) [LDS 41, 42]

8. Verify that getGroups returns the empty set

9. Call addGroups(LIST) where LIST contains duplicate entries [LDS 44, 45, 48]

10. Verify that an UnsupportedOperationException is thrown

11. Call addGroups(null)

12. Verify that a NullPointerException is thrown [LDS 49]

13. Call setGroups(LIST)

14. Verify that getGroups returns a set without duplicate entries from LIST [LDS 46]

15. Call addGroups(LIST2) where LIST2 contains duplicate entries and entries from LIST

16. Verify that getGroups returns the proper set without duplicates

17. Call addGroups([empty]) [LDS 50]

18. Verify that getGroups returns an unmodified set

19. Call setGroups(LIST)

20. Verify that getGroups returns the appropriate set w/o duplicates [LDS 51]

21. Call setGroups(null) [LDS 43, 53]

22. Verify that getGroups returns null [LDS 37]

23. Call setGroups(LIST2)

24. Verify that getGroups returns the appropriate set w/o duplicates

25. Call removeGroups(LIST) [LDS 55]

26. Verify that the appropriate subset is returned

27. Call removeGroups([empty])

28. Verify that getGroups returns an unmodified set [LDS 58]

29. Call removeGroups(null) [LDS 57]

30. Verify that a NullPointerException is thrown

31. Call removeGroups(LIST2)

32. Verify that getGroups returns the empty set

33. Call removeGroups(LIST2)

34. Verify that an UnsupportedOperationException is thrown [LDS 56]

JoinAdmin Tests

Test Name & Motivation
Description
Categorization
Specification Requirements

GetLookupGroups

Determine if the lookup discovery service can successfully return the non-empty, non-null set of groups with which it has been configured.
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should be non-empty and non-null

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be the set of groups with which the service was configured when it was started [DGMIF 5]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin.JoinAdmin

GetLookupGroupsAll

Determine if the lookup discovery service will return ALL_GROUPS (null) when the initial set of groups used to configure the service is the null set.
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should correspond to ALL_GROUPS

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be ALL_GROUPS (null) [DGMIF 5]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

GetLookupGroupsAllFinite

Determine if the lookup discovery service will return ALL_GROUPS (null) when the initial set of groups used to configure the service consists of multiple names in which at least one of the names is the string “all”. (This test actually tests the argument parsing facility provided in the com.sun.jini.start package.)
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should consist of multiple names in which at least one is the string “all”

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be ALL_GROUPS (null) [DGMIF 5]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

GetLookupGroupsDups

Determine if the lookup discovery service will successfully return the set of groups with which the service was initially configured, minus any duplicates.
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should consist of multiple names in which at least two names are identical

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be the initial set minus any duplicates [DGMIF 4, DGMIF 5]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

GetLookupGroupsNone

Determine if the lookup discovery service will return the empty set (new String[0]) when the initial set of groups used to configure the service is the empty set.
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should correspond to NO_GROUPS (new String[0])

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be the empty set [DGMIF 5, DGMIF 6]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

GetLookupGroupsNoneFinite

Determine if the lookup discovery service will return the empty set (new String[0]) when the initial set of groups used to configure the service consists of multiple names in which at least one of the names is the string “none”. (This test actually tests the argument parsing facility provided in the com.sun.jini.start package.)
1. Start one lookup discovery service (LDS)

2. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should consist of multiple names in which at least one is the string “none”

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the set of groups that the LDS is currently configured to join

5. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be the empty set [DGMIF 5, DGMIF 6]

6. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

GetLookupGroupsPublic

Determine if the lookup discovery service will successfully return the un-named

public group (“”) when the initial set of groups used to configure the service consists of only the string “public”.
7. Start one lookup discovery service (LDS)

8. Retrieve from the configuration property file, the set of groups whose members are the lookup services(s) that the LDS is expected to join; which should correspond to un-named public group (“”)

9. Retrieve the admin of the LDS under test

10. Through the admin, retrieve the set of groups that the LDS is currently configured to join

11. Determine if the set of groups retrieved through the admin is equivalent to the set of groups that is expected; which for this test should be the empty string (“”) [DGMIF 5]

12. Clean up all state and destroy the LDS
A2,M1
net.jini.admin. JoinAdmin

StorageAdmin Tests

Test Name & Motivation
Description
Categorization
Specification Requirements

GetStorageLocation

Determine if the lookup discovery service can successfully return the location in which the service currently stores its persistent state.
1. Start one lookup discovery service (LDS)

2. Retrieve from the service’s initial configuration, the location to which the service is expected to store its persistent state

3. Retrieve the admin of the LDS under test

4. Through the admin, retrieve the location to which the service is currently storing its persistent state

5. Determine if the location retrieved through the admin is equivalent to the expected location

6. Clean up all state and destroy the LDS
A3,M1
com.sun.jini.admin.

StorageLocationAdmin

SetStorageLocation

Determine if the lookup discovery service can successfully change the location in which the service currently stores its persistent state.
1. Start one lookup discovery service (LDS)

2. Retrieve the admin of the LDS under test

3. Through the admin, retrieve the location to which the service is currently storing its persistent state

4. Through the admin, change to a new location the current location to which the service stores its persistent state

5. Through the admin, retrieve the location to which the service is currently storing its persistent state

6. Determine if the new location retrieved in step 5 is equivalent to the expected location

7. Clean up all state and destroy the LDS
A3,M1
com.sun.jini.admin.

StorageLocationAdmin

