
Contributing to XML-Security

1. Introduction
The XML Security Project is an Open Source volunteer project released under a very open
license. This means there are many ways to contribute to the project - either with direct
participation (coding, documenting, answering questions, proposing ideas, reporting bugs,
suggesting bug-fixes, etc..) or by resource donations (money, time, publicity, hardware,
software, conference presentations, speeches, etc...).

To begin with, we suggest you to subscribe to the XML-Security mailing list (follow the link
for information on how to subscribe and to access the mail list archives). Listen-in for a
while, to hear how others make contributions.

You can get your local working copy of the latest and greatest code (which you find in the
xml-security module in the CVS code repository. Review the todo list, choose a task (or
perhaps you have noticed something that needs patching). Make the changes, do the testing,
generate a patch, and post to the dev mailing list. (Do not worry - the process is easy and
explained below.)

2. Help Wanted Here
The rest of this document is mainly about contributing new or improved code and/or
documentation, but we would also be glad to have extra help in any of the following areas:

• Answering questions on the mailing list - there is often a problem of having too many
questioners and not enough experts to respond to all the questions.

• Testing the package (especially its less-frequently-used features) on various
configurations and reporting back.

• Debugging - producing reproduceable test cases and/or finding causes of bugs. Some
known bugs are informally listed on To Do, and some are recorded in Bugzilla (see
explanation below).

• Specifying/analysing/designing new features - and beyond. (If you wish to get involved
with this, please join the mailing list, install and try out xml-security and read some of the
mail archives. You should have a strong "fluency" in XML technologies especially
XMLDSig and XML Encryption, Java or C++ and a basic understanding of the
architecture of this package.

Page 1
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.opensource.org/
http://www.opensource.org/
site:mail-lists
site:mail-lists
site:mail-lists
http://cvs.apache.org/viewcvs.cgi/xml-security
http://cvs.apache.org/viewcvs.cgi/xml-security
http://cvs.apache.org/viewcvs.cgi/xml-security
http://cvs.apache.org/viewcvs.cgi/xml-security
http://cvs.apache.org/viewcvs.cgi/xml-security
http://cvs.apache.org/viewcvs.cgi/xml-security
site:mail-lists
site:mail-lists


3. CVS Usage Precis
An overview of how to use CVS to participate in the XML Security development. Do not be
afraid - you cannot accidently destroy the actual code repository, because you are working
with a local copy as an anonymous user. Therefore, you do not have the system permissions
to change anything. You can only update your local repository and compare your revisions
with the real repository.

(Further general CVS usage information is at www.cvshome.org and your local info cvs
pages or man cvs pages or user documentation.)

Have a look at the Java or C++ installation pages to see how to get a local copy of the source.

4. CVS Committer with Secure Shell access
After a developer has consistently provided contributions (code, documentation and
discussion), then the rest of the dev community may vote to grant this developer commit
access to CVS.

You will need secure access to the repository to be able to commit patches. Here are some
resources that help to get your machine configured to use the repository over SSH.

• The CVS Book
• www.cvshome.org

5. Procedure for Raising Development Issues
There are two methods for discussing development and submitting patches. So that everyone
can be productive, it is important to know which method is appropriate for a certain situation
and how to go about it without confusion. This section explains when to use the
developer mailing list the bug database.

Research your topic thoroughly before beginning to discuss a new development issue. Search
and browse through the email archives - your issue may have been discussed before. Prepare
your post clearly and concisely.

Most issues will be discovered, resolved, and then patched quickly via the developer
mailing list. Larger issues, and ones that are not yet fully understood or are hard to solve, are
destined for Bugzilla.

Experienced developers use Bugzilla directly, as they are very sure when they have found a
bug and when not. However, less experienced users should first discuss it on the user or
developer mailing list (as appropriate). Impatient people always enter everything into

Contributing to XML-Security

Page 2
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.cvshome.org/
site:java/installation
site:java/installation
site:c/install
http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://www.cvshome.org/
site:mail-lists
site:mail-lists


Bugzilla without caring if it is a bug of our package or their own installation/configuration
mistake - please do not do this.

As a rule-of-thumb, discuss an issue on the developers mailing list first to work out any
details. After it is confirmed to be worthwhile, and you are clear about it, then submit the bug
description or patch via Bug Tracking.

Perhaps you do not get any answer on your first reply, so just post it again until you get one.
(But please not every hour - allow a few days for the list to deal with it.) Do not be impatient
- remember that the whole world is busy, not just you. Bear in mind that other countries will
have holidays at different times to your country and that they are in different time zones. You
might also consider rewriting your initial posting - perhaps it was not clear enough and the
readers eyes glazed over.

6. Contribution Notes and Tips
This is a collection of tips for contributing to the project in a manner that is productive for all
parties.

• Every contribution is worthwhile. Even if the ensuing discussion proves it to be
off-beam, then it may jog ideas for other people.

• Use sensible and concise email subject headings. Search engines, and humans trying to
browse a voluminous list, will respond favourably to a descriptive title.

• Start new threads with new Subject for new topics, rather than reusing the previous
Subject line.

• Keep each topic focused. If some new topic arises then start a new discussion. This
leaves the original topic to continue uncluttered.

• Whenever you decide to start a new topic, then start with a fresh new email message
window. Do not use the "Reply to" button, because threaded mail-readers get confused
(they utilise the In-reply-to header). If so, then your new topic will get lost in the
previous thread and go unanswered.

• Prepend your email subject line with a marker when that is appropriate, e.g. [Patch],
[Proposal], [RT] (Random Thought which quickly blossom into research topics :-),
[STATUS] (development status of a certain facility).

• When making changes to XML documentation, or any XML document for that matter,
use a validating parser (one that is tried and true is OpenSP/onsgmls). This procedure will
detect errors without having to go through the whole build docs process to find them.
Do not expect Forrest or the build system to detect the validation errors for you - they can
do it, but that is not their purpose. (Anyway, nsgmls validation error messages are more
informative.)

• Remember that most people are participating in development on a volunteer basis and in
their "spare time". These enthusiasts will attempt to respond to issues. It may take a little

Contributing to XML-Security

Page 3
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.oasis-open.org/cover/
http://www.oasis-open.org/cover/
http://openjade.sourceforge.net/


while to get your answers.
• Research your topic thoroughly before beginning to discuss a new development issue.

Search and browse through the email archives - your issue may have been discussed
before. Do not just perceive a problem and then rush out with a question - instead, delve.

• Try to at least offer a partial solution and not just a problem statement.
• Take the time to clearly explain your issue and write a concise email message. Less

confusion facilitates fast and complete resolution.
• Do not bother to send an email reply that simply says "thanks". When the issue is

resolved, that is the finish - end of thread. Reduce clutter.
• You would usually do any development work against the HEAD branch of CVS.
• When sending a patch, you usually do not need to worry about which CVS branch it

should be applied to. The maintainers of the repository will decide.
• If an issue starts to get bogged down in list discussion, then it may be appropriate to go

into private off-list discussion with a few interested other people. Spare the list from the
gory details. Report a summary back to the list to finalise the thread.

• Become familiar with the mailing lists. As you browse and search, you will see the way
other people do things. Follow the leading examples.

Contributing to XML-Security

Page 4
Copyright © 2002 The Apache Software Foundation. All rights reserved.


	Contributing to XML-Security
	1 Introduction
	2 Help Wanted Here
	3 CVS Usage Precis
	4 CVS Committer with Secure Shell access
	5 Procedure for Raising Development Issues
	6 Contribution Notes and Tips


