
Programming

1. Overview

There are two main modes of operation for the libraries. Signing and verifying. Verifying is
the simplest operation, as it (generally) operates on a DOM <Signature> structure that has
already been created.

Signing on the other hand can be more difficult, as there may be a requirement to create the
DOM structure necessary for the signature prior to the actual signing operation.

The rest of this section provides a very high level overview on how to use the library for
signing and verificataion of signatures.

Note:
Full API documentation for the current official release can be found here. The API documentation is also generated nightly
from the CVS repository.

Two samples are provided :

• Simple HMAC Signing
• Simple DSA Validation

The code snippets are taken directly from some of the sample code provided in the
src/samples directory in the distribution. More information on the API can be found in the
API Documentation.

2. A simple HMAC Signing example

The first example is based on the simpleHMAC.cpp code in samples. It creates an XML
letter, the appends a dummy signature to the end, using an enveloped-signature transform.

2.1. Setup

The following code snippet initialises Xerces, Xalan and XSEC. Note that the enveloped
transform is implemented using an XPath expression, so it is imperitive the Xalan libraries
are initialised.

int main (int argc, char **argv) {

Page 1
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

apiDocs/index.html
programming.html#simplehmac
programming.html#simpledsa


try {
XMLPlatformUtils::Initialize();

#ifndef XSEC_NO_XALAN
XalanTransformer::initialize();

#endif
XSECPlatformUtils::Initialise();

}
catch (const XMLException &e) {

cerr << "Error during initialisation of Xerces" << endl;
cerr << "Error Message = : "

<< e.getMessage() << endl;

}

// Create a blank Document

DOMImplementation *impl =
DOMImplementationRegistry::getDOMImplementation(MAKE_UNICODE_STRING("Core"));

// Create a letter
DOMDocument *doc = createLetter(impl);
DOMElement *rootElem = doc->getDocumentElement();

In the sample application, the call to createLetter(impl) simply creates a letter DOM structure
with a to and from address and some text. This is done using standard DOM calls via Xerces.

Once the system is initialised and the DOM document is created, a DSIGSignature object is
created via the XSECProvider interface class. The signature object is then used to create a
blank signature DOM node structure which is then inserted at the end of the document.

XSECProvider prov;
DSIGSignature *sig;
DOMElement *sigNode;

try {

// Create a signature object

sig = prov.newSignature();
sig->setDSIGNSPrefix("ds");

// Use it to create a blank signature DOM structure from the doc

sigNode = sig->createBlankSignature(doc,
CANON_C14N_COM,
SIGNATURE_HMAC,
HASH_SHA1);

The call to newSignature creates a signature object only. No DOM nodes are created at this

Programming

Page 2
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



point. The call to setDSIGNSPrefix tells the XSEC library what namespace prefix to use for
the signature object when it starts to create DOM nodes (in this case "ds" will be used). By
default, the library will use "dsig" as the prefix for the name space for Digital Signatures.

Finally, the call to sig->createBlankSignature sets up both the DOM structure and the XSEC
objects for a new signature with no <Reference> elements. In this case, the signature will be
made using Commented C14n canonicalisation, and a HMAC-SHA1 signature.

Warning:
The XSECProvider class still "owns" the DSIGSignature object. To delete the object, the original provider.release(sig) call
should be used. Never delete a DSIGSignature object directly.

2.2. Create a Reference and Sign

Now that the signature object is created, the signature is inserted into the document, and a
reference is created and set for an enveloping transform.

// Insert the signature DOM nodes into the doc

rootElem->appendChild(doc->createTextNode(MAKE_UNICODE_STRING("\n")));
rootElem->appendChild(sigNode);
rootElem->appendChild(doc->createTextNode(MAKE_UNICODE_STRING("\n")));

// Create an envelope reference for the text to be signed
DSIGReference * ref = sig->createReference("");
ref->appendEnvelopedSignatureTransform();

The "" parameter to createReference sets the URI attribute for the reference to be "" -
indicating the root element of the document in which the signature resides. The call to
appendEnvelopedSignatureTransform adds a standard eneveloped-signature transform to the
Reference node.

The macro MAKE_UNICODE_STRING is defined within the library header files and is
used to transcode local code page strings.

Note:
There is no need to insert the reference object into the DOM structure. This is done automatically by the createReference call.

Finally we create a signing key and sign the document.

// Set the HMAC Key to be the string "secret"

OpenSSLCryptoKeyHMAC * hmacKey = new OpenSSLCryptoKeyHMAC();

Programming

Page 3
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



hmacKey->setKey((unsigned char *) "secret", strlen("secret"));
sig->setSigningKey(hmacKey);

// Add a KeyInfo element
sig->appendKeyName("The secret key is \"secret\"");

// Sign

sig->sign();
}

catch (XSECException &e)
{

cerr << "An error occured during a signature load\n Message: "
<< e.getMsg() << endl;

exit(1);

}

The first two code lines create an OpenSSLCryptoKeyHMAC object, and set the key value to
the string "secret". The OpenSSL... classes are the interface layer between XSEC and
OpenSSL. More information can be found in the API documentation, but the main point of
note is that the XSEC library never deals directly with OpenSSL - it works via the
XSECCrypto abstract classes which are implemented in the OpenSSLCrypto code. This
would allow another person to re-implement the XSECCrypto code to use any cryptographic
provider required.

Note:
Once the key is passed to the signature it is owned by the signature. The signature object will delete the key when it is itself
deleted, or a new key is passed in.

The call to sig->appendKeyName() is used to append a <KeyName> element into the
<KeyInfo> block. The KeyInfo block was created as part of this call.

After the call to sig->sign() the DOM structure has the correct hash and signature values. The
owner program can write, store or further manipulate the document as required. If a
document manipulation might affect the signature (in this case almost anything would, as we
are using an enveloping transform which effectively signs everything that is not part of the
signature), then a further call to sig->sign() will re-sign the changes.

The last part of the code does some work to output the new DOM structure. The output
should look something like the following:

<Letter>
<ToAddress>The address of the Recipient</ToAddress>
<FromAddress>The address of the Sender</FromAddress>
<Text>
To whom it may concern

Programming

Page 4
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



...
</Text>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"/>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm=
"http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>askxS/A3BaLCjFjZ/ttU9c12kA4=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>oYEdQYG1IHzbkR1UcJ9Q5VriRPs=
</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyName>The secret key is "secret"</ds:KeyName>
</ds:KeyInfo>
</ds:Signature>
</Letter>

Note that the DigestValue and SignatureValue elements have been filled in.

3. A simple validation example

The second example takes a pre-signed document and an associated certificate and verifies
the embedded signature. The document in question is a simple purchase order, and changes
are made to the value of the order to demonstrate a signature failing verification.

3.1. Setup

As in the first example, Initialisation of the libraries is performed, and Xerces is used to read
in the document (which in this case is stored in a string in the source code).

In order to be able to modify the contents of the document later on, we also quickly find the
string containing the value of the purchase order.

For the sake of brevity, the code relating to parsing the in-memory document has been
removed from the snippet below.

int main (int argc, char **argv) {

try {
XMLPlatformUtils::Initialize();

#ifndef XSEC_NO_XALAN
XalanTransformer::initialize();

Programming

Page 5
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



#endif
XSECPlatformUtils::Initialise();

}
catch (const XMLException &e) {

cerr << "Error during initialisation of Xerces" << endl;
cerr << "Error Message = : "

<< DOMString(e.getMessage()) << endl;

}

...

Xerces is used to parse the document here

DOM_Document doc = parser->getDocument();

// Find the Amount node
DOMNode *amt = doc->getDocumentElement();

if (amt != NULL)
amt = amt->getFirstChild();

while (amt != NULL &&
(amt->getNodeType() != DOMNode::ELEMENT_NODE ||
!strEquals(amt->getNodeName(), "Amount")))

amt = amt->getNextSibling();

if (amt != NULL)
amt = amt->getFirstChild();

if (amt == NULL || amt->getNodeType() != DOMNode::TEXT_NODE) {
cerr << "Error finding amount in purchase order" << endl;
exit (1);

}

3.2. Create the Signature and Key objects

Now that the document is in memory, an XSECProvider is created and used to create a new
DSIGSignature object. In addition, the OpenSSL interface routines are used to read in a
certificate and obtain the associated public key.

XSECProvider prov;

DSIGSignature * sig = prov.newSignatureFromDOM(doc);

try {
// Use the OpenSSL interface objects to get a signing key

Programming

Page 6
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



OpenSSLCryptoX509 * x509 = new OpenSSLCryptoX509();
x509->loadX509Base64Bin(cert, strlen(cert));

sig->load();

In this case, the signature is create with the newSignatureFromDOM method. This tells the
library that the signature structure (although not necessarily a signed structure) already exists
in the DOM nodes. The library attempts to find the <Signature> node so that the load will
work. (The library will throw an XSECException if it cannot find the Element.)

The later call to sig->load() tells the library to read the DOM structure and create the
appropriate DSIG elements.

In this case an OpenSSLCryptoX509 object is also created. It is used to read in the cert string
and convert to an X509 structure. This could also be done using standard calls directly to
OpenSSL, but this is a quick shortcut.

3.3. Find a key

As we already know the key, the following code snippet loads the key directly from the
related X509. However prior to doing this, the code demonstrates using the DSIGKeyInfo
structures to find the key name that was embedded in the certificate. In an application, this
could be used to reference the correct key to be passed in. (Maybe via an XKMS call.)

the safeBuffer type is used extensively within the XSEC library to safely handle variable
length strings and raw buffers. The call to rawCharBuffer() simply returns a (char *) type
pointer to the buffer within the safeBuffer

The call to clonePublicKey() returns a copy of the public key embedded in the certificate. It
is owned by the caller, so in this case it can safely be passed to the DSIGSignature object
where it will be destroyed when another key is loaded or the object is released by the
XSECProvider.

DSIGKeyInfoList * kinfList = sig->getKeyInfoList();

// See if we can find a Key Name
safeBuffer kname;
DSIGKeyInfo * kinf = kinfList->getFirstKeyInfo();
while (kinf != NULL) {

kname = kinf->getKeyName();
if (kname.sbStrcmp("")) {

cout << "Key Name = "
<< kname.rawCharBuffer() << endl;

}
kinf = kinfList->getNextKeyInfo();

}

Programming

Page 7
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.



sig->setSigningKey(x509->clonePublicKey());

3.4. Validate the signature

Finally the signature is validated. In this case, we validate it three times. First with the
original DOM structure, then with the price changed and finally with the price set back to the
original value.

cout << "Amount = " << amt << " -> ";

if (sig->verify()) {
cout << "Signature Valid\n";

}
else {

cout << "Incorrect Signature\n";
}

amt.setNodeValue("$0.50");

cout << "Amount = " << amt << " -> ";

if (sig->verify()) {
cout << "Signature Valid\n";

}
else {

cout << "Incorrect Signature\n";
}

amt.setNodeValue("$16.50");

cout << "Amount = " << amt << " -> ";

if (sig->verify()) {
cout << "Signature Valid\n";

}
else {

cout << "Incorrect Signature\n";
}

When run, the program outputs the following:

Key Name = C=AU, ST=Vic, O=XML-Security-C Project,
CN=Samples Demo Certificate
Amount = $16.50 -> Signature Valid
Amount = $0.50 -> Incorrect Signature
Amount = $16.50 -> Signature Valid

Programming

Page 8
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.


	1 Overview
	2 A simple HMAC Signing example
	2.1 Setup
	2.2 Create a Reference and Sign

	3 A simple validation example
	3.1 Setup
	3.2 Create the Signature and Key objects
	3.3 Find a key
	3.4 Validate the signature


