
XML Encryption Programming

1. Overview

Note:
The Encryption functionality within the library is currently beta. Whilst the API is considered fairly functional, it may change
in version 1.2 as a result of feedback received from version 1.1.

As with signatures, there are two main modes of operation for the library when performing
encryption functions - Encryption and Decryption. Decryption is generally fairly simple, as
the library will handle most of the work around de-referencing key material and re-creating a
DOM document (or returning a byte stream).

Encryption is fairly simple if you are trying to encrypt a DOM structure. The library will
encrypt the nodes and then replace them with the encrypted version. However if you want to
embed an arbitrary encrypted object in the document, you will need to encrypt it first and
then pass the encrypted text into the library.

The rest of this page looks at some simple examples around encrypting and decrypting nodes
within an XML document

2. A simple encryption example

The next example encrypts an element (and all its children) from a pre-generated document.
It uses a randomly generated key to handle the bulk encryption, and then encrypts this using
an RSA public key. The resultant encrypted key is embedded in an <EncryptedKey>
element.

This example can be found in the src/samples directory as simpleEncrypt.cpp.

2.1. Setup

The first step is initialisation of Xerces, Xalan (if used) and XML-Security. Once this is
done, we create a document. For brevity, the details of the call to createLetter are not
included on this page. The function is very simple - it creates an XML DOM document that
represents a letter, and sets a global variable (g_toEncrypt) that will be used later on to
determine what node to encrypt.

Page 1
Copyright © All rights reserved.

int main (int argc, char **argv) {

try {
XMLPlatformUtils::Initialize();

#ifndef XSEC_NO_XALAN
XalanTransformer::initialize();

#endif
XSECPlatformUtils::Initialise();

}
catch (const XMLException &e) {

cerr << "Error during initialisation of Xerces" << endl;
cerr << "Error Message = : "

<< e.getMessage() << endl;

}

// Create a blank Document

DOMImplementation *impl =
DOMImplementationRegistry::getDOMImplementation(MAKE_UNICODE_STRING("Core"));

// Create a letter
DOMDocument *doc = createLetter(impl);

2.2. Setup for Encryption

Once the library is initialised, we create a XENCCipher object in a manner similar to the
creation of a DSIGSignature object. The XENCCipher object is used to actually perform
encryption/decryption functions and to manipulate the various encryption objects provided
by the library.

As well as creating the XENCCipher object, the sample uses the RAND_bytes function within
the OpenSSL library to create a random key that will be used during the encryption process.

try {

/* Create the cipher object that we need */

XSECProvider prov;
XENCCipher *cipher;

cipher = prov.newCipher(doc);

/* Now generate a random key that we can use to encrypt the element
*
* First check the status of the random generation in OpenSSL
*/

XML Encryption Programming

Page 2
Copyright © All rights reserved.

if (RAND_status() != 1) {

cerr << "OpenSSL random generation not properly initialised" << endl;
exit(1);

}

unsigned char keyBuf[24];
if (RAND_bytes(keyBuf, 24) == 0) {

cerr << "Error obtaining 24 bytes of random from OpenSSL" << endl;
exit(1);

}

2.3. Encryption of Element

The actual code to perform encryption is very small. Most of the complexity for standard
encryption is hidden within the library.

The first two lines of code wrap the generated key bytes in an OpenSSL 3DES key. This is
then passed into the cipher object with a call to setKey(key).

The last line in the following block performs the actual encryption. the first parameter to
cipher->encryptElement is the node that will be encrypted. The second is the algorithm to be
used. This is used to calcualte the Algorithm URI to be set in the <EncryptedData> element.

This call to EncryptElement will encrypt the provided element using the key set previously.
The passed in element will be replaced with an <EncryptedData> element containing the
encrypted version of the element and all its children.

If no further information is required to be embedded in the <EncryptedData> structure (such
as <KeyInfo> nodes), the usage of the library could be terminated here.

/* Wrap this in a Symmetric 3DES key */

OpenSSLCryptoSymmetricKey * key =
new OpenSSLCryptoSymmetricKey(XSECCryptoSymmetricKey::KEY_3DES_192);

key->setKey(keyBuf, 24);
cipher->setKey(key);

/* Encrypt the element that needs to be hidden */
cipher->encryptElement(g_toEncrypt, ENCRYPT_3DES_CBC);

2.4. Create an <EncryptedKey>

The following snippet of code uses the previously created XENCCipher object to encrypt the
pseudo random key using an RSA key loaded from a X.509 certificate.

XML Encryption Programming

Page 3
Copyright © All rights reserved.

The first two lines load the certificate into an OpenSSLCryptoX509 structure, which is then
used to extract the public key from the certificate and pass into the cipher.

A call to setKEK is used rather than setKey. This call is used to tell the cipher object that the
key being used is a Key Encryption Key, and should be used for encrypting/decrypting
<EncryptedKey> elements.

The final line actually performs the encryption and created the <EncryptedKey> structure.
The first two parameters define the buffer and its length to be encrypted. The last defines the
encryption algorithm to be used.

The encryptedKey method returns an XENCEncryptedKey object. This contains the DOM
structure for the object, but it is not yet rooted in a particular document. (Although it is
created using the DOMDocument that was passed in during the call to newCipher.)

/* Now lets create an EncryptedKey element to hold the generated key */

/* First lets load the public key in the certificate */
OpenSSLCryptoX509 * x509 = new OpenSSLCryptoX509();
x509->loadX509Base64Bin(cert, strlen(cert));

/* Now set the Key Encrypting Key (NOTE: Not the normal key) */
cipher->setKEK(x509->clonePublicKey());

/* Now do the encrypt, using RSA with PKCS 1.5 padding */

XENCEncryptedKey * encryptedKey =
cipher->encryptKey(keyBuf, 24, ENCRYPT_RSA_15);

2.5. Append <EncryptedKey> to <EncryptedData>

The final part (other than outputting the result) is to retrieve the <EncryptedData> element
that was previously created and append the newly created <EncryptedKey> as a <KeyInfo>
element.

/*
* Add the encrypted Key to the previously created EncryptedData, which
* we first retrieve from the cipher object. This will automatically create
* the appropriate <KeyInfo> element within the EncryptedData
*/

XENCEncryptedData * encryptedData = cipher->getEncryptedData();
encryptedData->appendEncryptedKey(encryptedKey);

The above code results in a document that contains the newly created <EncryptedData> as
follows:

XML Encryption Programming

Page 4
Copyright © All rights reserved.

<Letter>
<ToAddress>The address of the Recipient</ToAddress>
<FromAddress>The address of the Sender</FromAddress>
<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<xenc:CipherData>
<xenc:CipherValue>Wh8pAkDsQceHiktGxnlhXGfEMPDOLB6FwWp8PLedFEB3L3F6xHUoCOerIvA7Pgvv
VYzVqLv4a5x5YdnCqikkFBLE/fruAUe2Z8ZTEn/CaPYmpzU6qYHALCl7Q61LcbqH
R87TzroBYsYwfHmXmrKHL9K9sB6zmuec1TjVzm2c/Xs=
</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedKey>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>YhqQciiFkLG1z0I1TJC6Pewnzw/gmVuGqcTvHtWpgak/b3NQDRAlv07lJOmBLoHX
23LQ1CdPSxvnyerlJGwkY6xJ0M5tjpDregTVcECXo/bd+x8eIsF2kaawoZGCqD1K
96T36Fx9rHek9bY/Hp1OiQ==
</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData></Letter>

3. A simple decryption example

The final example shows how to use the library to decrypt an EncryptedData structure. A
private key is loaded as a Key Encryption Key (KEK), and a call is made to the library which
decrypts the encrypted data and inserts the resulting DOM nodes back into the original
document.

This example can be found in the src/samples directory as simpleDecrypt.cpp.

3.1. Setup

The setup process is much the same as for simpleVerify. The document (which is the
document created in simpleEncrypt) is parsed using Xerces and a DOMDocument is
returned.

3.2. Load Private Key

The simpleDecrypt uses a preloaded RSA private key for the decryption. A key resolver
(XSECKeyInfoResolver) can also be used to provide a callback mechanism such that
applications can determine the correct key at run time.

The following code uses a XSECProvider to obtain a XENCCipheruses OpenSSL to load the
private key from the s_privateKey char array.

XML Encryption Programming

Page 5
Copyright © All rights reserved.

The key is loaded using a call to setKEK. This method loads the key as a Key Encryption
Key - which means it will be used to decrypt an <EncryptedKey> structure.

XSECProvider prov;
XENCCipher *cipher;

cipher = prov.newCipher(doc);

/* Load the private key via OpenSSL and then wrap in an OpenSSLCrypto construct */
BIO * bioMem = BIO_new(BIO_s_mem());
BIO_puts(bioMem, s_privateKey);
EVP_PKEY * pk = PEM_read_bio_PrivateKey(bioMem, NULL, NULL, NULL);

/* NOTE : For simplicity - no error checking here */

OpenSSLCryptoKeyRSA * k = new OpenSSLCryptoKeyRSA(pk);
cipher->setKEK(k);

3.3. Perform Decryption

Now that the key is loaded, the actual decryption is performed using two lines of code. The
first finds the node to be decrypted. In this case, the findXENCNode library function is used.

The second line, decryptElement actually performs the decryption. It performs the following
steps :

• Load the <EncryptedData> structure into an XENCEncryptedData structure.
• if no decryption key is loaded (in this case, none is), search the <KeyInfo> list for an

<EncryptedKey> element (one will be found in this case).
• Use the previously loaded KEK to decrypt the key found in the previous step.
• Use the decrypted key to decrypt the <EncryptedData> data
• Parse the decrypted data into DOM nodes
• Replace the <EncryptedData> with the DOM fragment returned in the previous step

/* Find the EncryptedData node */
DOMNode * encryptedNode = findXENCNode(doc, "EncryptedData");

/* Do the decrypt */
cipher->decryptElement((DOMElement *) encryptedNode);

The result of these steps is the decrypted letter.

<Letter>
<ToAddress>The address of the Recipient</ToAddress>
<FromAddress>The address of the Sender</FromAddress>

XML Encryption Programming

Page 6
Copyright © All rights reserved.

<Text>
To whom it may concern, my secret credit card number is :
0123 4567 89ab cdef

...
</Text></Letter>

XML Encryption Programming

Page 7
Copyright © All rights reserved.

	1 Overview
	2 A simple encryption example
	2.1 Setup
	2.2 Setup for Encryption
	2.3 Encryption of Element
	2.4 Create an <EncryptedKey>
	2.5 Append <EncryptedKey> to <EncryptedData>

	3 A simple decryption example
	3.1 Setup
	3.2 Load Private Key
	3.3 Perform Decryption

