XML Encryption Programming

1. Overview

The Encryption functionality within the library is currently beta. Whilst the AP is considered fairly functional, it may change

inversion 1.2 as aresult of feedback received from version 1.1.

As with signatures, there are two main modes of operation for the library when performing
encryption functions - Encryption and Decryption. Decryption is generally fairly smple, as
the library will handle most of the work around de-referencing key material and re-creating a
DOM document (or returning a byte stream).

Encryption is fairly smple if you are trying to encrypt a DOM structure. The library will
encrypt the nodes and then replace them with the encrypted version. However if you want to
embed an arbitrary encrypted object in the document, you will need to encrypt it first and
then pass the encrypted text into the library.

The rest of this page looks at some simple examples around encrypting and decrypting nodes
within an XML document

2. A simple encryption example

The next example encrypts an element (and all its children) from a pre-generated document.
It uses a randomly generated key to handle the bulk encryption, and then encrypts this using
an RSA public key. The resultant encrypted key is embedded in an <EncryptedKey>
element.

This example can be found in the src/samples directory as simpleEncrypt.cpp.

2.1. Setup

The first step is initialisation of Xerces, Xaan (if used) and XML-Security. Once this is
done, we create a document. For brevity, the details of the call to createletter are not
included on this page. The function is very simple - it creates an XML DOM document that
represents a letter, and sets a global variable (g_toEncrypt) that will be used later on to
determine what node to encrypt.

Page 1

XML Encryption Programming

int min (int argc, char **argv) {

try {
XMLPlatformltils::Initialize();
#i f ndef XSEC_NO_XALAN
Xal anTransformer::initialize();
#endi f
XSECPl atformUhils::Initialise();

}
catch (const XM.Exception &) {
cerr << "Error during initialisation of Xerces" << endl;

cerr << "Error Message = :
<< e.get Message() << endl;

}
// Create a bl ank Docunent

DOM mpl enent ati on *i npl =
DOM mpl enent at i onRegi stry: : get DOM npl ermrent at i on(MAKE_UNI CODE_STRI N& " Core")) ;

/] Create a letter
DOvDocunent *doc = createlLetter(inpl);

2.2. Setup for Encryption

Once the library is initialised, we create a XENCCipher object in a manner similar to the
creation of a DS GSgnature object. The XENCCipher object is used to actually perform
encryption/decryption functions and to manipulate the various encryption objects provided
by thelibrary.

Aswell as creating the XENCCipher object, the sample uses the RAND _bytes function within
the OpenSSL library to create arandom key that will be used during the encryption process.

try {

/* Create the cipher object that we need */

XSECPr ovi der prov;
XENCCi pher *ci pher;

ci pher = prov. newC pher (doc);
/* Now generate a random key that we can use to encrypt the el enent
*

* First check the status of the random generation in OpenSSL
*/

Page 2

XML Encryption Programming

if (RAND status() != 1) {

cerr << "(OpenSSL random generati on not properly initialised" << endl;

exit(1);

}

unsi gned char keyBuf[24];
i f (RAND byt es(keyBuf, 24) == 0) {

cerr << "Error obtaining 24 bytes of random from QpenSSL" << endl;

exit(l);
}
2.3. Encryption of Element

The actual code to perform encryption is very small. Most of the complexity for standard
encryption is hidden within the library.

The first two lines of code wrap the generated key bytes in an OpenSSL 3DES key. Thisis
then passed into the cipher object with acall to setkey(key).

The last line in the following block performs the actual encryption. the first parameter to
cipher->encryptElement is the node that will be encrypted. The second is the algorithm to be
used. Thisis used to calcualte the Algorithm URI to be set in the <EncryptedData> el ement.

This call to EncryptElement will encrypt the provided element using the key set previously.
The passed in element will be replaced with an <EncryptedData> element containing the
encrypted version of the element and all its children.

If no further information is required to be embedded in the <EncryptedData> structure (such
as <KeyInfo> nodes), the usage of the library could be terminated here.

/* Wap this in a Symmetric 3DES key */
penSSLCrypt oSynmet ri cKey * key =

new OpenSSLCrypt oSymmetri cKey(XSECCr ypt oSymret ri cKey: : KEY _3DES 192);

key- >set Key(keyBuf, 24);
ci pher - >set Key(key) ;

/* Encrypt the el enent that needs to be hidden */
ci pher->encrypt El ement (g_t oEncrypt, ENCRYPT_3DES CBC);

2.4. Create an <EncryptedK ey>

The following snippet of code uses the previously created XENCCipher object to encrypt the
pseudo random key using an RSA key loaded from a X.509 certificate.

Page 3

XML Encryption Programming

The first two lines load the certificate into an OpenSSL CryptoX509 structure, which is then
used to extract the public key from the certificate and pass into the cipher.

A call to setKEK is used rather than setkKey. This call is used to tell the cipher object that the
key being used is a Key Encryption Key, and should be used for encrypting/decrypting
<EncryptedKey> elements.

The final line actually performs the encryption and created the <EncryptedKey> structure.
The first two parameters define the buffer and its length to be encrypted. The last defines the
encryption algorithm to be used.

The encryptedKey method returns an XENCEncryptedKey object. This contains the DOM
structure for the object, but it is not yet rooted in a particular document. (Although it is
created using the DOMDocument that was passed in during the call to newCipher.)

/* Now |l ets create an EncryptedKey el enent to hold the generated key */

/* First lets |load the public key in the certificate */
OpenSSLCrypt 0X509 * x509 = new OpenSSLCrypt 0X509() ;
x509- >l oadX509Base64Bi n(cert, strlen(cert));

/* Now set the Key Encrypting Key (NOTE: Not the nornmal key) */
ci pher - >set KEK(x509- >cl onePubl i cKey()) ;

/* Now do the encrypt, using RSA with PKCS 1.5 paddi ng */

XENCEncr ypt edKey * encrypt edkey =
ci pher - >encrypt Key(keyBuf, 24, ENCRYPT_RSA 15);

2.5. Append <EncryptedK ey> to <EncryptedData>

The final part (other than outputting the result) is to retrieve the <EncryptedData> element
that was previously created and append the newly created <EncryptedKey> as a <Keylnfo>
element.

Add the encrypted Key to the previously created EncryptedData, which

we first retrieve fromthe cipher object. This will automatically create
t he appropriate <Keylnfo> el ement within the EncryptedData
/

* % F * X

XENCENncrypt edData * encryptedData = ci pher->get Encrypt edDat a() ;
encr ypt edDat a- >appendEncr ypt edKey(encr ypt edKey) ;

The above code results in a document that contains the newly created <EncryptedData> as
follows:

Page 4

XML Encryption Programming

<Letter>

<ToAddr ess>The address of the Reci pi ent </ ToAddr ess>

<Fr omAddr ess>The address of the Sender </ FromAddr ess>

<xenc: Encrypt edDat a Type="htt p://ww. w3. or g/ 2001/ 04/ xm enc#El enent "

xm ns: xenc="htt p://ww. w3. or g/ 2001/ 04/ xm enc#" >

<xenc: Encrypti onMet hod Al gorithm="http://ww. w3. or g/ 2001/ 04/ xm enc#t ri pl edes-chc"/ >
<ds: Keyl nfo xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >

<xenc: Encrypt edKey xm ns: xenc="htt p://ww. w3. or g/ 2001/ 04/ xm enc#" >

<xenc: Encrypti onMet hod Al gorithm="http://ww. wW3. or g/ 2001/ 04/ xm enc#rsa-1_5"/>
<xenc: Ci pher Dat a>

<xenc: Ci pher Val ue>W8pAkDsQceHi kt Gxnl hXG EMPDOLB6 FWWh8PLedFEB3L3F6xHUoCCer | vA7Pgvyv
VYzVgLv4a5x5YdnCqi kkFBLE/ f r uAUe2Z8ZTEn/ CaPYnpzU6qYHALC 7Q61LcbgH

R87Tzr oBYs YWf HXnt KHL9K9sB6znuec1Tj VznRc/ Xs=

</ xenc: C pher Val ue>

</ xenc: Ci pher Dat a>

</ xenc: Encr ypt edKey>

</ ds: Keyl nf 0>

<xenc: Ci pher Dat a>

<xenc: Ci pher Val ue>YhqQi i FkLG1z0l 1TJC6Pewnzw gnVuGgcTvHt Whgak/ b3NQDRAI v07] JOrBLoHX
23LQLCdPSxvnyer | JGAY6xJOMbt j pDr egTVCECXo/ bd+x8el sF2kaawoZGCgD1K

96T36Fx9r Hek9bY/ Hp1G Q==

</ xenc: Ci pher Val ue>

</ xenc: Ci pher Dat a>

</ xenc: Encrypt edDat a></ Lett er >

3. A simple decryption example

The final example shows how to use the library to decrypt an EncryptedData structure. A
private key isloaded as a Key Encryption Key (KEK), and acall is made to the library which
decrypts the encrypted data and inserts the resulting DOM nodes back into the original
document.

This example can be found in the src/samples directory as simpleDecrypt.cpp.

3.1. Setup

The setup process is much the same as for simpleVerify. The document (which is the
document created in simpleEncrypt) is parsed using Xerces and a DOMDocument is
returned.

3.2. Load Private Key

The simpleDecrypt uses a preloaded RSA private key for the decryption. A key resolver
(XSECKeyInfoResolver) can also be used to provide a callback mechanism such that
applications can determine the correct key at run time.

The following code uses a XSECProvider to obtain a XENCCipheruses OpenSSL to load the
private key from the s_privateKey char array.

Page 5

XML Encryption Programming

The key is loaded using a call to setKEK. This method loads the key as a Key Encryption
Key - which meansit will be used to decrypt an <EncryptedKey> structure.

XSECPr ovi der prov;
XENCCi pher *ci pher;

ci pher = prov. newC pher (doc);

/* Load the private key via OpenSSL and then wrap in an QpenSSLCrypto construct
BI O * bioMem = BIO newm(BIO s_mem());

Bl O put s(bi oMem s_pri vat eKey) ;

EVP_PKEY * pk = PEM read _bi o _Privat eKey(bi oMem NULL, NULL, NULL);

/* NOTE : For sinplicity - no error checking here */

penSSLCrypt oKeyRSA * k = new OpenSSLCr ypt oKeyRSA(pk) ;
ci pher - >set KEK(k) ;

3.3. Perform Decryption

Now that the key is loaded, the actual decryption is performed using two lines of code. The
first finds the node to be decrypted. In this case, the findXENCNode library function is used.

The second line, decryptElement actually performs the decryption. It performs the following
steps :

« Load the <EncryptedData> structure into an XENCEncryptedData structure.

« if no decryption key isloaded (in this case, noneis), search the <Keylnfo> list for an
<EncryptedKey> element (one will be found in this case).

Use the previously loaded KEK to decrypt the key found in the previous step.

Use the decrypted key to decrypt the <EncryptedData> data

Parse the decrypted datainto DOM nodes

Replace the <EncryptedData> with the DOM fragment returned in the previous step

/* Find the EncryptedData node */
DOVWNode * encrypt edNode = fi ndXENCNode(doc, "EncryptedData");

/* Do the decrypt */
ci pher ->decrypt El ement ((DOVElI enent *) encrypt edNode) ;

The result of these steps is the decrypted letter.

<Letter>
<ToAddr ess>The address of the Reci pi ent </ ToAddr ess>
<Fr omAddr ess>The address of the Sender </ Fr omAddr ess>

Page 6

XML Encryption Programming

<Text >
To whom it nmay concern, ny secret credit card nunber is :
0123 4567 89ab cdef

%)fext></Letter>

Page 7

	1 Overview
	2 A simple encryption example
	2.1 Setup
	2.2 Setup for Encryption
	2.3 Encryption of Element
	2.4 Create an <EncryptedKey>
	2.5 Append <EncryptedKey> to <EncryptedData>

	3 A simple decryption example
	3.1 Setup
	3.2 Load Private Key
	3.3 Perform Decryption

