Tapestry Tutorial
by Howard Lewis Ship

Tapestry Tutorial
by Howard Lewis Ship
Copyright © 2000, 2001, 2002, 2003 The A pache Software Foundation

Table of Contents

O 1 1 o [Tox 1 o o

2. SattiNG UPTRETULOMEL .. .oeete ettt et e e et e ettt e e et e e e et e e e enba e eeenes

I o 1= 1 Lo VAN o1 [PP
N o] o] o= o]] =l oo 1 o 1= 3
WED DEPIOYMENT DESCIIPION .vuiiitetiieeee e et e e e e e e e e e e e e e e et e e e e e e et e e et e e et e eetn e e aneeannns 3
PN ool 1Tor= o g IS o 1= ot o= [o] o R 4
HOMEPAgE SPECITICALION ...ttt 4
HOMEPAgETEMPIALE ... et e e et e e e e e e raa s 5
RUNTNEAPPIICAITION ... ettt et ettt e e et e et e e et e e e e eennns 5

Y] 0 oo @0 o | P

L o =10 [0 7= PP PRPTPRPTPR
LIV 14O o = ot USRS 13
THEHOMEPAGE ... et e et e et e et e e e e e e e 14
THEGUESSPAGE ...t ettt ettt ettt e et e e e e e e e e enr e aee 16
[T 11 £ o] < TP 18

6. Creating ReUSaDI € COMPONENESiuuiie e e e e e e e e e e et e e et e e e et e eaeeanaeens

FALE ST =1 YA L1 1= o: (o R
N = Y7o (o 24
SPECITICAIIONVIEIW ...t ettt et e e et e e e et e e e et e e eeeans 25
TEMPIAIEV IO ...ttt et ettt 26
PrOPEITIESVIBIV ...t ettt e et e e et et e e e e e et e e et e ean e eans 26
L 07T LoV A= P 27
[0 o110 Y AT = 28

8. Tapestry WOTKDENCK ... ceecee e e e e e e e

LS oo 2 1o o 5P
Localization Of HTML TEMPIEESceiieiiieiiii e et e et e e e eeees 34
(o lorz = (o g o) N = £ PSPPSR 34
Other OptioNSTOr LOCAHIZAIIONcvuiiiiiiiee e e e e e e e e ena e 34

O 1= s (1 N

List of Figures

2.1 TULOMA INAEX PAGE ... iiii et e e e e e e et e e e e e et e e e e et e e et e eeanaeees 2

3.1. Tutorial Deployment DesCriptor (PArtial)veeeiiiiiiei e e e 3

2 o [1 Lo1ViY o] 4 o I="o) o I Tor= i Lo o PSPPI 4

R o [0]0 11N o 7= o [T PP PTRUPTPN 4

I3 o]0 4= o112 | PP UPTRUPTRN 5

IR N o = 1 o ViV o Fo AN o] o 1o 1 o o 5

1 I)V =g T oy N o] o= 4 o o 7

S T o) == o o 1= 4 o] o 7

e T o o0 = 0o 11 0| 8

N o [0 0 TcN 7= o =PRI 9

TN o [0 0L = V7= L PP 9

4.6. HTML generated fOor HOME Pageive ittt e e e e e e e een 10
5.1 HanNgMaN HOMEPAGEot e e e e e e eas 11
LA =g Te =] o = 11
5.3 . HaNgMANFAIEUPEGE ... ittt 12
5.4. HaNgMaN SUCCESSPEJEccuuiiriiiiieee ettt ettt et et et et e e e et e r e e eanneens 13
5.5, HaNgMaN.@PPIICELIONc.uneeeeeee e e ettt e et et e e e e e 13
L S (0] 0T = (V7= PP 14
A o 1o 0= o110 =2t o 15
R o (04 T= T 7= 0 (=Y (1 (=1 o)) 16
5.9. GUESS.NEMI (EXCEIIL) ... ettt ettt e et e e et e ettt e e ettt e e e et e e e eraa s 16
5.10. GUESSJWE (EXCEIPL) ..t eeeett e ettt e ettt e ettt e e ettt e e ettt e ettt e e et e e e e et e e e e et e e e e et e bb e e e et nb e e e eraa s 17
N TN T V= T (SN (= 1 o) TP 18
LI =T o =g o 1= o = 19
L = T (o L= O =0 (o] o = R 19
LSS o [0 47= o112 0 PP 20
L2 = o o (= 0 P 20
B.5. BOIMUEI JWEC ...ttt ettt ettt ettt ettt eea e e e 21
6.6. SHOW INSPECLON BULTON ... ettt ettt e e et e et e e et e e et e e et e aeanaaees 22
6.7. HOMEPAGE SPECITICALION ...ttt e ans 23
6.8. BOrderENGIiNE.JAVA(EXCEIPL) .. evvueiiieeei ettt e et e e e e e e e e e e e et e e et e e et e e e e e et e e et e e eaneeean e eanneeannns 23
6.9. Border.appliCation (EXCEIPL) ...cvvueere i eeiee e et e et e e e e e e e e e e e e e e e 23
8 T = o= VA 1S o< o o PP 24
7.2, SPECITICAIONVIBWW ..ottt e e et e e et e ettt e e e e ab e e e e raa s 25
FAC R K= 010 = LAY AT Y PP 26
0] 1= =SV T 26
2830 1o 1 LY=o 27
7.6.L0gging View (LEVEl SEIECHION)vee et e e e e e e e e e e e e 28
S TR0 I Yo T 4 o= P 30
8.2. Workbench (SNOWING REGUESES) ...ttt e 30
0 L0 N == oY o 1) PP 32
S I oo =T @t g =g o T= o K (7= 0=) 33
LS G I 0|\ == 1= (=1 7= T) R 33

Chapter 1. Introduction
Warning

This Tutorial is extremely out of date. A new tutorial should be ready before 3.0 reaches GA.

Tapestry is a new application framework for developing web applications. It uses a component object model to rep-
resent the pages of a web application. Thisis similar to spirit to using the Java Swing component object model to
build GUls.

Just like using a GUI toolkit, there's some preparation and some basic ideas that must be cleared before going to
more ambitious things. Nobody writes a word processor off the top of their head as their first GUI project; nobody
should attempt a full-featured e-commerce site as their first attempt using Tapestry.

The goal of Tapestry isto eliminate most of the coding in a web application. Under Tapestry, nearly al code is di-
rectly related to application functionality, with very little "plumbing". If you have previously developed a web appli-
cation using Microsoft Active Server Pages, JavaServer Pages or Java Servlets, you may take for granted all the
plumbing: writing servlets, assembling URLSs, parsing URLSs, managing objects inside the Ht t pSessi on, €etc.

Tapestry takes care of nearly al of that, for free. It allows for the development of rich, highly interactive applica-
tions.

This tutorial will start with basic concepts, such as the "Hello World" application, and will gradually build up to
more sophisticated examples.

Thetutorial uses Jetty, afreely available servlet engine, which is packaged with the Tapestry distribution.
The format of thistutorial isto describe (visually and with text) an application within the tutorial, then describe how

it is constructed, using code excerpts. The reader is best served by having an IDE open so that they can look at the
code in detail, as well as run the applications.

url(http://sf.net/projects/jetty)

Chapter 2. Setting up the Tutorial

This document expects that you will have extracted the full Tapestry distribution to your C. drive 1
Thiswill have created adirectory C: \ Tapest ry- x. x and, beneath it, several more directories. 2

The source code for the Tutoria is distributed as a JAR file, src/ exanpl es-src. j ar. A precompiled WAR file,
l'ib/tutorial.war isincluded inthe distribution.

The Tapestry distribution includes an Ant build file that allows the Tutorial to be directly executed. Ant release 1.5
isrequired.

From the Tapestry root directory, execute the command ant -emacs run-tutorial, which will launch the Jetty server
for the Tutorial.

Once Jetty isrunning, you can access the Tutorials using the URL http: //1 ocal host: 8080/t utori al .

Figure 2.1. Tutorial Index Page

a Tapestry Tutorial - Microsoft Internet Explorer

G D) A GBS | Fle Edt View Favortes Tooks Help Address |@ alhost:3080/butorialf "I

|@ Dane |_|_|_|. Internet &

11f you are using Solaris or another non-Windows operating system, you're expected to be savvy enough to translate to a sensibly constructed file
system.

2 The three numbers are the release number. At the time of this writing, the release was 2.2, but this is constantly changing. Simply adjust the ac-
tual pathname to reflect the release of Tapestry you downloaded.

url(http://jakarta.apache.org/ant)
url(http://localhost:8080/tutorial)
url(http://localhost:8080/tutorial)

Chapter 3. Hello World

In thisfirst example, we'll create avery simple "Hello World" kind of application. It won't have any real functional-
ity but it'll demonstrate the simplest possible variation of a number of key aspects of the framework.

Well define our application, define the lone page of our application, configure everything and launch it.

The code for this section of the tutoria is in the Java package tutorial.hello, i.e,
C.\ Tapestry-x.x.x\ exanpl es\ Tutorial\src\tutorial\hello.

Application Engine

As each new client connects to the application, an instance of the application engine is created for them. The appli-
cation engineis used to track that client's activity within the application.

The application engineis an instance, or subclass of, the Tapestry class Si npl eEngi ne.

In these first few examples, we have no additional behavior to add to the provided base class, so we simply use
Si npl eEngi ne directly.

Web Deployment Descriptor

The application servlet is a "bridge" between the servlet container and the application engine. Its job is simply to
create (on the first request) or locate (on subsequent requests) the application engine.

All Tapestry applications use the same servlet class, however its configuration is different. Part of the configuration
isto identify the location of the application specification which is like a master index of all the pagesin the applica-
tion.

The tutorial is a rare case; it is a single WAR that contains multiple Tapestry applications. This isn't a problem ...
each Tapestry application has its own servlet and has its own configuration. The following figure shows the deploy-
ment descriptor for the Tapestry Tutorial (but excludes the additional sections for the other applications within the
WAR).

Figure 3.1. Tutorial Deployment Descriptor (partial)

<?xm version="1.0"7?>

<! DOCTYPE web-app PUBLIC
“-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN
“"http://java. sun. com j 2ee/ dt ds/ web-app_2_2. dtd" >

<web- app>
<di spl ay- name>Tapestry Tutori al </ di spl ay- name>

<servl et >
<servl et - nane>hel | o</ servl et - nane>
<servl et - cl ass>or g. apache. t apestry. Appl i cati onServl et </ servl et - cl ass>
<init-paranp
<par am nane>or g. apache. t apestry. appl i cati on-speci fi cati on</ par am nane>
<param val ue>/tutorial/hello/HelloWwrld.application</param val ue>
</init-paranm
<l oad- on- st art up>0</ | oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - name>hel | o</ servl et - nanme>
<ur| -pattern>/hello</url-pattern>
</ servl et - mappi ng>

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/engine/SimpleEngine.html)

Chapter 3. Hello World

<sessi on-config> _)
~ <sessi on-timeout >15</ sessi on-ti meout >
</ sessi on-confi g>

<wel cone-file-list>
<wel cone-fil e>i ndex. ht Ml </ wel cone-fil e>
</wel cone-file-list>

</ web- app>

Application Specification

The application specification is used to describe the application to the Tapestry framework. It provides the applica
tion with aname, an engine class, and alist of pages.

This specification is afile that is located on the Java class path. In a deployed Tapestry application, the specification
lives with the application's classfiles, in the WEB- | NF/ ¢l asses directory of aWear file.

Figure 3.2. HelloWorld.application

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE appl i cati on PUBLIC
"-//Howard Lewi s Ship// Tapestry Specification 1.3//EN'
"http://tapestry.sf.net/dtd/ Tapestry_1 3.dtd">
<appl i cation
name="Hello World Tutorial"
engi ne-cl ass="or g. apache. t apestry. engi ne. Si npl eEngi ne" >

<page nane="Hone"
speci fi cati on-pat h="/tutorial/hell o/ Hone. page"/ >

</ appl i cati on>

Our application is very ssimple; we give the application a name, use the standard engine, and define a single page,
named "Home". In Tapestry, pages and components are specified with the path to their specification file (afile that
end with '.page for page specifications or ".jwc' for component specifications).

Page "Home" has a special meaning to Tapestry: when you first launch a Tapestry application, it loads and displays
the "Home" page. All Tapestry applications are required to have such a home page.

Home Page Specification

The page specification defines the Tapestry component responsible for the page. In this first example, our compo-
nent is very simple.

Figure 3.3. Home.page

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE page-specificati on PUBLIC
"-//Howard Lew s Ship// Tapestry Specification 1.3//EN'
"http://tapestry.sf.net/dtd/ Tapestry_1 3.dtd">

<page-specification class="org. apache. tapestry. ht nl . BasePage"/ >

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 3. Hello World

This simply says that Hone is a kind of page. We use the supplied Tapestry class BasePage since we aren't adding
any behavior to the page.

Home Page Template

Finally, we get to the content of our application. This file is also a Java resource; it isn't directly visible to the web
server. It has the same [ocation and name as the component specification, except that it endsin "htmil".

Figure 3.4. Home.html

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<htm >
<head>
<title>Hello World</title>
</ head>
<body>
Wl come to your first Tapestry Application

</ body>
</htnl >

Run the Application

You should aready be running the Jetty server in a window, and have a browser running the tutorials page. Select
the first option, Hello World, from the list. You will be presented with the first (and only) page generated by
Tapestry for this application:

Figure 3.5. Hello World Application

url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 3. Hello World

<X Hello World - Microsoft Internet Explorer -0 il ||:]|£| ,
| Bl Edt Yew Favorites Took Help |“'
oo - D[A GBS D - (E | [addess [8) hipuifocamostisosnutoriahel v || Lnks |
. =
Welcome to your first Tapestiy Application.

i

- L]

U | 2Evlocalintranet 7

:-@Da'm

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's a start. Remem-
ber, there was no JavaServer page here, and no HTML directly visible to the web server. We used the Tapestry

framework to assembly an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

Chapter 4. Dynamic Content

In this chapter, we'll create a new web application that will show some dynamic content. We'll also begin to show
some interactivity by adding a link to the page. Our dynamic content will simply be to show the current date and
time. The interactivity will be alink to refresh the page. It al looks like this:

Figure4.1. Dynamic Application

=¥ Simple - Microsoft Internet Explorer - =10]|
Fle Edt Miew Favorbes Tools Help “
= . _;3 !ﬂ e R % B 0 - ;‘] |-'1§:i335 i@_] http: locakost: 8020 bt orialfsimple | |Ll'k5 |

This application demonstrates some dynamic behawor using Tapestry components.
The current date and tme 15 Thn Nov 09 17:23:31 EST 2000

Zlicks here to refresh

&) Done [I_ :@ Local intranet zfii

Clicking the word "here" will update the page showing the new data and time. Not incredibly interactive, but it's a
start.

The code for this section of the tutorial isin the packaget ut ori al . si npl e.

The application specification is amost identical to the Hello World example:
Figure4.2. Smple.application

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE applicati on PUBLIC
"-//Howard Lewi s Ship//Tapestry Specification 1.3//EN'
"http://tapestry.sf.net/dtd/ Tapestry_1 3.dtd">

<application name="Sinple Tutorial" engine-cl ass="org. apache. t apestry. engi ne. Si npl eEngi ne" >

<page name="Home" specification-path="/tutorial/sinple/Home. page"/>
</ appli cati on>

Things only begin to get more interesting when we look at the HTML template for the home page:

url(../api/org/apache/tapestry/engine/SimpleEngine.html)

Chapter 4. Dynamic Content

Figure 4.3. Home.html

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<ht m >
<head>
<title>Sinple</title>
</ head>
<body>

Thi s applicati on denbnstrates sonme dynam ¢ behavi or using Tapestry conponents.
<p>The current date and tinme is: Current Date
<p>Click <a jwci d="refresh">here to refresh.

</ body>
</htm >

This looks like ordinary HTML, except for the specia j wei d attribute. "jwc" is short for "Java Web Component”;
these attributes identify the tag as a placeholder for a dynamic Tapestry component.

We have two components. The first inserts the current date and time into the HTML response. The second compo-
nent creates a hyperlink that refreshes the page when clicked.

One of the goals of Tapestry is that the HTML should have the minimum amount of special markup. Thisis demon-
strated here ... the dynamic component tags blend into the standard HTML of the template. We also don't confuse
the HTML by explaining exactly what an i nsertDate or refresh is; that comes out of the specification
(described shortly). The ids used here are meaningful only to the developer 3, the particular type and configuration
of each component is defined in the component specification.

Tapestry doesn't really care what HTML tag you use, as long as you balance the tag correctly. In fact, it ignores the
tag entirely: ther ef r esh component above could just has easily been identified with a tag, or any other tag
for that matter. Tapestry is only interested in the structure of the HTML template. The fact that you can use mean-
ingful tags is a convienience; it allows a Tapestry HTML template to be previewed in aWY SIWY G HTML editor,
such as HomeSite. Additionally, Tapestry edits out the content of tags for components that don't wrap around other
content: thei nser t Dat e component in this example. This alows a preview values to be kept in the template.

Very significant is the fact that a Tapestry component can wrap around other elements of the template. The re-
f r esh component wraps around the word "here". What this means is that ther ef r esh component will get a chance
to emit some HTML (an <a> hyperlink tag), then emit the HTML it wraps (the word "here"), then get a chance to
emit more HTML (the </ a> closing tag).

What's more important is that the component can not only wrap static HTML from the template (as shown in this ex-
ample), but may wrap around other Tapestry components and those components may themselves wrap text and com-
ponents, to whatever depth is required.

And, aswe'll seein later chapters, a Tapestry component itself may have a template and more components inside of
it. In area application, the single page of HTML produced by the framework may be the product of dozens of com-
ponents, effectively "woven" from dozens of HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static HTML that will be
passed directly back to the client web browser, with afew placeholders (the tags with thej wei d attribute) for where
dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data moves between the ap-
plication, page and any components.

30f course, good and consistent naming is important.

Chapter 4. Dynamic Content

Figure 4.4. Home.page

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE page-specificati on PUBLIC
"-//Howard Lew s Ship// Tapestry Specification 1.3//EN
"http://tapestry.sf.net/dtd/ Tapestry_1 3.dtd">
<page- specification class="tutori al . sinpl e. Hne">
<conponent id="insertDate" type="Insert">
<bi ndi ng nane="val ue" expressi on="currentDate"/>
</ conponent >
<conponent id="refresh" type="PageLink">
<stati c- bi ndi ng nanme="page" >Hone</ st ati c- bi ndi ng>
</ conponent >

</ page- speci fi cati on>

Here's what all that means. The Home page is implemented with a custom class, t ut ori al . si npl e. Horre. It con-
tains two components, i nsert Dat e andr ef r esh.

The two components used within this page are provided by the Tapestry framework.

Theinsert Dat e component istype | nsert. | nsert components have aval ue parameter used to specify what
should be inserted into the HTML produced by the page. The i nsert Dat e component has its val ue parameter
bound to a JavaBeans property of its container (the page), the cur r ent Dat e property.

The ref resh component is type PageLi nk, meaning it creates a link to some other page in the application.
PageLi nk components have a parameter, named page, which defines the name of the page to navigate to. The
name is matched against a page named in the application specification.

In this case, we only have one page in our application (named "Home"), so we can use a static binding for the page
parameter. A static binding provides a value for the component parameter statically, the same value every time. The
value is defined right in the specification.

That just leaves the implementation of the Home page component:
Figure4.5. Homejava

package tutorial.sinple;

import java.util.Date;
i mport org.apache. tapestry. ht m . BasePage;

public class Hone extends BasePage
public Date get Current Date()
{

return new Date();

Honme implements a read-only JavaBeans property, cur r ent Dat e. This is the same cur r ent Dat e that the in-
sert Dat e component needs. When asked for the current date, the Hone object returns a new instance of the
java. util . Dat e object.

url(../ComponentReference/Insert.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/PageLink.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 4. Dynamic Content

Thei nser t Dat e component converts objects into strings by invoking t oSt ri ng() on the object.
Now all the bits and pieces are working together.

Run the application, and use the View Source command to examine the HTML generated by by framework.

Figure4.6. HTML generated for Home page

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<htm >
<head>
<title>Sinple</title>
</ head>
<body>

Thi s application denonstrates some dynam ¢ behavi or using Tapestry conponents.
<p>The current date and tine is: Fri Nov 23 17:05:53 PST 2001
<p>Click here to refresh.

</ body>
</htm >

This should look very familiar, in that it is mostly the same as the HTML template for the page. Tapestry not only
inserted simple text (the current date and time, obtained from an j ava. uti | . Dat e object), but ther ef r esh com-
ponent inserted the <a> and </ a> tags, and created an appropriate URL for the href attribute.

10

Chapter 5. Hangman

So far, these examples have been a little bit cut-and-dried. Lets do a meatier example that uses a few more interest-
ing components. Let's play Hangman!

Our Hangman application consists of four pages. The Home page alows a new game to be started, which includes
selecting the difficulty of the game (how many wrong guesses you are allowed).

Figure5.1. Hangman Home Page

; Tapestty Hangman - Microsaft Internet Explorer =10 =]
| Bl Edt Wew Fgvorkes Took el n
|9~ - DD NEP| D | Address |1 hetp:jlocalrost: 2080 butarislhangman -] |_'La1ks &

Tapestry Hangman

Thiz 12 the standard game of Hangman, Tou st guess a word, a letter at a finme. Ifvon make too tany mistales,
gl lozel

" Easy garme;, wou are alloweed ten mizses,
¢ Mediwn game; vou are allowed five misses.
" Hard game; you are cnly allowed three nuzses,

Piay! |

-

@] oone [BB Local nirane: L

The main page is the Guess page, where the partially filled out word is displayed, and the user can make guesses
(from a shrinking list of possible |etters):

Figure 5.2. Hangman Guess Page

11

Chapter 5. Hangman

E
I

T

3 Tapestty Hangman - Microfoft Inbernet Exploner

| Ele [dt Wew Faworites Tooks Hep
J @ orw -8 AN G 5} | b |JA.Q_|.’IHEE 1{] host: BtﬂﬂitutnrHUhang'nwdlractf@Jmfwass.MJJ]

Make a Guess

Touhave made 4 bad guesses, out of & masamum of 5

N 18 not m the word.

CHVE upd

sl

&7 Dore | BE Local tvanet

After you give up, or when you make too many mistakes, you end up on the the Failed page:

Figure 5.3. Hangman Failed Page

E
Ix

3 Tapestry Hangman - Microsoft Internet Explorer
| Ee Edt Yiew Favorites ook Help
_I =R T @ m ﬁﬁ- :E] 7| F:j | .;i' ”.II.Q_L’IBSE 1{] sl ,|'_|'I-:|-:a11-:-55t %wrmwammmmanFalmJJ]m

z

IL_ _

You Lose!
The word was INTEENET

Start agam

g5

&7 borm | ¥ Local bbranet

But, if you guess all the letters, you are sent to the Success page:

12

Chapter 5. Hangman

Figure 5.4. Hangman Success Page

.-ﬁrapesl.ry Hangman - Microsaft Internet Explorer i =10 =|
Fle Edt Wew Favorites Tooks Heb n
|#-= -0 3 R3S || Address [&] host:s0a0/tutoralihangmanjdirect/Guessiauessi 7] | |Lnks *|
Al
F e
You Win!
The word was: APPLICATION
Start agam
&7 Dora | 2F Local inkranes P

The Visit Object

The center of this application is an object that represents game, an object of class HangmanGane. This object is used
to track the word being guessed, the letters that have been used, the number of misses and the letters that have been
correctly guessed.

This object is a property of the visit object. What's the visit object? The visit object is a holder of al information
about a single client's visit to your web application. It contains data and methods that are needed by the pages and
components of your application.

The visit object is owned and created by the engine object. It is serialized and de-serialized with the engine.

The application specification includes alittle extra segment at the bottom to specify the class of the visit object.
Figure5.5. Hangman.application

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE appl i cati on PUBLIC
"-//Howard Lewi s Ship//Tapestry Specification 1.3//EN'
"http://tapestry.sf.net/dtd/ Tapestry_1 3.dtd">

<appl i cati on name="Tapestry Hangman" engi ne-cl ass="org. apache. t apestry. engi ne. Si npl eEngi ne" >
<property name="org. apache.tapestry.visit-class">tutorial.hangman. Visit</property> [
<page name="Home" specification-path="/tutorial/hangman/ Hore. page"/>

<page nane="Cuess" specification-path="/tutorial/hangman/ Guess. page"/>

13

url(../api/org/apache/tapestry/engine/SimpleEngine.html)

Chapter 5. Hangman

<page nanme="Fail ed" specification-path="/tutorial/hangman/Fail ed. page"/>
<page nanme="Success" specification-path="/tutorial/hangman/ Success. page"/>

</ applicati on>

O This property specifies that the engine should instantiate an instance of t ut ori al . hangnan. Vi sit when a
visit object isfirst required. Thisis the default way in which the visit object is specified, though if the visit ob-
ject doesn't have an empty constructor method, the engine method cr eat eVi si t () must be implemented in-
stead.

So, returning from that distraction, the game object is a property of the visit object, which is accessible from any
page (viathe page's visit property).

The Home Page

The Home page's job is to collect the difficulty and initiate a game:

Figure5.6. Homejava

public class Hone extends BasePage
public static final int EASY = 10;
public static final int MEDIUM = 5;
public static final int HARD = 3;

private int msses;
private String error;

?ubl ic void detach()

m sses = 0;
error = null;

super . det ach();

public int getMsses()
{

return m sses;

public void setM sses(int val ue)
m sses = val ue;

fireCbservedChange(" m sses", val ue);

}
public String getError()
{
return error;
}
public void fornmBubmit (|l RequestCycle cycle)
{
if (msses == 0)
error = "Please select a gane difficulty."”;
return;
}

14

url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 5. Hangman

We're seeing all the familiar ideas: The ni sses property is a persistent page property (which means the page will

Visit visit = (Visit) getVisit();
visit.start(m sses);

cycl e. set Page(" Guess");

"remember” the value previously selected by the user).

We use a common trick for simple pages. the page contains a single For mcomponent, so we use the page itself as

the form's listener, and have the page implement the | Act i onLi st ener interface.

This saves a bit of code for creating an inner class as the form listener.

Initially, we don't select a difficulty level, and the user can click "Play!" without selecting a value from the list, so

we check that.

Otherwise, we get the visit object and ask it to start a new game with the selected number of misses. We then jump

to the Guess page to start accepting guesses from the user.

The interesting part of the Home page HTML template is the form:

Figure5.7. Home.html (excer pt)

<form jwci d="forni' >

</ span>

<t abl e>
<tr>
</[tr>

<tr>

</[tr>

<tr>

</[tr>

<tr>

</[tr>
</t abl e>

</ span>
</ forne

<t d><i nput jwci d="i nput Easy"/></td>
<t d>Easy gane; you are allowed ten m sses.</td>

<t d><i nput jwci d="i nput Medi uni'/ ></t d>
<t d>Medi um gane; you are allowed five m sses.</td>

<t d><i nput jwci d="i nput Hard"/></td>
<td>Hard gane; you are only allowed three m sses.</td>

<td></td>
<t d><i nput type="submit" val ue="Pl ay!"></td>

15

url(../ComponentReference/Form.html)
url(../api/org/apache/tapestry/IActionListener.html)

Chapter 5. Hangman

Here, the interesting components are gr oup, i nput Easy, i nput Medi umand i nput Har d. gr oup istype Radi o-
G oup, awrapper that must go around the Radi o components (the other three). The Radi oG- oup determines what
property of the page is to be read and updated (its bound to the mi sses property). Each Radi o button is associated
with a particular value to be assigned to the property, when that radio button is selected by the user.

This comes together in the Home page specification:
Figure 5.8. Home.page (excer pt)

<component id="group" type="Radi oG oup">

<bi ndi ng name="sel ect ed" expressi on="m sses"/>
</ conmponent >
<conponent id="input Easy" type="Radio">

<fi el d- bi ndi ng nane="val ue" field-nanme="tutorial.hangman. Hone. EASY"/> 0O
</ conmponent >
<conponent id="input Medi unt type="Radio">

<fi el d- bi ndi ng nane="val ue" fiel d-name="tutori al . hangman. Home. MEDI UM'/ >
</ conmponent >
<conponent id="i nput Hard" type="Radio">

<f1 el d- bi ndi ng nanme="val ue" fiel d-nanme="tutorial . hangman. Home. HARD" / >
</ conponent >

0 A <field-binding>islikea<static-bindi ng>, except that the static value is taken from a public static
field of some class. This makes it easy to coordinate behaviors between the specification and the class.

This is a good thing, since if you decide to make a HARD game only allow two mistakes, you can make the
change in exactly one place .. your Java code.

So the end result is; when the user clicks the radio button for a Hard game, the static constant HARD is assigned to
the page's i sses property.

The Guess Page

Thisis the page where uses make | etter guesses. The page has four sections:

e A display of the word, with underscores replacing unguessed | etters.
» A status area, showing the number of bad guesses and an optional error message after an invalid guess.
e Alistof letters that may be guessed. Letters disappear after they are used.

* Anoption to give up and see the word, terminating the game.

Let's start with the HTML template thistime:
Figure5.9. Guess.html (excer pt)

<h1l>Make a Guess</ hil>

16

url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/Radio.html)

Chapter 5. Hangman

<p>

You have nmde bad guesses,
out of a maxi mum of .

<p>

</ span>

<p>Cuess:

<a jwci d="guess">
</ span>

<p><a jwci d="gi veUp">G ve up?

Most of these components should be fairly obvious by now; let's focus on the components that allow the user to
guess a letter. This could have been implemented in a number of ways using more radio buttons, a drop down list or
atext field the user could type into. In this example, we chose to simply create a series of links, one for each letter
the user may still guess.

Let'slook at the specification for those three components (e, guess andi nsert Let t er).

Figure 5.10. Guess,jwc (excer pt)

<conponent id="e" type="Foreach">
<bi ndi ng nane="sour ce" expressi on="unused"/>
</ conponent >

<conponent id="guess" type="DirectLink">
<bi ndi ng nane="1i stener" expression="1listeners. makeGuess"/ >
<bi ndi ng nane="par anet ers" expressi on="conponents. e. val ue"/>
</ conponent >

<conponent id="insertlLetter" type="Insert">
<bi ndi ng nanme="val ue" expressi on="conponents. e. val ue"/>
</ conponent >

Component e is simply a For each, the sour ce isthe unused property of the page (we'll see in a moment how the
page gets this list of unused letters from the game object).

Component i nsert Let t er insertsthe current letter from the list of unused letters. It gets this current letter directly
from the e component. On successive iterations, a For each component's val ue property is the value for the itera
tion.

Component guess is type Di r ect Li nk, which creates a hyperlink on the page and natifies its listener when the
user clicks the link. Just knowing that the component was clicked isn't very helpful though; the application needs to
know which letter was actually clicked.

Passing that kind of information along is accomplished by setting the par anmet er s parameter for the component.
The par anet er s parameter is an object, or array or objects, that will be encoded into the URL for the hyperlink.
When the component's listener is notified, it can obtain the array of objects from the | Request Cycl e 4.

4 Tapestry takes care of converting objects into strings when constructing the URL, then converts those strings back into objects when the link is
clicked. Your listener method will be able to get copies of the original parameters.

17

url(../ComponentReference/Foreach.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/DirectLink.html)
url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 5. Hangman

These service parameters are often used to encode primary keys of objects, names of columns or other information
specific to the application.

In this case, the service parameters consist of asingle value, the letter to be guessed.

All of this comes together in the Java code for the Guess page.
Figure5.11. Guess,java (excer pt)

public void makeGuess(| Request Cycle cycl e)

oj ect[] paraneters = cycl e. get Servi ceParaneters();
char letter = ((Character)paraneters[0]).charVal ue();
HangmanGane gane = get Gane();

try
{

gane. guess(letter);
}
catch (GaneExcepti on ex)
{
error = ex.get Message();

if (gane.getFailed())
cycl e. set Page("Fai |l ed");

return;

}
/1 A good guess.

if (gane. get Done())
cycl e. set Page(" Success");

The component specification showed how data was encoded into the URL as the service parameters; here we see
how the makeGuess() listener method has access to the service parameters and uses them. The listener method ex-
tracts the letter and informs the game object, which throws an exception if the letter is not in the word being
guessed.

The method HangmanGane. get Fai | ed() returnstrue when all the missed guesses are used up, at which point
we go to the Fai | ed pageto tell the user what the word was.

On the other hand, if an exception isn't thrown, then the guess was good. get Done() returnst r ue if al letters have
been guessed, in which go to the Success page.

If al letters weren't guessed, we stay on the Guess page, which will display the word with the guessed |l etter filled
in, and with fewer optionsin the list of possible guesses.

Limitations

Thisis a very, very simple implementation of the game. For example, it's easy to cheat; you can give up, then use
your browser's back button to return to the Guess page and keep guessing (with accuracy, if your memory is any
good).

18

url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 6. Creating Reusable Components

In this tutorial, we'll show how to create a reusable component. One common use of components it to create a com-
mon "border" for the application that includes basic navigation. We'll be creating a simple, three page application
with anavigation bar down the left side.

Figure6.1. Border Home Page

/23 Border Tutorial - Microsoft Internet Explorer

ol
v omh e @ ﬁ | (4 @'LQ |Eila Edt View Favortes Tooks Help Address |i

Home
Ha%&;gmh &@iﬂghm %ﬂﬂlﬁ%ﬂlﬂﬁﬁgﬁ Visit one of our ath&fﬁﬂﬁ’ﬁﬁgeﬁ»

/&) Dene. [[[BElecalintranet —

Navigating to another page resultsin asimilar display:

Figure 6.2. Border Credo Page

/23 Border Tutorial - Microsoft Internet Explorer

-2 QP A EP |G e

_ioix
Migw Favorites Tools Help fddress |i

==

e wll 5 Eﬁﬂo?ﬁp&m@hﬁﬁmmmu

/&) Dore.

19

Chapter 6. Creating Reusable Components

Each page's content is confined to the silver areain the center. Note that the border adapts itself to each page: the ti-
tle "Home" or "Credo" is specific to the page, and the current page doesn't have an active link (in the above page,
"Credo" isthe current page, so only "Home" and "Legal" are usable as navigation links).

The"i" in the gear is the Show Inspector link. It will be described in the next chapter.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files. The complete source
of the tutorial examplesis available seperately, inthet ut ori al . bor der package.

Each of the three pages has asimilar HTML template:

Figure 6.3. Home.html

Not hi ng much doi ng here on the hone page. Visit one of our other
fine
pages.

</ span>

Remember that Tapestry components can wrap around other HTML elements or components. For the border, we
have an HTML template where everything on the page is wrapped by the bor der component.

Note that we don't specify any <ht ml > or <body> tags; those are provided by the Bor der component (as well as
the matching close tags).

Thisillustrates akey concept within Tapestry: embedding vs. wrapping. The Horre page embeds the bor der compo-
nent (as we'll see in the Hone page's specification). This means that the Hore page isimplemented using the bor der
component.

However, the bor der component wraps the content of the Hone page, the Home page HTML template indicates the
order in which components (and static HTML elements) are renderred. On the Horre page, the bor der component
'bats first and cleanup.

The construction of the Bor der component is driven by how it differs from page to page. You'll see that on each
page, the title (in the upper left corner) changes. The names of all three pages are displayed, but only two of the
three will have links (the third, the current page, isjust text). Lastly, each page contains the specific content from its
own HTML template.

Figure 6.4. Border.html

 O
<body jwci d="body"> O
<t abl e border=0 bgcol or=gray cell spaci ng=0 cel | paddi ng=4>
<tr valign=t op>
<td col span=3 align=l eft>
/<Bont size=5 color="Wiite"><jwc id="insertPageTitle"/>
</td>
</[tr>
<tr valign=t op>
<td align=right>
<f ont col or=white>
 O

<a jwci d="link"> O
</ span>

20

Chapter 6. Creating Reusable Components

</ font>
</td>
<td rowspan=2 val i gn=top bgcol or=sil ver>
 O
</td>
<td rowspan=2 wi dt h=4></t d>
</[tr>
<tr>
<t d></td> O
</[tr>
<tr>
<td col span=3 hei ght=4> </td>
</[tr>
</t abl e>
</ body>
</ span>

Theshel | component provides the <ht nl > and <head> elements of the response HTML.

The body components provides the <body> element. It also provides support for JavaScript related to
Rol | over buttons, such asthe show nspect or component.

The e component isaFor each configured to work through alist of page names (provided by the engine).
Thel i nk andi nsert Namre components provide the inter-page navigation links.

The r ender Body component provides the actual content for the page. The Bor der component is used on all
three pages, but its a different instance on each page, wrapping around different content specific to the page.
The showl nspect or component provides the button below the page names (the italicized "i" in a circle) and
will be explained shortly.

[oo oog

The Bor der component is designed to be usable in other Tapestry applications, so it doesn't hard code the list of
page names. These must be provided to the component as a parameter. In fact, the application engine provides the
list.

Figure 6.5. Border.jwc

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE conponent - speci fi cati on PUBLI C
"“-//Howard Lewi s Ship// Tapestry Specification 1.3//EN
"http://tapestry.sf.net/dtd/ Tapestry_ 1 3.dtd">

<conponent - speci ficati on class="tutorial . border. Border" allowinfornal -paraneters="no">
<paraneter nane="title" java-type="java.lang. String" required="yes"/> [
<par anet er nane="pages" required="yes"/> O

<conponent id="shell" type="Shell">
<bi ndi ng name="title" expressi on="page. engi ne. speci fication.name"/> 0O
</ conmponent >

<conponent id="insertPageTitle" type="Insert">
<i nheri t ed- bi ndi ng name="val ue" paraneter-nanme="title"/> 0O
</ conmponent >

<component i d="body" type="Body"/>

<conponent id="e" type="Foreach"> [
<i nheri t ed- bi ndi ng name="sour ce" paraneter-nane="pages"/>
<bi ndi ng nane="val ue" expressi on="pageNane"/>

</ conponent >

<conponent id="link" type="PageLink"> [0
<bi ndi ng nane="page" expressi on="pageNane"/>
<bi ndi ng nane="di sabl ed" expressi on="di sabl ePageLi nk"/ >

21

url(../ComponentReference/Rollover.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Shell.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/PageLink.html)

Chapter 6. Creating Reusable Components

</ conponent >

<conponent id="insertNanme" type="Insert">
<bi ndi ng nane="val ue" expressi on="pageNane"/>
</ conponent >

<conponent i d="render Body" type="RenderBody"/>

<conponent id="inspector" type="InspectorButton"/> [
</ conponent - speci fi cati on>

Declares arequired parameter for the border, thetitle that will appear on the page.

Declares a parameter to specify the list of page names. We don't specify a particular type because its pretty un-

bounded; the framework will accept Li st, I t er at or or aJavaarray.

We then provide the shel | component withitsti t | e parameter; thiswill be the window title. We use the ap-

plication's name, with is extracted from the application's specification.

The <i nheri t ed- bi ndi ng> element allows a component to share its parameters. Here the Bor der 'stitl e

is used as the val ue parameter of the i nsert PageTitl e component (an I nsert). Using these inherited

bindings simplifies the process of creating complex components from simple ones.

0 Likewise, the e component (a For each) needs as its source the list of pages, which it inherits from the Bor -
der component's pages parameter. It has been configured to store each succesive page name into the page-
Nane property of the Bor der component; this is necessary so that the Bor der component can determine
which page link to disable (it disables the current page since we're aready there).

O Thelink component creates the link to the other pages. It has a di sabl ed parameter; which, when true,
causes the link component to not create the hyperlink (though it still allows the elements it wraps to render).
The Java class for the Bor der component, tut ori al . bor der. Bor der, provides a method, get Di s-
abl ePagelLi nk(), that returns true when the pageNane instance variable (set by the e component) matches
the current page's name.

O Thiscomponent will raise the Tapestry Inspector in a new window when clicked.

O O oo

So, the specification for the Bor der component must identify the parameters it needs, but also the components it
uses and how they are configured.

Figure 6.6. Show I nspector Button

[«

Local inktranet o

Clicking on the button raises a second window that describes the current page in the application (this is used when
debugging a Tapestry applicaton). The Inspector is described in the next chapter.

The final mystery is the wr apped component. It is used to render the elements wrapped by the Bor der on the page
containing the Bor der . Those elements will vary from page to page; running the application shows that they are dif-
ferent on the home, credo and legal pages (different text appears in the central light-grey box). There is no limitation
on the elements either: Tapestry is specifically designed to allow components to wrap other components in this way,
without any arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at al, not just static

22

url(../ComponentReference/Insert.html)
url(../ComponentReference/RenderBody.html)
url(../ComponentReference/InspectorButton.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)

Chapter 6. Creating Reusable Components

HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is static, the literal
value "Home" (thisisn't the best approach if localization is a concern).

Figure 6.7. Home page specification

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE page- speci ficati on PUBLIC
"-//Howard Lew s Ship// Tapestry Specification 1.3//EN
"http://tapestry.sf.net/dtd/ Tapestry 1 3.dtd">
<page- specification cl ass="org. apache. tapestry. ht ml . BasePage" >
<conponent id="border" type="Border">
<static-binding nane="titl| e">Hone</stati c-bi ndi ng>
<bi ndi ng nane="pages" expressi on="engi ne. pageNanes"/ >
</ conponent >

</ page- speci fi cati on>

The pages property is retrieved from the application engine, which implements a pageNanes JavaBeans property:
Figure 6.8. Border Enginejava (excer pt)

private static final String[] pageNames =
“Home", "Credo", "Legal" };

?ubl ic String[] getPageNames()

return pageNanes;

How did Tapestry know that the type ‘'Border’ corresponded to the specification
/tutorial/border/ Border.jw?Only because we defined an alias in the application specification:

Figure 6.9. Border.application (excer pt)

<conponent -al i as type="Border" specification-path="/tutorial/border/Border.jw"/>

Had we faled to do this, we would have had to specify the complete resource path, /tuto-
rial / border/Border.jwc, on each page's specification, instead of the short alias 'Border'. There is no magic
about the existing Tapestry component types (I nsert, For each, Pageli nk, etc. ... they each have an aias pre-
registered into every application specification. These short aliases are simply a convienience.

23

url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/PageLink.html)

Chapter 7. The Tapestry Inspector

Unlike scripting systems (such as JavaServer Pages and the like), Tapestry applications are gifted with a huge
amount of information about how they are implemented. The same component object model that allows Tapestry to
perform so many ordinary functions can be leveraged to provide some unusual functionality.

Run the Border tutorial from the previous chapter and click on the show inspector button (the gear icon in the lower
right corner). A new window will launch, containing the Inspector:

Figure 7.1. Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

[tomire |

Component Specification

S Embedded Components

Assets

MHame Asset

The Inspector displays live information from the running application; in fact, it is ssmply another part of the applica
tion (the drop-down list of pages will include the Inspector page itself). The Inspector is most often used to debug
HTML generation by viewing the HTML templates. It is also very useful in debugging problems where the wrong

datais displayed, since it allows the devel oper to navigate to the particular components and see directly what proper-
ties are used.

Navigation

The inspector allows the user to navigate to any page and any component on a page. The drop down list in the upper
left corner lists all pages in the application; changing the selection immediately updates the Inspector.

24

Chapter 7. The Tapestry Inspector

Next to the drop down list is the component path; a list of nested component ids, starting with "page" to represent
the page. Clicking on any id in the path changes the information displayed below.

Underneath the component navigation tools are a set of tab buttons for the different inspector views.

Specification View

Figure7.2. Specification View

3 Tapestry Inspector: Primix Yirtual Library - Microsoft Internet Explorer

= 2 ee o border:
[toesve |

Component Specification

S Embedded Components

= -..FF pector

Assets

Asset

The specification view shows several sets of information about the sel ected component.

First shown are basic properties, such as the specification path and Java class.

Each formal parameter is displayed. Unbound parameters will show no value in the Binding column.

Beneath formal parameters are informal parameters (the Bor der component has none, so there is nothing to see).
Informal parameters are usually mapped directly to HTML attributes. They are most often used with components
that generate asingle HTML tag, such asthe Act i onLi nk, Di r ect Li nk or Text Fi el d components.

If the component contains assets, they are shown next.

Any helper beans for the component are displayed last.

25

url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/TextField.html)

Chapter 7. The Tapestry Inspector

On theright side is alist of each embedded component and its type. Clicking the component id will navigate to the
selected component.

Template View

Figure7.3. Template View

; Tapestry Inspector: Primix Yirtual Library - Microsoft Internet Explorer

Component Template

The template view shows the HTML template for the component. It shows dynamic tags in bold, and makes the
component id a clickable link (which navigates to the component, but maintains the Template View). This alows
the developer to quickly drill down through the components.

Properties View

Figure 7.4. Properties View

26

Chapter 7. The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

Persistent Properties

Component|Property Name]| Value Class Yalue

bir

The properties view shows persistant properties stored by the page (or any components on the page). Most pages do
not store any persistent state (it is more often stored in the application's visit object).

Engine View

Figure 7.5. Engine View

27

Chapter 7. The Tapestry Inspector

5 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

:
- - plvingag

Application Engine

EnginefApplication Properties

Property

The engine view shows information about the running application engine, as well as some details from the applica-
tion specification.

Under Operations are two buttons: the first restarts the application. The second (when enabled 5) resets the applica-
tion, which forces areload of al component specifications and HTML templates. Thisis useful during development,
sinceit alows for incremental development without stopping and restarting the servlet container.

Below the operations is a binary dump of the application engine. This is useful when developing to see how large
the serialized state is, and perhaps gleam how it might be trimmed.

Further below (and not visible in the screen shot above), is a dump of the request context. Thisis that vast amount of
data also displayed when an unexpected exception is thrown.

Logging View

Figure7.6. Logging View (L evel Selection)

5 By default, the reset service (used by the reset button) is disabled. To enable it, set the JVM system property
org. apache. t apest ry. enabl e-reset - servi ce to true. The service is disabled since it is too tempting a target for a denial of service at-
tack.

28

Chapter 7. The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

Logging

Catepory Lopeing Level

The Logging view alows dynamic integration with the Log4J logging framework. The top half of the page allows
the logging level of any category to be dynamically set. Thisis useful when debugging, since logging output for spe-
cific classes 6 can be individually enabled or disable.

The right side is a small second form, alowing new categories to be created. This can be useful to make broad
changes in logging levels. For instance, creating a category "org.apache.tapestry” would alow the logging level of
all Tapestry classesto be set in asingle place.

6 By convention, logging categories match the complete class name of the corresponding class. All Tapestry logging categories conform to this
convention.

29

url(http://jakarta.apache.org/log4j)

Chapter 8. Tapestry Workbench

The Tapestry tutorial includes an additional application, the Workbench, which is used to show off interesting
Tapestry components and features.

Figure 8.1. Workbench

3 apestry Workbench - Microsoft Internet Explorer

o |

Fil= Edit

i Favorites Tools Help

F\d_drassl- tialfworkbench 'I

Home

This is the Tapestry Workbench, 1t s a testing ground for Tapestry. Each tab above links to a new page, or set of
pages, that demanstrate Tapestry components and features,

The check box control below is used toenable or disable the display of request infarmation, This is a detailed
description of incorming request and session data, the same as provided by the Tapestry Inspector, This iz very useful
when trying to understand or debug a form component.,

The Tapestry icon in the lower right corner raises the Tapestry Inspector in a new window, The Inspectar is a mini-
application used to explore a running Tapestry application,

W Display Request Debug Information

|@ I_ l_ I_ Local intranet o

The Workbench is divided into several areas, as shown by the tabs across the top of the page. Over time, the Work-
bench and this tutorial document will expand together, and the number of tabs will increase.

In addition to the Inspector, the Workbench has a useful feature which can be activated using the checkbox at the

bottom. When enabled, the complete (and verbose) information available about the request, session and context
(normally displayed by the Inspector's engine view) is shown at the bottom of each page.

Figure 8.2. Workbench (Showing Requests)

30

Chapter 8. Tapestry Workbench

apestry Workbench - Microsoft Internet Explorer

S A B e P

File gdil:. iewy Fg\s_ur'ltés Tools Help

pages, that demonstrate Tapestry components and features,

The check box control below is used to enable or disable the display of request infarmation, This is a detailed
description of incorming request and session data, the same as provided by the Tapestry Inspector. This s veny useful
when trying to understand or debug a form component,

The Tapestry icon in the lower right corner raises the Tapestry Inspector in a new window, The Inspector is a mini-
application used to explore a running Tapestry application,

v | Display Request Debug Information

Properties

Hame

creationTime i pr 26 13

&) Dane - T B in_t__r%ﬁet 7

This feature can be very useful if you are interested in exactly how Tapestry forms and links work.

31

Chapter 9. Localization

One of the most powerful and useful features of the Tapestry framework is the way in which it assists with localiza-
tion of a web application. This is normally an ugly area in web applications, with tremendous amounts of ad-hoc
coding necessary.

Because Tapestry does such a strong job of seperating the presentation of a component (its HTML template) from its
control logic (its specification and Java class) it becomes easy for it to perform localization automatically. It's as

simple as providing additional localized HTML templates for the component, and letting the framework select the
proper one.

However, the static text of an application, provided by the HTML templates, is not al.

Applications also have assets (images, stylesheets and the like) that must also be localized: that fancy button labeled
"Search” isfine for your English clients, but your French clients will require a similar button labeled "Recherche".

Again, the framework assists, because it can look for localized versions of the assets asit runs.

The locale application demostrates this. It is a very simply application that demonstrates changing the locale of a
running application 7

A demonstration of localization is built into the Workbench, under the L10N 8 tab. The page allows the user to se-
lect a new language for the application:

Figure9.1. L10N Page (English)

/J Tapestry Workbench - Microsoft Internet Explorer
R R e = T
' L10M

This page allows the locale to be changed. Localization is used to select the HTHL template used by the page [and
any components on the page]. Likewise, assets, such as the change button, may also be localized and automatically
selected,

Miew Favorites Tools Help

| ervice=direct "I

Translation by Babelfish (and it's probably quite funmy if you speak the language].

Select a new locale:

|Eng|i5h *I

| Display Request Debug Information

|@ Dne. l_ l_ l_ (S Local inkranet o

Selecting "German” from the list and clicking the "Change" button brings you to a new page that acknowledges your
selection:

7 All the trandlations were performed using Babelfish, and are probably quite laughable to someone who actually speaks the alternate languages.
8 The"10" refersto the number of |etters between 'I' and 'n' in the word ‘localization'

32

url(http://world.altavista.com/)

Chapter 9. Localization

Figure 9.2. L ocale Changed (Ger man)

a Tapestry Workbench - Microsoft Internet Explorer

PR @ ﬁ |E @l 5\ File Edit \Miew Favortes Tools

Glickwinsche, haben Sie gedndert das locale zu Deutsch,

Riickseite

| Display Request Debug Information

/&) Done [BE Localintranet. 7

Clicking the button (it's labeled "Return™ in German) returns you to the L 10N page to select a new language:

Figure 9.3. L 10N Page (German)

o v omp - @ ﬁ |E @' i Fle Edt Miew Favortes Took Help

Diese Zeite erlaubt, dak das locale gedndert wird, Lokalisation wird verwendet, um die HTAL-Schablone
auszuwihlen, die durch die Seite benutzt wird [und irgendwelche Bestandteile auf der Seite). Ebenso kinnen Werte,
wie die Anderung Taste, auch beschrankt werden und automatisch ausgewdhlt werden,

Ubersetzung durch Babelfish (und sie ist vermutlich ziemlich lustig, wenn Sie die Sprache sprechen],

Wwahlen Sie ein neues locale aus:

|Deutsch ‘-'I

| Display Request Debug Information

& pore [[[localintranst 7

The neat thing here is that the L10N page has been localized into German as well; it shows equivalent German text,
the options in the popup list are in German, and the "Change" button has been replaced with a German equivalent.

33

Chapter 9. Localization

Localization of HTML Templates

Localization of HTML templates ia automatic. When Tapestry reads atemplate, it looks for alocalized version of it.
In this example, in addition to the English language Local i zat i on. ht ni , three additional files were created: Lo-
calization_de.htm , Localization fr.htm andLocalization it.htm.

Tapestry tracks the locale for each user using either an HTTP Cookie, or the Ht t pSessi on. It makes sure that all
templates for all components on the page use the best available template; it does a standard search.

Localization of Assets

Other

In the L10ON pages, there are images that are also localized. Tapestry has a hand in this as well. Aswith HTML tem-
plates, Tapestry searches for matches based on the user'slocale.

Both context assets (assets that are part of the WAR) and private assets (assets that are stored in Java frameworks)
can be localized. Thisis demonstrated on the L10N page: the "Change" button is a private asset; the "Back" button
is acontext asset.

Options for Localization

In some cases, different localizations of the a component will be very similar, perhaps having only one or two small
snippets of text that is different. In those cases, it may be easier on the developer to not localize the HTML template,
but to replace the variant text with an | nsert component.

The page can read a localized strings file (a . properti es file) to get appropriate localized text. This saves the
bother of maintaining multiple HTML templates. Thisis the same approach taken by the Apache Struts framework.

All components on a page share the single locale for the page, but each performs its own search for its HTML tem-
plate. This means that some components may not have to be localized, if they never contain any static HTML text.
Thisis sometimes the case for reusable components, even navigational borders.

url(../ComponentReference/Insert.html)

Chapter 10. Further Study

The preceding chapters cover many of the basic aspects of Tapestry. Y ou should be comfortable with basic Tapestry
concepts:

» Seperation of presentation, business and control logic

» Use of JavaBeans properties as the source of dynamic data

» How bhindings access JavaBeans properties to provide data to components

» How components wrap each other, alowing for the creation of very complicated components through aggrega-
tion

« Different types of page properties (transient, dynamic, persistent)

Tapestry is capable of quite abit more. Also available within the Tapestry Examples package (along with the tutorial
code and this document) isthe Virtual Library application (Vlib).

Vlib is afull-blown J2EE application, that makes use of Tapestry as its front end, and a set of session and entity En-
terprise JavaBeans as its back end.

Vlib also demonstrates some of the other aspects of developing a Tapestry application. It shows how to create pages
that are bookmarkable (meaning that their URL includes enough information to reconstruct them in a subsequent
session). It shows how to handle logging in to an application, and how to protect pages from being accessed until the
user islogged in. It has many specialized reusable components for creating links to pages about books and people.

35

