Tapestry Developer's Guide
by Howard Lewis Ship

Tapestry Developer's Guide
by Howard Lewis Ship
Copyright © 2000, 2001, 2002, 2003 The A pache Software Foundation

Table of Contents

O 1 1 o [Tox 1 o o
SCriPLiNG VS, COMPOMENTS ... ceeetieeeeett e ettt e ettt e ettt e ettt e et et e e et et e e e et et e e e e ab e e e erb e eeereaes 1
Fp11< = "ox (o] o TSP 3
<ot U /2SS 4
RTAY = 07 A o] o] o= 11 5
LS (= P 5

2. JavaBEANSANG PIrOPEITIES ieiii ittt ettt et et e e e et e e et e e e e e aaan s
JAVBBEANS. ...t e e e e aas 7
JAVABEANSPIOPEITIES eeieiie ettt ettt an s 7
PrOPerty PatiS ... oo e 9
Object Graph NavigatioN Librarycooouiiiiiiiiii e e e e e e e anas 9

G 1= === VA @] 1070 o = 1K
ParameterSand BinNGiNGScoouuuiiiiii e 10
CONNECLEA PArBIMELEN'Sttt ettt e et e et e et e e et e et e e et e e et e e etn e eaneeennas 10
Formal vS. INfOrmal Palr@MELErSc..iiie ittt e e e e e et e e e e enns 12
EMbedded ComPONENESt e e e e e e e 13
L I 1= 4o == 13

Localizing SeCtionS Of AtEMPIaLEcvve i e 14
CompoNENtSWITNBOMIESceiii it 15
Tapestry aNdHTML ProdUCLIONuuiiei et e e e e 15
IMplicitly removedDOMIES oo e 16
EXplicitly removedDOTIESc.oiiniii 16
LimitingtempPlatECONTENtu i e e e e e e e 16
[0 0T PP 17
[0 2 (o o 1 17
LOCaliZati ONWITNI SEFINGS ... 17
LocalizatioNWIth TEMPIELES......c.u e eaes 18
S £ PP 18
[[101 = 0 19

A T APESIIY PAOES ...ttt a e
P A A et 20
PErSISIENT PAgESIBLE ... e ettt 21
EJB PagE PrOPEITIES ... ittt ettt ettt et ettt a e e et e e e aaas 22
DY NAMIC PAgE SEALE ... ettt e et e 22
StaleLinksand the Browser BaCk BULLONcocuuuiiiiiiiiiieiii e 25
PageLoading @and POOIINGoiiiiiiie e 26
PAgELOCAIZALION ... e et a e 28
PagEBUITEITNG ..ot e e et ettt et e e e eee 29
PagBEVENTS ..o ettt e e e e aas 29

5. ApplicatioN ENGINESANU SEIVICESuuiiiiiii i e v e e e e e e e et e e e e et e e e en e enees
YN o o1z 1 o 1= V] = 32
L S [0 TR0 =T 1= 33
S Y1 B o (S = (= 34
SEALEfUI VS, SEBLEIESS ...t e et e a e 35
ENQINESEIVICES ...ttt et e e et e ettt et e e et et e e e e e et e ean e aeans 35
T o 1o o 37
AV (Yo = £ PN 38

6. Understanding the REQUESE CYCIEn e e e e e e e e aa s
Service URLSaNd QUENY PArAIMELE'Sc.uuieiiiii ettt e ettt e e et e et e e et e e et et e e eabe e e e enaa e eeenes 39
PO SEIVICE .. ettt ettt e et e e e et aaee 39
AcCtioNaNd DITECLIISLENENS ...t et et e e e e e e eanaaees 40
DITECE SEIVICE ..ttt et ettt et et e e e e eaas 41
Yoo B = oY o P 43

Tapestry Developer's Guide

SEIVICESANATOMMS e e et e et e e 44
7.Designing Tapestry APPIICALIONSciue e e e e e e e e e e e e e e e et e e eanaeees
PErSISIENT SIOTBOE SIIALEGY ... eteetne ettt ettt ettt et e et e et e e e et et e e e e b e e eaaa s 46
[dentify Pagesand PageFlOWccoouuiiiii e 46
[AENtify COMMONLOGIC ...uuietieeit ettt ettt et e et et e et e e et e e et e e e e e e et e e et e e eanaeeees 46
Lo 0 VA =T TE SIS = Vo= 47
[dentify CommON COMPONENESuuiiieeieieeee et e e e e e e et e e e e e et e e et e e et e e et eean e eaeeeetnaesenaeenes 48
I @oTo (oo M= 1015 V7AYo o] Lo 1o g1
APPICATON ENGING ...t e et et e e et 49
VA 40 o] ot TSP 49
00 g 10T S e 1 =SSP 49
ENterprise JaVaBeanS SUPPONT ettt ettt ettt et et aa s 50
0 Lo = 5 50
9. DESIGNING NEW COMPONENES ...eevueeteetatneeeteeetneesanaesan s eeetnaeeaaeetneeaneeaneeetnaeesnaaesnaeenaeenarennaennnaeees
ChOOSING ADBSE CIASS ... ettt 51
ParameterSand BinNGiNGScoouuuiiiii e 51
Persistent COMPONENT SEALEceue ettt e e et et ettt e e et e et e et e e e eeennns 52
COMPONENE A SSELS . ..ttt ettt ettt et et h et et et et a et h e ettt e e e e eas 53
O 1= o 1= V00 2= (Y72 S o
LI 1= 20 1Y oo . 1= o | 55
Script Specificationsand SCript COMPONENESiiieieeiiii ettt e e e e et e et e e et eeenes 57
11, TRE TAPESIIY INSPECION ...t eeeeet ettt ettt ettt ettt ettt e ettt e e et et e e e ettt e e e eebereeeetbnreeeentnnaeeene
SPECITICAIIONV IV ..ttt e et et e et e et e e et e e et e e et e e e e eannas 58
TOMPIBIEV IO ..ttt ettt et e e et et e et e e e ean s 58
(0 0= =Y A= 59
10 T T YA 60
(oo o 1 0To AV AT TP TUUPPTRPPIN 61
AL TaRESITY JARFIES e et
B. Tapestry SPeCifiCalioN DTSttt et e e et e et e et e et e et e e aa e eennaas
APPHCAHTONEIEIMENT ...t e ettt et et e et e e et e e et e et e e e e eenas 64
[0]c2 0 1= 00T | P 65
oo 18T 1= =0 1= | 66
(ool g) 1o B g=T= 1 o 1 o PSPPSR 66
COMPONENTEIEIMENT ..ottt ettt ettt ettt et e et et e e ettt e et e e e et et et e ebbn e et ena e eeenans 67
COMPONENE-BlIASEIEIMENT ... et et e et e et e e e et e e e e e et e e e e eennns 67
component-SPeCi fiCaLIONEIEMENT i e e e eaaas 68
CONEEXT-BSSEL Bl EIMENT ... ettt e et e e ettt e e e et s e e e et n e e e etbn e e e et s eeeeeans 69
(01 Sex 110110 1= =0 1= | 69
oSS o A= = 0T | 70
EXEEINAl-ASSEL Bl BIMENT ...t e e e 71
field-DINAINGEIEMENT e ettt e e e e e e 71
INherited-biNdiNGEIEMENT e e e e e e e e e e e e e e 72
T o= Y= = 127 | 72
library-specifiCatioNElEMENLiiii i e e e e 72
PAOEE BIMENT ...ttt ettt et et e et e et e e e e e et e e eaba e aee 73
Page-SPECITICAIONEIEMENTe ettt e et e et et e e e et e e e e e eee 73
PAIrAMELEN € EIMIENT ...ttt ettt e e et et e e et e e et e e et e e e ta e e e e e aa e e et e ean e aeans 74
PriVALE-ESSELEIBIMENT ...oe o e et ettt e e 75
O10] 1= 4= =1 0= | 76
5SS A e o 0 o 01 = L= 0= | R 76
LSS Voo = 0 1= o | 76
SEL-PrOPEITY EBlEIMENT ... ettt et e ettt 77
SEt-SHITNG-PrOPErtY Bl EMENT ..o e e e et e e e e e e e e e an s 77
StatiC-DINAINGE EMENT ... e 78
SNG-DiNAINGEIEMENT ..o e e e e e e e e e aa s 78
C. Tapestry Script SPECITICAIONDTDiveiiiiii i e r e e e e e e e aaeeeanas
DOOY Bl EMENT ... e e ettt e e et et et e e at e aee 79
FOrEACNEIEMENT ... e e 79

Tapestry Developer's Guide

L= =41 o | P 80
L 001 = 1= 011 o PPN 80
INCIUAE-SCHIPLEIEMENT ..ot e e ettt e e et e e e a b e e e eaba e eeees 80
NIl ZA 0N EMENT ... e e e e e e e e e et e e e et e et e et e et e e aras 81
INPUE-SYMBDOL EIEIMENT ... et e e e et e eaa e eees 81
[=1 001 o PP 82
LS o 1T 01 = =107 | 82
LSS = [01 0| PSPPSR 82

Vi

List of Figures

T o = I =0 26
4.2, Page L0a0iNg SEQUENCEuueeeeeiei et et e e e e e e e e e et e e e et e e e e et r e e e e an e e et e e e et e e anan 27
4.3. PAOERENUEN SEOUEINCE ... ettt ettt e et e ettt e e et e e e b 29
4.4, PagEREWING SEOUENCE ...ttt ettt et e et e b e et e b e e e et e e e b 30
4.5. Page DEtaCht SEOUENCE ... ettt et e ettt e e e et e e e et e e e eanas 31
5.1 APl CatiONSEIVIEE SEQUENCE ...t et e e e e e e et e et et e et e et e et e eaeenns 33
5.2, SEIVICESANU GESIUMES ... iiiiiii ettt ettt e e et e e e e et e e e e et e e e e et n e e e et n e e e et e e eenanns 36
5.1, PagE SEIVICE SEUUENNCEvueeeieeit et e e ettt e et e e e et et e e et e e et e e e e an s e e et e e ean e eetn s eeaneeaneeetnaeennaeees 39
B.2. DIFECE SEIVICE SEOUENCE ... eeeti ettt ettt et ettt ettt ettt e et et e e e et r e ettt r e e e etan e e e eaa e e enaan s 41
6.3, ACHION SEIVICESEOUENCE .. .eeetueeieiti ettt ettt e ettt ettt e e et e et e et et e et et r e et et n e e e et e e eeaan s 43
10.1. Body Component RENAErTNG SEQUENCEccuuiiiei ittt e e e e eb e ean e 56
11.1. INSPECLOr - SPECIHTICAION VIBWiiiiiii it e e e e e e e e e e e e eanes 58
R 01 o 1= ot o R Y= 01 0L (Y AT 58
11.3. INSPECLON - PrOPEItIESVIBW . ovieeitieiei e e e e e e e e e et e e e et e e et e e e e e e e aaeeennas 59
11.4. INSPECLON - ENGINEVIEIW ...ttt ettt e et e e e et e e e e b 60
11.5. INSPECLON = LOGUING VIBWW ..ttt ettt ettt e et e e et e e et et e e e e e e e e e eba s 61
B.1.8ppliCaliON ATIDULES ... et ettt e e et et e e et e e et e e et e eaneaeees 64
B.2. apPliCaONEIEMENTS ... e e e e 65
B.3.DEANALIIIDULES ...t 65
B4 DEAN ELBMENES ...ttt ettt e e et e s 66
B.5. BINAINGALIIULES ... et e et 66
B.6. CONFIQUIE ATIIIULES ...t 66
B.7.COMPONENEATIIDULES ... ettt e e et e et e e et e e et e e et e eanaaeees 67
B.8. COMPONENT EIEMENTS ... e e e e e e e e e e e e e e e e e e aeees 67
B.9. coMponent-aliaSAIITDULESiiii e e e e e e e e e e e aaan 67
B.10. component-speCifiCatioN ALITDULESuiiiiiei e e e e e e e e e eees 68
B.11. component-speCifiCatioN EIEBMENES ... e 69
B.12. CONtEXT-BSSEt ALLHIDULES ... et et e e e eaes 69
B.13. deSCriPtiON @EMENL ...ttt e e et e et e et e e e e et eaa e eeas 70
B.14. eXtenSiON ATIIDULES ... e et 70
B.15. component-speCifiCatioN EIEBMENESiiiiiiiii e e e e e e e eaen 71
B.16. eXternal-asSet ALLIDULESiiiii e 71
B.17.field-DiNdING ATIIDULESeei e et 71
B.18.inherited-bindiNG ATIIDULESuiiii et 72
B.1O. lHDrary AttrIDULES ... ettt et e et et e e et e e e e et e et aean e aeaas 72
B.20. library-specifiCatioN EIEMENTSoiinii e e 73
A 0o L= AN] o1 = 73
B.22. page-SpeCifiCatioN AMITDULESccui i e e e e e e e e e eaes 73
B.23. page-SpeCifiCation EIEMENTSui e 74
B.24. parameter ALIDULES ... oo et 74
B.25. private-asSSet ATIIIDULES ... et 75
B.26. Property AttHULESceeiii e e 76
B.27. reserved-parameter AMTTDULESiii e e e e e e 76
B.28. SEVICEAIIDULES ...t e e e 76
B.29. SEt-Property ATHHDULESue et 77
B.30. set-String-property AIDULES ... 77
B.31. static-hiNdiNG ALLIDULES ... et e e et e et eeaa e eees 78
B.32. string-bindiNg AttIOULEScce e e e 78
LT I 0 Y =1 1= 1 £ 79
O (o= e N 1] o1 (=SSP 79
ORI o)== ox 1 = 1= 0= 0 £ 79
O) N 1] o1 (= TP 80
O |l =1 407 0| TP 80

Vii

Tapestry Developer's Guide

(O ST} 210 AN 11 01U =N 80
(O} B o To 1 =121 1 £ 80
C.8.INCIUAE-SCITPL ATLIDULES ... ettt e e e e e 81
(O R a1 = (Lo W = 1101= 1T 81
C.10.iNPUt-SYMBOL ATITDULES ... e e e e e e e e e e et e e e e eeanas 81
(O R 1= N 11 1 o U= 82
(O 2 1< =107 82
LT = o = 1= 1.1 £ 82
(O s N 11 1 o U= 83

viii

List of Tables

5.1. Tapestry Pages

B.1. TaPESIY SPECITICAIONS ... ceeeeeii et e e e e e e et e e et e e e e e e e et e e e e aan e eaan

List of Examples

2.1. JavaBeanS Qetter MEINOMuiii e e e e e e e e e e e e e r e aaaaa 7
2.2. JavaBeanSSEtter MENOMuuii e e 7
2.3. JavaBeans getter method (DOOIEAN)ceeeueiiiiiii e e 8
2.4. Lazy evaulation of JAVaBEANSPIOPEITYcceuuueeiiri ettt e et e ettt e ettt e e et e e e et e e eeaa e e eeneaeeees 8
2.5. Synthesized JavaBeaNSPIOPEITY it et ea e 8
3.1. Connected Parameter - SPECITICAIIONciuniiii e 11
3.2. Connected Parameter - JAVACOUEoiieiieeiiii et 12
4.1 HTML templatefor SNOPPING Calrtcveviiiii e e e e e e e e e s e e e e e e et e e eaneeeanees 23
4.2. Shopping Cart SPeCification (EXCEIPL)uuu it 23
4.3. Listener method fOr remMOVE COMPONENTiiiieeeieiii ettt ettt et et e e e eree e eeneas 24
5.1. Weh DeplOYMENE DESCIIPLOLcvuiieteeetee et e et et e et e e et et e e e et e e et e e et e e et e ean e ean e aetnaaeenaees 32
10.1. Traditional JAVASCITPEUSAOE .. .vueeeeet e e ettt et e e e e e e et e et et e e e e et e et e et e ea e e e eanee e enaeenaes 55

Chapter 1. Introduction

Tapestry is a comprehensive web application framework, written in Java.

Tapestry isnot an application server. Tapestry isaframework designed to be used inside an application server.
Tapestry isnot an application. Tapestry is aframework for creating web applications.

Tapestry isnot away of using JavaServer Pages. Tapestry is an alternative to using JavaServer Pages.

Tapestry is not a scripting environment. Tapestry uses a component object model, not simple scripting, to create
highly dynamic, interactive web pages.

Tapestry is based on the Java Servlet API version 2.2 It is compatible with JDK 1.2 and above. Tapestry uses a so-
phisticated component model to divide a web application into a hierarchy of components. Each component has spe-
cific responsibilities for rendering web pages (that is, generating a portion of an HTML page) and responding to
HTML queries (such as clicking on alink, or submitting aform).

The Tapestry framework takes on virtually all of the responsihilities for managing application flow and server-side
client state. This allows devel opers to concentrate on the business and presentation aspects of the application.

Tapestry reconceptualizes web application development in terms of objects, methods and properties instead of URLs
and query parameters.

Scripting vs. Components

Most leading web application frameworks are based on some form of scripting. These frameworks (often bundled
into aweb or application server) include:

* Sun JavaServer Pages

» Microsoft Active Server Pages

» Allaire ColdFusion

« PHP

* WebMacro

* FreeMarker

* Veocity

All of these systems are based on reading an HTML template file and performing some kind of processing on it. The
processing isidentified by directives ... special tagsin the HTML template that indicate dynamic behavior.

Each framework has a scripting language. For JavaServer Pagesit is Javaitself. For ASPit is Visua Basic. Most of-
ten, the directives are snippets of the scripting language inserted into the HTML.

For example, here's a snippet from a hypothetical JavaServer Page that displays part of a shopping cart.

<%
String userNane = (String)session.getAttribute("userName");
%
<h1>Cont ents of shopping cart for
<% user Name %: </ hl>

url(http://java.sun.com/products/jsp/)
url(http://java.sun.com/products/jsp/)
url(http://java.sun.com/products/jsp/)
url(http://www.macromedia.com/software/coldfusion/)
url(http://www.macromedia.com/software/coldfusion/)
url(http://www.php.net/)
url(http://www.webmacro.org/)
url(http://freemarker.sourceforge.net/)
url(http://jakarta.apache.org/velocity/index.html)

Chapter 1. Introduction

Most of the text is static HTML that is sent directly back to the client web browser. The emphasised text identifies
scripting code.

The first large block is used to extract the user name from the Ht t pSessi on, a sort of per-client scratch pad (it is
part of the Java Serviet API; other systems have some similar construct). The second block is used to insert the value
of an expression into the HTML. Here, the expression is simply the value of the userName variable. It could be more
complex, including the result of invoking a method on a Java object.

This kind of example is often touted as showing how useful and powerful scripting solutions are. In fact, it shows
the very weaknesses of scripting.

First off, we have a good bit of Java code in an HTML file. Thisisa problem ... no HTML editor is going to under-
stand the JavaServer Pages syntax, or be able to validate that the Java code in the scripting sectionsis correct, or that
it even compiles. Validation will be deferred until the page is viewed within the application. Any errors in the page
will be shown as runtime errors. Having Java code here is unnatura ... Java code should be developed exclusively
inside an IDE.

In areal JavaServer Pages application I've worked on, each JSP file was 30% - 50% Java. Very little of the Javawas
simple presentation logic like <% user Nane %, most of it was larger blocks needed to 'set up' the presentation
logic. Another good chunk was concerned with looping through lists of results.

In an environment with separate creative and technical teams, nobody is very happy. The creative team is unlikely to
know JSP or Java syntax. The technical team will have difficulty "instrumenting” the HTML files provided by cre-
ative team. Likewise, the two teams don't have a good common language to describe their requirements for each

page.

One design goal for Tapestry is minimal impact on the HTML. Many template-oriented systems add several differ-
ent directives for inserting values into the HTML, marking blocks as conditional, performing repetitions and other
operations. Tapestry works quite differently; it allows existing tags to be marked as dynamic in a completely unob-
trusive way.

A Tapestry component is any HTML tag with a j wci d attribute ("jwc" stands for "Java Web Component"). For
comparison, an equivalent Tapestry template to the previous JSP example:

<hl1>Cont ents of shopping cart for
John Doe: </ h1>

This defines a component named i nser t User Name on the page. To assist HTML development, a sample value,
"John Doe" isincluded, but thisis automatically editted out when the HTML template is used by the framework.

The tag simply indicated where the Tapestry component will go ... it doesn't identify any of its behavior.
That is provided el sewhere, in a component specification.

A portion of the page's specification file defines what the i nser t User Nanme component is and what it does:

<conponent id="insertUser Name" type="Insert"> [0
<bi ndi ng nane="val ue" expression="visit.userName"/> 0O
</ conponent >

O Thei d attribute gives the component a unique identifier, that matches against the HTML template. Thet ype
attribute is used to specify which kind of component is to be used.

O Bindings identify how the component gets the data it needs. In this example, the | nsert component requires a
binding for its val ue parameter, which is what will be inserted into the response HTML page. This type of
binding (there are others), extracts the userName property from the visit object (a central, application-defined
object used to store most server-side state in a Tapestry application).

Tapestry redly excels when it is doing something more complicated than simply producing output. For example,
let's assume that there's a checkout button that should only be enabled when the user hasitemsin their shopping cart.

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)

Chapter 1. Introduction

In the JSP world, thiswould look something like:

<%
bool ean showli nk;
String i mgeURL;
showLi nk = appl i cati onCbj ect. get HasCheckout | t ens() ;

i f (showli nk)
i mageURL = "/i mages/ Checkout.gif";
el se
i mageURL = "/i mages/ Checkout - di sabl ed. gi f";
i f (showLi nk)

String |inkURL;

i nkURL = response. encodeURL("/servl et/checkout"); %
<a href="<% |inkURL %" >
<%} %
<i ng border=0 src="<% inmgeURL %" alt="Checkout"><%

if (showli nk)
out.println("");

%

This assumes that appl i cat i onObj ect exists to determine whether the user has entered any checkout items. Pre-
sumably, this object was provided by a controlling servlet, or placed into the Ht t pSessi on.

The corresponding Tapestry HTML template is much simpler:
<a jwci d="checkout Li nk" ><i ng jwci d="checkout Button" alt="Checkout"/>

A bit more goes into the page's specification :

<conponent i d="checkoutLi nk" type="PageLink"> [

<stati c- bi ndi ng nanme="page" >Checkout </ st ati c- bi ndi ng>

<bi ndi ng nanme="di sabl ed" expressi on="visit.cartEnpty"/> 0O
</ conmponent >

<conponent i d="checkoutButton" type="Rollover"> [

<bi ndi ng name="i mage" expressi on="assets. checkout"/>

<bi ndi ng nanme="di sabl ed" expressi on="assets. checkout Di sabl ed"/ >
</ conmponent >

<ext er nal - asset nanme="checkout" URL="/i mages/ Checkout.gif"/> O
<ext er nal - asset name="checkout Di sabl ed" URL="/i mages/ Checkout - di sabl ed. gi f"/ >

O Component checkout Li nk isaPageLi nk, acomponent that creates alink to another page in the application.
Tapestry takes care of generating the appropriate URL.

0 The di sabl ed parameter alows the link to be "turned off"; here it is turned off when the shopping cart is
empty.

O A Rollover component inserts an image; it must be inside some kind of link component (such as the
PageLi nk) and is senditive to whether the link is enabled or disabled; inserting a different image when dis-
abled. Not shown here is the ability of the Rol | over component to generate dynamic mouse-over effects as
well.

0 Tapestry uses an abstraction, assets, to identify images, stylesheets and other resources. The Rol | over com-
ponent wants a reference to an asset, not a URL.

The point of this example is that the JSP developer had to worry about character-by-character production of HTML.
Further, the ratio of Java code to HTML is quickly getting out of hand.

By contrast, the Tapestry developer is concerned with the behavior of components and has an elegant way of speci-
fying that behavior dynamically.

Interaction

url(../ComponentReference/PageLink.html)
url(../ComponentReference/Rollover.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/Rollover.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/Rollover.html)
url(../ComponentReference/Rollover.html)

Chapter 1. Introduction

Let's continue with a portion of the JSP that would alow an item to be deleted from the shopping cart. For smplic-
ity, we'll assume that there's an object of class Li nel t emnamed i t emand that there's a servlet used for making
changes to the shopping cart.

<tr>
<td> <% item get Product Name() % </td>
<td> <% itemgetQantity() % </td>
<td> <% String URL = response. encodeURL("/servl et/update-cart ?acti on=renove" +
"&tenr" + itemgetld());
%
<a href="<% URL %">Renobve </td>
</tr>

This clearly shows that in a JSP application, the designer is responsible for "knitting together" the pages, servlets
and other elements at avery low level. By contrast, Tapestry takes care of nearly al these issues automatically:

<tr>
<td> Sanpl e Product </ span> </td>
<td> 10 </td>
<td> <a jwci d="renove" >Renpbve </td>

</[tr>

Because of the component object model used by Tapestry, the framework knows exactly "where on the page" the
remove component is. It uses this information to build an appropriate URL that references the r enove component.
If the user clicks the link, the framework will inform the component to perform the desired action. The r enpove
component can then remove the item from the shopping cart.

In fact, under Tapestry, no user code ever has to either encode or decode a URL. This removes an entire class of er-
rors from aweb application (those URLs can be harder to assemble and parse than you might think!)

Tapestry isn't merely building the URL to a servlet for you; the whole concept of 'servlets' drops out of the web ap-
plication. Tapestry is building a URL that will invoke a method on a component.

Tapestry applications act like a 'super-servlet'. There's only one servlet to configure and deploy. By contrast, even a
simple JavaServer Pages application developed using Sun's Model 2 (where servlets provide control logic and JSPs
are used for presenting results) can easily have dozens of servlets.

Security

Developing applications using Tapestry provides some modest security benefits.

Tapestry applications are built on top of the Java Servlet API, and so inherits all the sercurity benefits of servlets.
Most security intrusions against CGl programs (such as those written in Perl or other scripting languages) rely on
doppy code that evaluates portions of the URL in a system shell; this never happens when using the Java Servlet
API.

Because the URLSs created by Tapestry for processing client interaction are more strongly structured than the URLs
in traditional solutions, there are fewer weaknesses to exploit. Improperly formatted URL s result in an exception re-
sponse being presented to the user.

Where the Java Servlet API suffersisin client identification, since a session identifier is stored on the client either as
an HTTP Cookie or encoded into each URL. Malicious software could acquire such an identifier and "assume" the
identity of a user who has recently logged into the application. Again, thisis a common limitation of servlet applica-
tionsin general.

Finally, Tapestry applications have asingle flow of control: al incoming requests flow through afew specific meth-
ods of particular classes. This makesit easier to add additional security measures that are specific to the application.

Chapter 1. Introduction

Web Applications

Tapestry has a very strong sense of what an application is, derived from an XML specification file. This file identi-
fies and gives names to all the pagesin the application, and identifies certain other key classes aswell. It also gives a
human-readable name to the entire application.

In other systems, there is no application per-se. There is some kind of 'home page' (or servlet), which isthe first page
seen when a client connects to the web application. There are many pages, servlets (or equivaent, in other frame-
works) and interrelations between them. There is also some amount of state stored on the server, such as the user
name and a shopping cart (in atypical e-commerce application). The sum total of these elements is the web applica-
tion.

Tapestry imposes a small set of constraints on the developer, chiefly, that the application be organized in terms of
pages and components. These constraints are intended to be of minimal impact to the devel oper, imposing an accep-
tible amount of structure. They create a common language that can be used between members of ateam, and even
between the technical and creative groups within ateam.

Under Tapestry, a page is also very well defined: It consists of a component specification, a corresponding Java
class, an HTML template, and a set of contained components.

By contrast, when using JavaServer Pages there are one or more servlets, embedded JavaBeans, a JSP file and the
Java class created from the JSP file. There isn't a standard naming scheme or other way of cleanly identifying the
various elements.

Interactivity in Tapestry is component based. If a component is interactive, such as an image button with a hyperlink
(<a>), clicking on the link invokes a method on the component. All interactivity on a page is implemented by com-
ponents on the page.

JavaServer Pages bases its interactivity on servlets. Interactive portions of a page must build URLSs that reference
these servlets. The servlets use a variety of ad-hoc methods to identify what operation is to take place when alink is
clicked. Since there is no standard for any of this, different developers, even on the same project, may take widely
varying approaches to implementing similar constructs.

Because pages are components, they have a well-defined interface, which describes to both the framework and the
developer how the page fitsinto the overall application.

At the core of any Tapestry application are two objects: the engine and the visit. The engine is created when the first
request from a client arrives at the server. The engine is responsible for all the mundane tasks in Tapestry, such as
managing the request cycle. It is sort of a dispatcher, that handles the incoming regquest and runs the process of re-
sponding to the request with anew HTML page.

Thevisit is a second object that contains application-specific data and logic. Its type is completely defined by the ap-
plication. In an e-commerce application, the visit might store a shopping cart and information about the user (once
logged in).

Both the engine and the visit are stored persistently between request cycles, inside the Ht t pSessi on object.

The engine a so provides services. Services are the bridge between URLs and components. Services are used to gen-

erate the URL s used by hyperlinks and form submissions. They are also responsible for interpreting the same URL s
when they are later triggered from the client web browser.

Features

The framework, based on the component object model, provides a significant number of other features, including:

» Easy localization of applications

» Extremely robust error handling and reporting

Chapter 1. Introduction

» Highly re-usable components

» Automatic persistence of server-side client state between request cycles

» Powerful processing of HTML forms

» Strong support for load balancing and fail over

» Zero code generation 1

» Easy deployment

» The Inspector, which allows devel opers to debug a running Tapestry application

The point of Tapestry is to free the web application developer from the most tedious tasks. In many cases, the "raw
plumbing" of aweb application can be completely mechanized by the framework, leaving the developer to deal with
more interesting challenges, such as business and presentation logic.

As Tapestry continues to develop, new features will be added. On the drawing board are:

» Support for easy cross-browser DHTML
* XML /XHTML support
* Improved WAP/ WML support

* A real-time performance "Dashboard"

1That is, Tapestry templates and specifications are interpreted asis. Unlike JSPs, they are not translated into Java source code and compiled
into Java classes. This greatly simplifies debugging since no code is generated at runtime.

6

Chapter 2. JavaBeans and Properties

The Tapestry framework is based upon the use of JavaBeans and JavaBeans properties. This chapter is a short re-
view of these concepts. A more involved discussion is available as part of the Java Tutorial.

JavaBeans

The JavaBeans framework is a way of manipulating Java objects when their exact type is not known. The ability to
make objects work together, when their exact type is not known, is very powerful. It's an example of the kind of
flexibility availble in a highly dynamic language like Javathat is not possible in lower-level languages such as C++.
The JavaBeans framework is the basis for a number of component-based frameworks, including Java's AWT and
Swing GUI libraries, as well as Tapestry. The ideais that, by following a few naming rules and coding conventions,
it is possible to "plug into" a framework with new classes, classes not even written yet when the framework is cre-
ated. In Tapestry terms, thisis used to allow the creation of new Tapestry components.

Any Java object can act as a JavaBean; it just has to follow certain naming conventions (discussed in the next sec-
tion). In cases where a framework needs to create new instances of a class, such as when Tapestry creates a new in-
stance of a component, the Java class must implement a public, no arguments constructor (it may implement addi-
tional constructors as well).

The Java Reflection API allows Tapestry to access the methods, attributes and constructors of a class.

JavaBeans Properties

For Tapestry, the central concept for JavaBeans are properties. The JavaBeans framework allows Tapestry to treat
any object as a collection of hamed properties. Tapestry frequently reads, and occasionally writes, values from or to
these named properties.

A property is not the same as an attribute ... though, most often, each property is backed up by an attribute. To
Tapestry, and the Reflection API, a property is a set of public methods on the object. Accessing a property involves
invoking one of these methods.

Example 2.1. JavaBeans getter method

public type get Nanme()

oo

Example 2.2. JavaBeans setter method

public void setNane(type val ue)
}

A property may be read-only or write-only (that is, it may implement just one of the two methods). The t ype may
be a scalar type (boolean, int, etc.) or any Java class.

Note the naming; the first letter of the property name is capitalized after get or set . JavaBeans properties are case

url(http://java.sun.com/j2se/1.3/docs/api/java/beans/package-summary.html)
url(http://java.sun.com/docs/books/tutorial/javabeans/index.html)
url(http://java.sun.com/docs/books/tutorial/javabeans/index.html)
url(http://java.sun.com/j2se/1.3/docs/api/java/lang/reflect/package-summary.html)
url(http://java.sun.com/j2se/1.3/docs/api/java/lang/reflect/package-summary.html)
url(http://java.sun.com/j2se/1.3/docs/api/java/lang/reflect/package-summary.html)

Chapter 2. JavaBeans and Properties

sensitive with respect to the method names and the property names. A special case exists when the name is an
acronyn; this is recognized by two or more upper-case letters in a row (after get or set); in this case, the property
name does not have the first letter convert to lower-case.

Asaspecia case, aboolean property may use an alternate name for the getter method:
Example 2.3. JavaBeans getter method (boolean)

publ i ¢ bool ean i sNanme()

Although the normal implementation is to get or set an instance variable, more complicated options are possible.
One pattern is lazy evaluation, where an expensive calculation is put off until the actual value is needed, for exam-
ple:

Example 2.4. L azy evaulation of JavaBeans property

public List userNames = null;

/**

* Returns a List of user nanes obtained fromthe database.
*

**/

public List getUserNanmes()

if (userNanes == null)
user Nanes = fet chUser NamesFr onDat abase() ;

return user Names;

Here, the first time the method is invoked, the expensive database fetch occurs. The value returned from the
database is then cached for later invocations.

Another common pattern is a synthesized property. Here, there is no real attribute at al, the value is always com-
puted on the fly. A frequent use of thisisto avoid tripping over null pointers.

Example 2.5. Synthesized JavaBeans Property

/**

* Returns the nane of the conpany's account representative, if
* if the conpany has one, or null otherwi se.

*
**/

public String get Account RepNane()

Account Rep rep = conpany. get Account Rep() ;

if (rep == null)
return null;

Chapter 2. JavaBeans and Properties

return rep.get Nanme();
}

This exampl e creates a synthetic property, account RepNarre.

Property Paths

The JavaBeans framework provides basic named properties for JavaBean objects. Tapestry extends this from ssimple
properties to property paths.

A property path is a series of property names, separated by periods. When reading a property path, each property is
read in series.

In the example from the introduction, the property path vi si t . user Nane was referenced. This path means that the
vi sit property of the start object (a Tapestry page) should be accessed, then the user Narme property of the visit ob-
ject should be accessed. This is approximately the same as Java code get Vi si t () . get User Name() (except that
property access is not typesafe).

In some cases, property paths are used to change a value, instead of reading it. When this occurs, all properties but
the last aread; only the last property is written. In other words, updating vi si t . user Nanme would be similar to the
JavaCode get Vi si t () . set User Name(val ue) .

Property paths can be of any length; however, they are just as susceptable to Nul | Poi nt er Except i ons as any

other JavaCode. Care must be taken that none of the properties in a property path, except the final one, return null.
This can often be accomplished using synthesized properties.

Object Graph Navigation Library

Beyond even simple property paths are the powerful Object Graph Navigation Library (OGNL) expressions. OGNL
expressions are modeled after Java expressions; they can invoke methods, perform comparisons, do arithmetic ...
even build collections on the fly.

OGNL is a separate framework from Tapestry; further details about it are available at http://www.ognl.org.

url(http://www.ognl.org)

Chapter 3. Tapestry Components

Tapestry components are "black boxes' that are involved with both rendering HTML responses and responding to
HTTP requests.

A Tapestry component is defined by its specification. The specification is an XML file that defines the type of the
component, it parameters, the template used by the component, any components embedded within it and how they
are'wired up', and (less often) any assets used by the component.

At runtime, the specification is used to identify and instantiate a class for the component. When the page containing
the component is rendered, the component will access its HTML template to find the static HTML and embedded
components it will render.

Parameters and Bindings

Tapestry components are designed to work with each other, within the context of a page and application. The pro-
cess of rendering a page is largely about pulling information from a source into a component and doing something
withit.

For example, on a welcome page, a component might get the user Name property from the vi si t object and insert
itinto the HTML response.

Each component has a specific set of parameters. Parameters have a name, a type and may be required or optional.

To developers experienced with Java GUIs, it may appear that Tapestry component parameters are the same as Jav-
aBeans properties. Thisis not completely true. JavaBeans properties are set-and-forget; the designer sets a value for
the property using avisual editor and the value is saved with the bean until it isused at runtime.

Parameters define the type of value needed, but not the actual value. This value is provided by a special object called
a binding. The binding is a bridge between the component and the parameter value, exposing that value to the com-
ponent as it is needed. The reason for al thisis to allow pages, and the components within them, to be shared by
many concurrent sessions ... amajor facet in Tapestry's strategy for maintaining application scalability.

When a component needs the value of one of its parameters, it must obtain the correct binding, an instance of inter-
face | Bi ndi ng, and invoke methods on the binding to get the value from the binding. Additional methods are used
with output parameters to update the binding property.

In most cases, discussed in the next section, Tapestry can hide the bindings from the developer. In effect, it auto-
mates the process of obtaining the binding, obtaining the value from it, and assigning it to a JavaBean property of
the component.

There are two types of hindings:. static and dynamic. Static bindings are read-only; the value for the binding is speci-
fied in the component specification.

Dynamic bindings are more prevalent and useful. A dynamic binding uses a JavaBeans property name to retrieve the
value when needed by the component. The source of this data is a property of some component.

In fact, dynamic bindings use property paths, allowing a binding to ‘crawl!' deeply through an object graph to access
the value it needs. This frees the components from relying totally on the properties of their container, instead they
are free to access properties of more distant objects.

Connected Parameters

In most cases, adeveloper is not interested in bindings; an easier model for developersis one in which Tapestry uses
the parameters and bindings to set properties of the component automatically. Starting in release 2.1, Tapestry in-
cludes this behavior, with some constraints and limitations.

10

url(../api/org/apache/tapestry/IBinding.html)

Chapter 3. Tapestry Components

Part of the <par anmet er > specification for a parameter is the direction, which can be one of the following values:

in
Input parameter; the value is drawn from the binding (if bound) and applied to the corresponding component
property just before rendering the component.

form
A parameter which matches the semantics of a form component. The parameter is treated like an i n parameter
when the page is rendering.

When the form containing the component is submitted, the connected property is read (after the component ren-
ders), and the value applied to the parameter.

custom
Tapestry does not try to connect the parameter with any property; the component is responsible for accessing
the binding and retrieving or setting values.

This type must be used for any kind of output parameter, or for an input parameter where the property may be
accessed other than during the rendering of the component.

Why aren't output parameters connectable?

:F The problem is the timing of output parameters. Sometimes a parameter is only an output parameter
when the containing form is submitted (for example, any of the form related components). Sometimes
aparameter is output many times (for example, For each) while the component renders.

The latter case may always be handled as custom; the former case may be handled in the future.

Defining a parameter as direction i n causes Tapestry to connect the parameter to the corresponding property of the
component. The parameter specification must identify the Java type of the property. Properties must be read/write
(they must have both getter and setter methods).

Tapestry will set properties from parameters just before rendering the component. After the component renders, the
parameters are cleared; they are returned to inital values. Tapestry reads these initial values just before it sets the
properties the first time. This makes it very easy to set defaults for optional parameters: just provide a default value
for the correspoinding instance variable.

If the property is connected to an invariant binding (a static or field binding), then the property is set just once, and
never cleared.

There are times when the parameter name can't be used as the property name. For example, the PageLi nk compo-
nent has a page parameter, the name of the page to link to. However, al components already have apage property,
the | Page that ultimately contains them. The specification for the PageLi nk component connects the page parame-
ter to a property named t ar get Page instead.

Defining a connected parameter as required means that the parameter must be bound and the binding must provide a
non-null value. A runtime exception is thrown when arequired parameter's binding yields a null value.

The following examples show how to declare and use a parameter:

Example 3.1. Connected Parameter - Specification

11

url(../ComponentReference/Foreach.html)
url(../ComponentReference/PageLink.html)
url(../api/org/apache/tapestry/IPage.html)
url(../ComponentReference/PageLink.html)

Chapter 3. Tapestry Components

<speci fication ...>

<par anet er nane="col or" direction="in" java-type="java.awt.Color"/>

Example 3.2. Connected Parameter - Java Code

public class Col or Conponent extends Abstract Conponent
private Col or col or = Col or. RED;
publ i ¢ Col or get Col or ()

return col or;

ublic void setCol or(Col or col or)

this.color = color;

rotected void render Conponent (| MarkupWiter witer, |RequestCycle cycle)
hr ows Request Cycl eExcepti on

~ ~— ~7 —

witer.begin("font");
witer.attribute("color", “RequestContext;.encodeCol or(col or);

render W apped(witer, cycle);

witer.end();

}

In this example, the component writes its content inside a <f ont > element, with the HTML color attribute set from
the col or parameter. Request Cont ext includes a static convienience method for converting from a Col or object
to an encoded color that will be meaningful to aweb browser.

The parameter is optional and defaultsto red if not specified (that is, if the parameter is not bound).

At runtime, Tapestry will invoke set Col or () first (if thecol or parameter is bound). It will then invoke r ender -
Component () . Finaly (even if r ender Conponent () throws an exception) it will invoke set Col or () again, to
restore it back to the default value, Col or . RED.

This code includes a defect: because the parameter is optional, there is nothing to prevent it from being bound to
null.

Formal vs. Informal Parameters

Tapestry components have two types of parameters. formal and informal.

Formal parameters are parameters defined in the component specification. Each formal parameter has a specific
(case sensitive) name and may be required or optional.

In many cases, there is a one-to-one mapping between a Tapestry component and a specific HTML tag. For exam-
ple, Body and <body>, For mand <f or n», etc. In other cases, a Tapestry component produces a known single

12

url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/RequestContext.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Form.html)

Chapter 3. Tapestry Components

HTML tag. For example, Act i onLi nk, Di r ect Li nk, PageLi nk and Ser vi ceLi nk all produce an <a> tag.

To support truly rich interfaces, it is often necessary to specify additional attributes of the HTML tags; usually this
means setting the cl ass of atag so as to get visua properties from a stylesheet. In other cases, display attributes
may be specified inline (this is often the case with attributes related to display width and height, since CSS support
for these properties are inconsistent between the major HTML 4.0 browsers).

In theory, these components could define additional formal parameters for each possible HTML attribute ... but there
are a huge number of possible attributes, many of which are specific to a particular browser.

Instead, Tapestry has the concept of an informal parameter. Thisis an "additional" parameter, not specified in the
component's specification. In most cases, where informal parameters are alowed, they are added as additional
HTML attributes (there are afew special exceptions, such asthe Scri pt component).

Informal parameters do have some limitations. Informal parameters that conflict with the names of any formal pa
rameters, or with any of the HTML attributes generated directly by the component, are silently ommitted. The com-
parison is case-insensitve. Thus, for a Di r ect Li nk component, you can hot change the hr ef attribute, even if you
supply aHr ef (or other variation) informal parameter.

Not al Tapestry components even alow informal parameters; this is explicitly stated in the component
specification.

I nformal Parametersthat are Assets

:F Tapestry includes a special case when an informal parameter is actually an asset. The URL for the as-
set is determined and that is the value supplied for the attribute.

Embedded Components

Under Tapestry, it is common to define new components by combining existing components. The existing compo-
nents are embedded in the containing component. This is always true at the top level; Pages, which are still Tapestry
components, always embed other Tapestry components.

Each embedded component has ani d (an identifying string) that must be unique within the containing component.
Every non-page component is embedded inside some other component forming a hierarchy that can get quite deep
(in real Tapestry applications, some pages have components nested three to five levels deep).

In some cases, a component will be referenced by itsid path. Thisis a series of component ids separated by periods,
representing a path from the page to a specific component. The same notation as a property path is used, but the in-
formation being represented is quite different.

For example, the id path bor der . navbar . honeLi nk represents the component named honeLi nk, embedded in-
side a component named navbar , embedded inside a component named bor der , embedded inside some page.

Tapestry components are "black boxes'. They have a set of parameters that may be bound, but their internals, how
they are implemented, are not revealed.

Primitive components may not embed other components, or even have a template. Nearly al the built-in compo-
nents are primitive; they are building blocks for constructing more complex components.

Alternately, a component may be implemented using a template and embedded components. In either case, the

names, types or very existence of embedded components is private, hidden inside the containing component's "black
box".

HTML Templates

Nearly al Tapestry components combine static HTML 2 from a template with additional dynamic content (some

13

url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/ServiceLink.html)
url(../ComponentReference/Script.html)
url(../ComponentReference/DirectLink.html)

Chapter 3. Tapestry Components

few components are just dynamic content). Often, a Tapestry component embeds other Tapestry components. These
inner components are referenced in the containing component's templ ate.

One of the features of Tapestry isinvisible instrumentation. In most web application frameworks, converting a static
HTML page into a usable template is a destructive process: the addition of new tags, directives or even Java code to
the template means that it will no longer preview properly inaWY SIWY G editor.

Tapestry templates are instrumented using a new HTML attribute, j wei d, to any existing element. Elements with
such attributes are recognized by Tapestry as being dynamic, and driven by a Tapestry component, but a WY SI-
WY G editor will simply ignore them. Once atemplate is instrumented, it may be worked on by both the HTML pro-
ducer and the Java developer.

I dentifying a Tapestry component within an HTML template is accomplished by adding aj wci d attribute to atag.

<any jwci d="conponent id" ... > body </any>
or
<any jwci d="conponent id" ... />

Most often, the HTML element chosen is , though (in fact) Tapestry completely ignores the element chosen
by the developer, except to make sure the open and close tags balance.

The parser used by Tapestry is relatively forgiving about case and white space. Also, the component id (and any
other attributes) can be enclosed in double quotes (as above), single quotes, or be left unquoted.

Y ou are free to specify additional attributes. These attributes will become informal parameters for the Tapestry com-
ponent.

The start and end tags for Tapestry components must balance properly. This includes cases where the end tag is nor-

mally ommitted, such as <i nput > elements. Either a closing tag must be supplied, or the XML-style syntax for an
empty element must be used (that is, aslash just before the end of the tag).

Localizing sections of atemplate
Tapestry includes an additional template feature to assist with localization of a web application. By specifying a
 element with a special attribute, key, Tapestry will replace the entire tag with alocalized string for
the component.

This construct takes one of two forms:

 ...
or

If only the key attribute is specified, then the is simply replaced with the localized string. However, if any
additional attributes are specified for the tag beyond key, then the tag will be part of the rendered
HTML, with the specified attributes.

The upshot of thisis that sections of the HTML template can be invisibly localized simply by wrapping the text to
be replaced inside a tag. The wrapped text exists, once more, as sample text to be displayed in a WY SI-
WY G editor.

2 The current releases of Tapestry is specifically oriented around HTML. Some support for non-HTML languages, such as XML, XHTML or
WML is aready present and will be expanded in the future.

14

Chapter 3. Tapestry Components

Components with Bodies

In Tapestry, individual components may have their own HTML templates. Thisis a very powerful concept ... it al-
lows powerful and useful components to be created with very little code. By contrast, accomplishing the same using
JSP tags requires either that all the HTML be output from the JSP tag directly, or that the JSP tag use some addi-
tional framework, such as Velocity, to enable the use of atemplate. In either case the JSP tag author will need to di-
vide the code or template into two pieces (before the body and after the body). Tapestry allows components to sim-
ply have a single template, with a marker for where the body is placed.

During the rendering of a page, Tapestry knits together the templates of the page and all the nested components to
create the HTML response sent back to the client web browser.

Cont ai ner content [

 [
Body content 0O

</ span>

More contai ner content 0O

O Thisportion of the container content is rendered first.
0 The component isthen rendered. It will render, possibly using its own template.
O The component controls if, when and how often the body content from its container is rendered.

Body content can be amix of static HTML and additional components. These components are wrapped by the
component, but are embedded in the component's container.
O After the component finishes rendering, the remaining content from the container is rendered.

The body listed above can be either static HTML or other Tapestry components or both. Elements in the body of a
component are wrapped by the containing component. The containing component controls the rendering of the ele-
ments it wraps in its body. For example, the Condi ti onal component may decide not to render its body and the
For each component may render its body multiple times.

Not all Tapestry components should have a body. For example, the Text Fi el d component creates an <i nput
t ype=t ext > form element and it makes no sense for it to contain anything else. Whether a component allows a
body (and wrap other elements), or whether it discardsit, is defined in the component's specification.

Tapestry includes a special component, Render Body, which is used to render the body content from a component's
container. It makesit easy to create components that wrap other components.

Tapestry and HTML Production

Tapestry is design to work in alarge-scale environment, that typically features two seperate teams: a "creative" team
that produces HTML and a"technical" team that produces Tapestry pages, components and Java code.

The division of skillsis such that the creative team has virtually no knowledge of Java and a minimal understanding
of Tapestry, and the technical team has alimited understanding of HTML (and tend to be color blind).

The typical workflow is that the technical team implements the application, using very minimal HTML ... that is,
minimal attention to layout, font size, colors, etc. Just enough to be sure that the functionality of the application is
there.

Meanwhile, the creative team is producing HTML pages of what the finished application will look like. These pages
are like snapshots of the HTML produced by the running application.

Integration is the process of merging these two views of the application together. Primarily, this involves marking
up tags within the HTML page with j wci d attributes, to indicate to Tapestry which portions of the page are dy-
namic. In this way, the page can be used as a Tapestry HTML template. These changes are designed to be invisible

15

url(../ComponentReference/Conditional.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/RenderBody.html)

Chapter 3. Tapestry Components

toaWYSIWYG HTML editor.

Tapestry includes a number of additional features to allow the HTML producers to continue working on HTML tem-
plates, even after their initial efforts have been integrated with the Java devel oper's code.

Implicitly removed bodies

In many cases, a component doesn't allow a body, but one may be present in the HTML template. As usual, thisis
declared in the component's specification. Tapestry considers that body to be a sample value, one which exists to al-
low the HTML producer to verify the layout of the page using aWY SIWY G editor (rather than having to run the en-
tire application). Tapestry simply edits out the body at runtime.

For example, an HTML producer may create an HTML template that includes a table cell to display the user's name.
The producer includes a sample value so that the cell isn't empty (when previewing the HTML layout).

<t d>John Doe</td>

The I nsert component doesn't allow a body, so Tapestry edits out the content of the tag from the HTML
template. The fact that a was used to represent the | nsert component in the HTML template is irrelevant
to Tapestry; any tag could have been used, Tapestry just cares that the start and end tags balance.

At runtime, Tapestry will combine the HTML template and the | nsert component to produce the final HTML.:

<td>Frank N. Furter</td>

This editting out isn't limited to simple text; any HTML inside the body is removed. However, none of that content
may be dynamic ... the presence of aj wei d attribute will cause a parsing exception.

Explicitly removed bodies

Another feature related to production and integration is the ability to remove sections of the HTML template. Pro-
ducers often include some optional portions on the page. The canonical example of thisis a page that shows atable
of results; the HTML producer will usually include extra rows to demonstrate the look and layout of a fully popu-
lated page.

The first row will be wrapped by a For each and otherwise changed to include dynamic links and output, but what
about the other rows?

To handle this case, Tapestry recognizes a special j wei d attribute value: $r enove$. Using this special id causes
Tapestry to edit out the tag and all of its contents. Thus, each additional <t r > in the table should specify the value
$renove$ for attribute j wei d.

<t abl e>
<tr jwci d="foreach">
<t d>John Doe</t d>
/<t d>42</td>
</[tr>
<tr jwcid="$renove$">
<td>Frank N. Furter</td>
<t d>47</td>
</tr>
<tr jwcid="$renove$">
<t d>Bob Doyl e</t d>
<t d>24</td>
</tr>
</tabl e>

Limiting template content

16

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)

Limits

Chapter 3. Tapestry Components

In atypical Tapestry application, some form of Border component provides a significant portion of every page. This
typically includes the outermost <ht M >, <head> and <body> tags, aswell as <t abl e>sused to control layout.

In the static HTML pages from the creative team, thisis not directly visible ... they must include all the content nor-
mally generated by the Border component in order to see what the HTML page actually looks like.

By default, the entire HTML template is the content for the page. This causes a problem, even after a is
added, to represent the Border component ... much of the HTML is duplicated, once from the static HTML, then dy-
namically from the Border component.

To eliminate this problem, Tapestry has a second specia j wci d attribute: $cont ent $. Using this special id causes
Tapestry to limit its view of the HTML template to just the content inside the tag. Anything outside the defined con-
tent is completely ignored.

Ideally, the HTML pages created by the HTML producers would be used as is as the HTML templates. Changes
made for integration, the adding of j wci d attributes and such, would be copied back into the HTML pages.

Given the use of the $r enpve$ and $cont ent $ j wei d's, thisis practical to a point. Once the application starts us-
ing a number of re-usable components, there isn't a good way to perform the integration short of cutting and replac-
ing some of the HTML page content to form the HTML template.

Localization

Tapestry has built in support for localization, designed to be easy to use. This localization support is defined in
terms of transforming the user interface into a format appropriate the the locale of the user. This primarily takes the
form of localized text (trandated into the end-user's language), but can also affect other aspects of look and feel in-
cluding colors, images and layout.

Tapestry has two different methods for supporting localization; developers are free to mix and match solutions ac-
cording to their own preferences.

Each client connecting to the application will select a particular Local e. When a page for the application is created,
the locale is used to select the correct localized resources. Locales are defined by the 1SO (International Standards
Organization). A locale consists of alanguage code (such as'en’ for English, 'de’ for German or 'fr' for French) and a
country code (such as'AU' for Australia, 'BE' for Belguim, or 'GB' for United Kingdom).

A client'sinitial locale is determined by analyzing HTTP headers provided with the initial request. An application
may override this default, which records a client-side cookie identifyng the desired locale. An example of thisisin-
cluded in the Tapestry Workbench demonstration.

Localization with Strings

Each individual component may have a set of localized strings. Remember that pages are just a specific kind of
component. This set is built, much like the properties of a Resour ceBundl e, from one or more . properti es
files. These files are located on the classpath, in the same directory as the component specification (the . j wc file).

The search for strings is much the same as with Resour ceBundl e, except that only . properti es filesare consid-
ered (Resour ceBundl e also looks for classes).

Example: for acomponent / conf skunkwor x/ skunkapp/ Bor der . j we and alocale of f r _BE would be:

e /com skunkwor x/ skunkapp/ Bor der _fr _BE. properties

e /com skunkwor x/ skunkapp/ Border _fr. properties

17

Chapter 3. Tapestry Components

e /com skunkwor x/ skunkapp/ Bor der . properties
Searching for individual keys works just as with Resour ceBundl e, the search starts in the most specific file Bor -
(der _fr_BE. properti es) and continues downward if not found.

Components can gain access to their container's localized strings via the <st r i ng- bi ndi ng> element in the com-
ponent specification.

Localization with Templates

Tapestry alows multiple versions of HTML templates and assets (described in a later section) to be deployed with
the application.

The base template name is derived from the specification name, by changing the j we extension to ht m . For exam-
ple, component /con skunkworx/skunkapp/ Border.jwc will have a base template name of /
com skunkwor x/ skunkapp/ Bor der . ht nl . This resource name is used as the basis of a search that includes the
locale. Various suffixes are inserted just before the '.html' extension.

A French speaking Belgian visitor would provoke the following search:

e /com skunkwor x/ skunkapp/ Bor der _fr_BE. ht i
e [/ com skunkwor x/ skunkapp/ Border _fr. ht m

e /com skunkwor x/ skunkapp/ Bor der . ht m

Note

:F This form of localization actually predates the alternate form, using localized strings. Localizing the
strings seperately from the rest of the HTML template is generally a better and easier way. Localiza-
tion of templates will, in the future, be used primarily when changing the layout of the template ... for
example, to provide aright-to-left orientation in a Hebrew localization.

Assets

Assets are images (GIF, JPEG, etc.), movies, sounds or other collateral associated with a web application. Assets
comein three flavors: external, context and private.

External assets live at an arbitrary URL. Context assets use a URL within the serviet context hosting the Tapestry
application; these assets are deployed within the same Web Application Archive (WAR) as the application.

Private assets come from the Java classpath and are resources not normally visible to the web server.
Tapestry uses the assets concept to address two areas: localization and depl oyment.

For localization: internal and private assets are localized, just like HTML templates. That is, the path name provided
is used as the basis for a search that takes into account the desired locale. External assets can't be localized in this

way.

Private assets allow for easy deployment because the assets are packaged with the HTML templates and Java code
of the application, inside a Java Archive (JAR) file.

Private assets support re-usability; a re-usable component may be packaged with supporting assets (typically, image
files) and used in any Tapestry application without change, and without having to locate, extract or otherwise fiddle

18

Chapter 3. Tapestry Components

with those assets.
The Tapestry framework provides two ways of exposing the assets to the client web browser.

First, it provides a service that will access the asset dynamically. The URL encodes the application servlet and the
resource to download, and Tapestry framework code will pump the bytes down to the client web browser. Thisisthe
default behavior (and is most useful during devel opment).

The second method involves copying the asset out to a directory visible to the web server, and creating a URL for it
inits fina location. This requires some extra configuration of the application. This method also has some implica-
tions when deploying new versions of the web application. These are addressed |ater in this document.

Helper Beans

There is a second form of aggregation allowed with Tapestry components. The first way, covered previoudly, is to
use embedded components to extend the functionality of the outer component. In some cases, useful behavior can be
isolated, not into an additional component, but into a simple JavaBean.

These additional beans, called helper beans, are defined in the component specification, in the <bean> element.
Each bean has a unique name, a class to instantiate, and a lifecycle (which controls how long the component keeps a
reference to the bean). The specification allows properties of the bean to be set as well, using the <set - pr opert y>
and <set - st ri ng- pr oper t y> elements. Helper beans are accessed through the beans property of the component.

Beans are created as needed, they may then be cached for future use according to their declared lifecycle. The de-
fault lifecycleisr equest , meaning that the same bean will be returned until the end of the current request cycle.

An dternate lifecycle, page, means that once the bean is instantiated, it will continue to be available for the lifetime
of the page containing it. Remember that helper beans should never contain any client-specific state, since a page
will be used by multiple sessions and clients.

The last available lifecycle, none, indicates that the bean is not cached at all, and will be created fresh on each prop-
erty access.

Tapestry includes a handful of useful helper beans. Def aul t is used to provide default values for optional parame-
ters. Val i dati onDel egat e and several implementions of | Val i dat or used with Val i dFi el d, it allows simple
handling of validation and presentating validation errors. EvenQdd is used by the Tapestry Inspector; it generates a
stream of values alternating between "even" and "odd"; this is combined with cascading stylesheets to make the
rows alternate between white and grey backgrounds.

19

url(../api/org/apache/tapestry/bean/Default.html)
url(../api/org/apache/tapestry/valid/ValidationDelegate.html)
url(../api/org/apache/tapestry/valid/IValidator.html)
url(../ComponentReference/ValidField.html)
url(../api/org/apache/tapestry/bean/EvenOdd.html)

Chapter 4. Tapestry Pages

Pages are specialized versions of components. As components, they have a specification, embedded components, as-
setsand an HTML template.

Pages do not have parameters, because they are the outermost component in the component hierarchy.

All components, however deep their nesting, have a page property that points back to the page they are ultimately
embedded within. Pages have an engine property that points to the engine they are currently attached to.

Pages participate in a pooling mechanism, so that a single instance of a page component can be used by multiple ses-
sions of the same web application. Even when alarge number of client sessions are active, it is rare for more than a
handful to be actively processing requests in the application server. This pooling mechanism minimizes the number
of instances of a page that must exist concurrently on the server. There are some implications to this design that are
discussed in the following sections.

Pages may have persistent state, properties specific to a particular user that persist between request cycles. These
properties live only as long as the Ht t pSessi on. There is some complexity here, because the page state is entirely
seperate from any instance of the page. Remember that on subsequent requests, a different page from the page pool
may be used to service the request ... in fact, in a clustering environment, the request may be serviced by an entirely
different server. Tapestry efficiently and transparently hides these details; when any portion of an application re-
guests a page, it receives an instance of the page with all persistent page properties set the the values previously
stored for the user.

In fact, any component may have persistent state, and use the page as means for recording that state.

The engine is a session persistent object. The implementation of this varies from application server to application
server, but the basic ideais that the Ht t pSessi on is serialized after each request and stored in afile or database. It
may then be removed from memory. When a subsequent request for the same session arrives, it is restored from the
persistent storage.

In a clustering server application, consequtive requests for the same session may be serviced by different servers
within the cluster. Serializing and deserializing the Ht t pSessi on is the mechanism by which the servers are kept
synchronized. Persistent page properties are stored as part of the engine, and so they continue to be available, even
after the engine has moved from one server to another.

The visit object is a property of the engine object, so it is serialized and de-serialized with the engine.

Pages are not session persistent. They exist only within the memory of the Java VM in which they are first created.
Pages and components don't need to implement the j ava. i 0. Seri al i zabl e interface; they will never be serial-
ized.

The application engine can always instantiate a new page instance and restore its previously recorded state (the
recorded state information is serialized with the engine).

Page State

Pages, and the components on them, have state. State is considered the set of values for the properties of the page.

In Tapestry, the lifespan of each property is very important. There are three lifespans:

» Persistent. Changes the property are recorded and persist between request cycles. Persistent properties are re-
stored when the page is next loaded. Persistent properties are specific to an individual user.

« Transient. The property is set before the page is rendered and will be reset (to its default value) at the end of the
current request cycle.

20

Chapter 4. Tapestry Pages

» Dynamic. The property changes even while the page is rendered, but (like transient) the property is reset at the
end of the current request cycle.

Persistent properties are things like the user's name, the product being displayed in an e-commerce application, etc.
Transient properties are more commonly things needed just once, such as an error message. Dynamic properties are
intimately tied to the rendering process ... for example, to display alist of items in an order, it may be necessary to
have a dynamic property take the value of each line item in sequence, as part of aloop.

Persistent Page State

The Tapestry framework is responsible for tracking changes to page state during the request cycle, and storing that
state between request cycles. Ultimately, this is the responsiblility of the application engine. This is accomplished
through page recorder objects. As a page's persistent state changes, it notifies its page recorder, providing the name
of the property and the new value.

This information is stored persistently between request cycles. In alater request cycle, the page recorder combines
this information with a page instance to rollback the state of the page.

Pages are blind as to how their state is stored. The basic implementation of Tapestry simply stores the page state in-
formation in memory (and serializes it with the engine, in the Ht t pSessi on), but future options may include stor-
ing the datain flat files, relational databases or even as cookiesin the client browser.

Some minor burden is placed on the developer to support persistent state. The mutator method of every persistent
property must include aline of code that notifies the observer of the change.

For example, consider a page that has a persistent property for storing an email address. It would implement the nor-
mal accessor and mutator methods:

private String enmil Address;
public String get Enai |l Address()
{

return enmail Addr ess;

public void setEnmil Address(String val ue)
emai | Address = val ue;

fireCbservedChange("enui | Address", val ue);

}

The mutator method does slightly more than change the private instance variable; it must also notify the observer of
the change, by invoking the method f i r eCbser vedChange() , which isimplemented by the class Abst r act Com
ponent . This method is overloaded; implementations are provided for every type of scalar value, and for
j ava. |l ang. Qbj ect .

The value itself must be serializable (scalar values are converted to wrapper classes, which are serializable).

The page designer must provide some additional code to manage the lifecycle of the page and its persistent proper-
ties. Thisis necessary to support the "shell game" that allows a page instance to be separate from its persistent state,
and is best explained by example. Let's pretend that the user can select a personal preference for the color scheme of
apage. The default color is blue.

Thefirst user, Suzanne, reaches the page first. Disliking the blue color scheme, she uses a form on the page to select
agreen color scheme. The instance variable of the page is changed to green, and the page recorder inside Suzanne's
session records that the persistent value for the color property is green.

When Suzanne revisits the page, an arbitrary instance of the page is taken from the pool. The page recorder changes

21

url(../api/org/apache/tapestry/AbstractComponent.html)

Chapter 4. Tapestry Pages

the color of the page to green and Suzanne sees a green page.

However, if Nancy visits the same page for the first time, what is the color? Her page recorder will not note any par-
ticular selection for the page color property. Shelll get whatever was left in the page's instance variable ... green if
she gets the instance last used to display the page for Suzanne, or some other color if some other user recently hit the
same page.

This may seem relatively minor when the persistent page state is just the background color. However, in areal appli-
cation the persistent page state information may include user login information, credit card data, the contents of a
shopping cart or whatever. The way to deal with this properly is for each page with persistent state to override the
method det ach() . The implementation should reset any instance variables on the page to their initial (freshly allo-
cated) values.

In our example, when Suzanne is done with the page, its det ach() method will reset the page color property back
to blue before releasing it into the pool. When Nancy hits the page for the first time, the page retrieved from the pool
with have the expected blue property.

In other words, it is the responsibility of the developer to ensure that, as a page is returned to the pool, its state is ex-
actly the same as a freshly created page.

In our earlier email address example, the following additional code must be implemented by the page:

public void detach()
emai | Address = nul | ;

super . det ach();

All properties, dynamic, transient and persistent, should be reset inside the det ach() method.
Individual components on a page may also have dynamic, transient or persistent properties. If so, they should imple-

ment the PageDet achLi st ener interface and implement the pageDet ached() method and clear out such proper-
ties, just asapage doesindet ach() .

EJB Page Properties

Tapestry make a single, special case for one particular type of persistent page property: references to Enterprise Jav-
aBeans.

The page recorders check to see if a page property istypej avax. ej b. EIBObj ect . If so, they don't store the object
itself (EJBObj ect s are not directly serializable), instead they get the Handl e for the object and store that instead
(Hand! esare seriaizable).

When the page is next accessed, the Handl e is converted back into an EJIBOhj ect before assigning it to the page
property.

A side effect of thisisthat you may not have aHandl e as a persistant page property; the page recorders don't have a
way to differentiate aHand| e from an EJBObj ect converted to aHandl e and always assume the latter.

Dynamic Page State

The properties of a page and components on the page can change during the rendering process. These are changes to
the page's dynamic state.

The mgjority of components in an application use their bindings to pull data from the page (or from business objects
reachable from the page).

A small number of components, notably the For each component, work the other way; pushing data back to the

22

url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../ComponentReference/Foreach.html)

Chapter 4. Tapestry Pages

page (or some other component).

The For each component is used to loop over a set of items. It has one parameter from which it reads the list of
items. A second parameter is used to write each item back to a property of its container.

For example, in our shopping cart example, we may use a For each to run through the list of line items in the shop-
ping cart. Each line item identifies the product, cost and quantity.

Example4.1. HTML template for Shopping Cart

<h1>Cont ext of shopping cart for
John Doe</h1l>
<t abl e>
<tr>
<t h>Product </t h> <th>Q y</th> <t h>Price</th>
</tr>

<tr>
<t d>Pr oduct Name</td>
<t d>5</td>
<t d>%$1. 50</ span></td>
<td><a jwci d="renove">r enpve</ a></td>
</[tr>
</ span>
</t abl e>

This example shows a reasonable template, including sample static values used when previewing the HTML layout
(they are removed by Tapestry at runtime). Some areas have been glossed over, such as alowing quantities to be
changed.

Component eachl t emis our For each. It will render its body (all the text and components it wraps) several times,
depending on the number of line items in the cart. On each passit:

» Getsthe next value from the source
» Updates the value into some property of its container

* Rendersits body

This continues until there are no more valuesin its source. Lets say thisis apage that hasal i nel t emproperty that
is being updated by the eachl t emcomponent. The i nsert Product Nane, i nsert Quantity andinsertPrice
components use dynamic bindings such as lineltem productName, |ineltemquantity and
lineltemprice.

Part of the page's specification would configure these embedded components.

Example 4.2. Shopping Cart Specification (excer pt)

<conponent id="eachlten' type="Foreach">
<bi ndi ng name="source" expression="itemnms"/>
<bi ndi ng name="val ue" expression="lineltenm'/>
</ conponent >

<conponent id="insertProduct Name type="Insert">
<bi ndi ng name="val ue" expression="Iineltem product Name"/ >
</ conmponent >

23

url(../ComponentReference/Foreach.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Insert.html)

Chapter 4. Tapestry Pages

<conponent id="insertQuantity" type="Insert">
<bi ndi ng nanme="val ue" expression="lineltem quantity"/>
</ conmponent >

<conponent id="insertPrice" type="Insert"> .
<bi ndi ng nane="val ue" expression="lineltemprice"/>
</ conponent >

<conponent id="renove" type="ActionLink">
<bi ndi ng nane="1i stener" expressi on="|isteners.renovelteni/>
</ conponent >

Thisis very important to the r enove component. On some future reguest cycle, it will be expected to remove a spe-
cific line item from the shopping cart, but how will it know which one?

Thisis at the heart of the action service. One aspect of the | Request Cycl e's functionality isto dole out a sequence
of action idsthat are used for this purpose (they are also involved in forms and form elements). Asthe Act i onLi nk
component renders itself, it allocates the next action id from the request cycle. Regardless of what path through the
page's component hierarchy the rendering takes, the numbers are doled out in sequence. This includes conditional
blocks and loops such as the For each.

The steps taken to render an HTML response are very deterministic. If it were possible to 'rewind the clock' and re-
store all the involved objects back to the same state (the same values for their instance variables) that they were just
before the rendering took place, the end result would be the same. The exact same HTML response would be cre-
ated.

Thisis similar to the way in which compiling a program from source code results in the same object code. Because
the inputs are the same, the results will be identical.

This fact is exploited by the action service to respond to the URL. In fact, the state of the page and components is
rolled back and the rendering processes fired again (with output discarded). The Act i onLi nk component can com-
pare the action id against the target action id encoded within the URL. When a match is found, the Act i onLi nk
component can count on the state of the page and all components on the page to be in the exact same state they were
in when the page was previously rendered.

A small effort is required of the developer to always ensure that this rewind operation works. In cases where this
can't be guaranteed (for instance, if the source of this dynamic datais a stock ticker or unpredictable database query)
then other options must be used, including the use of the Li st Edi t component.

In our example, the r emove component would trigger some application specific code implemented in its containing
page that removes the current | i nel t emfrom the shopping cart.

The application is responsible for providing alistener method, a method which isinvoked when the link istriggered.

Example 4.3. Listener method for remove component

public void renpvel ten{| Request Cycl e cycl e)

getCart().renmove(lineltem;

This method is only invoked after all the page state is rewound; especially relevant isthel i nel t emproperty. The
listener gets the shopping cart and removes the current line item from it. This whole rewinding process has ensured
that 1i nel t emis the correct value, even though the remove component was rendered several times on the page
(because it was wrapped by the For each component).

24

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/ActionLink.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/ListEdit.html)
url(../ComponentReference/Foreach.html)

Chapter 4. Tapestry Pages

Listener Methodsvs. Listener Objects

:F Listener methods were introduced in Tapestry 1.0.2. Prior to that, it was necessary to create a listener
object, typically as an inner class, to be notified when the link or form was triggered. This worked
against the basic goal of Tapestry: to eliminate or simplify coding. In reality, the listener objects are
till there, they are created automatically and use Java reflection to invoke the correct listener method.

An equivalent JavaServer Pages application would have needed to define a servlet for removing items from the cart,
and would have had to encode in the URL some identifier for the item to be removed. The servlet would have to
pick apart the URL to find the cart item identifier, locate the shopping cart object (probably stored inthe Htt pSes-
si on) and the particular item and invoke the r emove() method directly. Finaly, it would forward to the JSP that
would produce the updated page.

The page containing the shopping cart would need to have special knowledge of the cart modifying servlet; its
servlet prefix and the structure of the URL (that is, how the item to remove is identified). This creates a tight cou-
pling between any page that wants to display the shopping cart and the servlet used to modify the shopping cart. If
the shopping cart servlet is modified such that the URL it expects changes structure, all pages referencing the servlet
will be broken.

Tapestry eliminates all of these issues, reducing the issue of manipulating the shopping cart down to the single,
small listener method.

Stale Links and the Browser Back Button

The fact that web browsers have a "back" button is infuriating to application developers. What right does the user
have to dictate the order of navigation through the application? Whose application is this anyway?

In atruly stateless application, the browser back button is not a great hardship, because each page carrys within itself
(as cookies, hidden form fields and encoded URL) all the state necessary to process the page.

Tapestry applications can be more stateful, which is ablessing and a curse. The blessing is that the Tapestry applica
tion, running on the server, can maintain state in terms of business objects, data from databases, Enterprise Jav-
aBeans and more. The curse is that a user hitting the back button on the browser loses synchronization with that
state.

Let's use an e-commerce example. A user is browsing alist of available cameras from a product catalog. The user
clicks on aMinolta camera and is presented with pictures, prices and details about the Minolta camera.

Part of the page lists similar or related items. The user clicks on the name of a similar Nikon camera and is shown
the pictures, prices and details of the Nikon camera. The user then hits the browser back button, returning to the
page showing the Minolta camera, and clicks the "add to shopping cart" button. Web browsers have no way of in-
forming the server that the user has employed the back button.

Once the user clicks the link, the server replies with a response showing the contents of the shopping cart ... but what
has been added to the cart, the Minolta or the Nikon? It depends on how the Tapestry application has been struc-
tured.

Presumably, the application has a single page, named Pr oduct Det ai | s, that shows the pictures, prices and details
of any product. The Product Det ai | s page will have a persistent property named product, of type Product .
Pr oduct isabusiness classthat contains al that pricing and detail information.

The question is, how is the add to shopping cart link implemented? If itslogic is to add whatever the current value of
the product property is (i.e., by using an Act i onLi nk component or part of aform) then it will add the Nikon cam-
era, since that's the current product (the most recent one displayed to the user, as far as the server is concerned # it
has no way to know the user hit the back button and was staring at the Minolta when the link was clicked). Thisis
the natural approach, since it doesn't take into account the possiblility that the user worked backwards to a prior

page.

25

url(../ComponentReference/ActionLink.html)

Chapter 4. Tapestry Pages

On the other hand, if aDi r ect Li nk component is used, it can encode into the URL the primary key of the Minolta
product, and that will be the product added to the shopping cart, regardless of the current value of the product prop-
erty.

HTML Forms, controlled by the For m component, are also susceptible to these issues related to the browser back
button. Still, there are techniques to make even forms safe. Borrowing an idea from more traditional JavaServer
Pages development, a hidden field can be included in the form to sychronize the form and the application ... for ex-
ample, including the primary key of the Minolta or Nikon product. Tapestry includes aH dden component used for
just this purpose.

Finally, the Li st Edi t component exists to help. It works like a For each, but encodes the number and value of the
itemsit iterates as hidden form fields.

Page Loading and Pooling

The process of loading a page (instantiating the page and its components) can be somewhat expensive. It involves
reading the page's specification as well as the specification of all embedded components within the page. It also in-
volves locating, reading and parsing the HTML templates of all components. Component bindings must be created
and assigned.

All of thistakestime ... not much time on an unloaded server but potentially longer than is acceptable on a busy site.
It would certainly be wasteful to create these pages just to discard them at the end of the request cycle.

Instead, pages are used during arequest cycle, and then stored in apool for later re-use. In practice, this means that a
relatively small number of page objects can be shared, even when there are a large number of clients (a single pool

is shared by all clients). The maximum number of instances of any one page is determined by the maximum number
of clients that simultaneously process a request that involves that page.

Figure4.1. Page Lifecycle

26

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/Hidden.html)
url(../ComponentReference/ListEdit.html)
url(../ComponentReference/Foreach.html)

Chapter 4. Tapestry Pages

Instantiated

Fetrieved From Pool

Detached } Culled @

[Attached Detached and Stored

Asthe page s retrieved from the pool, all of its persistent page properties are set. Thus the page is equivalent to the
page last used by the application, even if it is not the same instance. This includes any state (that is, the settings of
any instance variables) that are particular to the client.

This process is managed by the | Request Cycl e. When asked for a page, it checks whether the page has been ac-
cessed yet for this request. If not, the page must be obtained from the page loader and properly attached and config-
ured.

Figure 4.2. Page L oading Sequence

27

url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 4. Tapestry Pages

cycle : engine record af page : P age Source :
IReguestCycle |[Engine IPageRecorder IPageSource
| | | | | |
| getPage() | | | |
getF‘ageSnume(b | | |
getPagel | | |
| | | atach()
| | '
setRequestCycile() | \T‘
getPageRecnrdLr() | u |
llback |—| | | |
rollback() L set properties } |
| |
| |
| |
| |
| |
| |

_

The page loader maintains a pool of pages, or can construct a new page instance as needed. The | PageRecor der
for the page tracks the persistant page properties and can reset the properties of the page instance to values appropri-
ate to the current session.

A page istaken out of the pool only long enough to process arequest for a client that involvesit. A pageisinvolved
in arequest if it contains the component identified in the service URL, or if application code involves the page ex-
plicitly (for instance, uses the page to render the HTML response). In either case, as soon as the response HTML
stream is sent back to the client, any pages used during the request cycle are released back to the pool.

This means that pages are out of the pool only for short periods of time. The duration of any single request should be
very short, a matter of a second or two. If, during that window, a second request arrives (from a different client) that
involves the same page, a new instance will be created. Unless and until that happens, a single instance will be used
and re-used by al clients, regardiess of the number of clients.

Pages stay in the pool until culled, at which point the garbage collector will release the memory used by the page

(and all the components embedded in it). The default behavior is to cull unused pages after approximately ten min-
utes.

Page Localization

When apageisfirst instantiated, itslocaleis set to match the locale of the engine it is loaded into.
This page locale isread-only; it is set when the page isfirst created and never changes.

Any component or asset on the page that needs to be locale-specific (for instance, to load the correct HTML tem-
plate) will reference the page's locale.

As noted previously, pages are not discarded; they are pooled for later reuse. When an engine gets an existing page
from the pool, it always matches its locale against the pooled page's locale. Thus a page and its engine will aways

28

url(../api/org/apache/tapestry/IPageRecorder.html)

Chapter 4. Tapestry Pages

agree on locale, with one exception: if the engine locale is changed during the request cycle.

When the engine locale changes, any pages |oaded in the current request cycle will reflect the prior locale. On subse-
guent request cycles, new pages will be loaded (or retrieved from the pool) with locales matching the engine's new
locale.

Tapestry does not currently have a mechanism for unloading a page in the same request cycle it was loaded (except
at the end of the reguest cycle, when all pages are returned to the pool). If an application includes the ability to
change locale, it should change to a new page after the local e change occurs.

Changing locale may have other, odd effects. If part of a page's persistent state is localized and the application locale
is changed, then on a subsequent request cycle, the old localized state will be loaded into the new page (with the new
locale). This may also affect any components on the page that have persistent state (though components with persis-
tent state are quite rare).

In general, however, page localization is as easy as component localization and is usually not much of a considera-
tion when designing web applications with Tapestry.

Page Buffering

The HTML response generated by a page during rendering is buffered. Eight kilobytes of 8-bit ASCII HTML isal-
lowed to accumulate before any HTML output is actually sent back to the client web browser.

If a Java exception is thrown during the page rendering process, any buffered output is discarded, and the applica-
tion-defined exception page is used to report the exception to the user.

If a page generates a large amount of HTML (larger than the 8KB buffer) and then throws an exception, the excep-
tion page is still used to report the exception, however the page finally viewed in the client browser will be "ugly”,
because part of the failed page's HTML will appear, then the complete HTML of the exception page.

In practice, virtually all Tapestry pages will use a Body component wrapping the majority of the page (it takes the
place of the normal <body> element), and a Body component buffers the output of al componentsin its body. This
buffering is necessary so that the Body component can write out various JavaScript handlers before the main body
of HTML iswritten (thisis often related to the use of the Rol | over and Scri pt components).

In any case, whenever a Body component is used, an exception thrown during the rendering of the page will cause
all the HTML buffered by the Body component to be cleanly discarded, allowing for a clean presentation of the ex-

ception page.
Page Events

Each page has a lifecycle; it is created and attached to an engine. It will render itself. It is placed in a pool for later
reuse. Later, it comes out of the pool and is attached to a new engine to start the process again. There are cases
where objects, especially the components embedded somewhere within the page, need to know about this lifecycle.

| Page can produce a number of events related to its lifecycle. PageRender Li st ener isalistener interface for de-

termining when the page starts and finishes rendering (this includes rewind renders related to the Act i onLi nk com-
ponent).

Figure 4.3. Page Render Sequence

29

url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Rollover.html)
url(../ComponentReference/Script.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/event/PageRenderListener.html)
url(../ComponentReference/ActionLink.html)

Chapter 4. Tapestry Pages

engine : cycle page . IPage listener
Engine HequestCycle PageRenderlistener
| renderPage() | | _
L renderPage() | pageBeginRender()

commitPageChanges() D < beginResponse

pageEndRender()

|
|
() LiJ
|
[% render(I
T
|
|

—_—]
_

The call to comni t PageChanges() is very important. It is not possible to make any changes to persistant page
properties after this method isinvoked; doing so will throw an exception.

Figure 4.4. Page Rewind Sequence

engin_e : cycle . page : [Page listener
I[Engine FeguestCyele PageRendedistener

| |]

| rewindFage | |
! gel) crenderPagel | pageBeginRender]]

[]; render]

pageEndRender()

|
I
[]; beginFespaonse|]IL|F|
|
|
|

30

Chapter 4. Tapestry Pages

Page rewinds, which are related to the For mand Act i onLi nk components, also perform arender operation in order
to restore dynamic state on the page. The PageRender Li st ener events are till fired. The event listeners can in-
vokei sRewi ndi ng() on | Request Cycl e to determine whether thisisanormal render, or for rewind purposes.

The PageDet achLi st ener interface is used by objects that wish to know when the page is detached from the ap-
plication, prior to be stored into the page pool (for later reuse). Thisis used by any components that maintain any in-
dependent state.

Figure 4.5. Page Detach Sequence

engine : cycle: SOUFCE pae ;. P age listener
IFeguestCycle IFeguestCycle [PageSource Pangeletachlistener

]

cleanupl)

|
releasePagel) |
|

detachi) pageDetached()

|
|
U

|

_— —

This cleanup occurs at the end of the request, after aresponse has been sent to the client web browser.

The engine knows when the Ht t pSessi on has been invalidated because the container will invoke val ueUn-
bound() . It loads and rolls back each page, then invokes cl eanupPage() to alow the page to gracefully cleanup
any held resources.

Components that implement one of these interfaces usually override the method f i ni shLoad() (from Abstract -
Conponent) to register themselves with the page.

31

url(../ComponentReference/Form.html)
url(../ComponentReference/ActionLink.html)
url(../api/org/apache/tapestry/event/PageRenderListener.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/AbstractComponent.html)

Chapter 5. Application Engines and
Services

The application engine is a central object whose responsibility is to run the request cycle for each request. To do
this, it manages resources such as page loaders and page recorders and provides services to the pages and compo-
nents utilized during the request cycle.

Application engines are instantiated by the application's servlet (described in the next section). They are stored into
the Ht t pSessi on and are persistent between reguest cycles.

An important behavior of the engine is to provide named engine services, which are used to create and respond to
URLSs. The application engine creates and manages the request cycle and provides robust default behavior for catch-
ing and reporting exceptions.

The application engine provides the page recorder objects used by the request cycle. By doing so, it sets the persis-
tence strategy for the application as a whole. For example, applications which use or subclass Si npl eEngi ne will
use the simple method of storing persistent state: in memory. Such applications may still be distributed, since the
page recorders will be serialized with the application engine (which is stored within the Ht t pSessi on).

Application Servlet

Every Tapestry application has a single servlet, which acts as a bridge between the servlet container and the applica-
tion engine. The application servlet is an instance of Appl i cati onServl et .

The first thing a servlet does, upon initialization, is read the application specification. To do this, it must know
wher e the application specification is stored.

Specifications are stored on the classpath, which means in a JAR file, or in the WEB- | NF/ ¢l asses directory of the
WAR.

The servlet determines the location of the application specification from the web deployment descriptor. A servlet
initialization property, or g. apache. t apestry. appl i cati on-specificati on provides the locations of the
specificiation as a path.

Example5.1. Web Deployment Descriptor

<?xm version="1.0"7?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, |Inc.//DTD Web Application 2.2//EN'
"http://java. sun.com j 2ee/ dt ds/ web-app_2_2. dtd" >
<web- app>
<di spl ay- name>Tapestry Virtual Library Denp</di spl ay- nane>
<servl et >
<servl et - name>vl i b</ servl et - name>
<servl et -cl ass>org. apache. tapestry. Appl i cati onServl et </ servl et -cl ass>
<i ni t - par an>
<par am nane>or g. apache. t apestry. appl i cati on- speci fi cati on</ par am nane>
<par am val ue>/ net/sf/tapestry/vlib/Vlib.application</param val ue>
</init-paranm
<l oad- on- st art up>0</ | oad- on- st art up>
</servlet>

<I-- The single mapping used for the Virtual Library application -->
<servl et - mappi ng>

<servl et - nane>vl i b</ servl et - nane>
<url - pattern>/app</url -pattern>

32

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)

Chapter 5. Application Engines and Services

</ servl et - mappi ng>

<sessi on-config> _)
~ <sessi on-timeout >15</ sessi on-ti meout >
</ sessi on-confi g>

<wel cone-file-list>
<wel cone-fil e>i ndex. ht M </ wel cone-fil e>
</wel cone-file-list>

</ web- app>

The servlet's main job isto find or create the | Engi ne instance. It then delegates all the behavior for processing the
request to the application engine. Encoded in the URL will be a particular application service; the engine delegates
to the service to perform the real work of handling the request.

Figure5.1. ApplicationServlet Sequence

oervet servlet engine semvice
Container Anplicatioh=erlet [Engine |[Engineservice

doGet{)/ doPast()

getEngine()

servicel)

senicel)

emmmemme]

Required Pages

Each application is required to have a minimum of five pages with specific names. Tapestry provides default imple-
mentations for four of the five, but a full-featured Tapestry application may override any of the others to provide a
consistent look-and-feel.

Tableb5.1. Tapestry Pages

Page Name Required Description

Exception Default provided, may be overridden. | Page used to present uncaught excep-
tions to the user.

Home Must be provided by developer. The initial page displayed when the
application is started.

I nspector Provided, never overriden. Inspector that allows the Tapestry ap-
plication to be interrogated on its

33

url(../api/org/apache/tapestry/IEngine.html)

Chapter 5. Application Engines and Services

Page Name Required Description
structure.

StaleLink Provided Page displayed when a StaleLinkEx-
ception is thrown during the process-
ing of arequest.

StaleSession Provided Page displayed when a StaleSes
sionException is thrown during the
processing of arequest.

Tapestry only mandates the logical name of these four pages; the actual page component used is defined in the appli-
cation specification.

The Hore page is the first page viewed by a client connecting to the application. Other than that, there is nothing
special about the page.

Theinitial connection to the application, where nothing is specified in the URL but the path to the servlet, causes the
home service to be invoked, which makes use of the home page. The restart service will also redirect the user to the
home page.

No default is provided for the Home page; every Tapestry application must defineits own Homre page.
The Exception page isinvoked whenever an uncaught exception is thrown when processing a service.

The Tapestry framework catches the exception and discards any HTML output (this is why output is buffered in
memory).

The Except i on page must implement a writable JavaBeans property of typej ava. | ang. Thr owabl e named ex-
cept i on. The framework will invoke the accessor method before the page is rendered.

The class Except i onAnal yzer and the Except i onDi spl ay component are typically used to present this infor-
mation.

The St al eLi nk page is displayed when a St al eLi nkExcept i on is thrown, which may occur during the process-
ing of the request. The exception is thrown when Tapestry determines that the state of the page (on the server) is out
of synch with the client's view of the page ... this most often happens when the user makes use of the browser's back
button. 3

The default implementation informs the user of the problem ("you really shouldn't use the back button on your
browser") and uses the home service to create alink back to the Home page.

The St al eSessi on page is displayed when a or g. apache. t apestry. St al eSessi onExcepti on is thrown.
This exception is thrown when the component is configured to be stateful (which is the default) and the Ht t pSes-
si on doesn't exit, or is newly created - this indicates a fresh connection to the servlet container after the old session
timed out and was discarded. 4

Thel nspect or pageis provided by the framework; it allows a developer to interrogate a running Tapestry applica
tion to determine its structure.

Server-Side State

3 If desired, the application engine can override the method handl eSt al eLi nkExcept i on() . The default implementation of this method redi-
rects to the St al eLi nk page, but a custom implementation could set up an error message on the application's Home page and redirect there in-
stead.

4 Likewise, the default behavior can be changed by overriding the method handl eSt al eSessi onExcepti on() .

34

url(../api/org/apache/tapestry/util/exceptionExceptionAnalyzer.html)
url(../ComponentReference/ExceptionDisplay.html)
url(../api/org/apache/tapestry/StaleLinkException.html)

Chapter 5. Application Engines and Services

There are two types of server side state that are supported by Tapestry: persistent page properties and the visit ob-
ject. Thefirst (page properties) have already been discussed.

The visit object is a central repository for application state and presentation logic. The visit object is accessible
through the application engine (the engine implements avi si t property). The application engine doesn't care about
the class of the visit object, or what properties it implements.

The visit object holds central information that is needed by many pages. For example, an e- commerce application
may store the shopping cart as a property of the visit object.

When using Enterprise JavaBeans, the visit object is a good place to store remote object references (centralizing the
logic to look up home interfaces, instantiate references, etc.).

Every pageimplementsavi si t property that allows access to the visit object.

When using the Si npl eEngi ne engine, the visit object is created the first timeit is referenced. The class of the visit
object is stored in the application specification.

Stateful vs. Stateless

Through Tapestry release 1.0.0, an Ht t pSessi on was created on the very first request cycle, and an engine was
created and stored into it.

This comes at some cost, however. Creating the session is somewhat expensive if it is not truly needed, and causes
some overhead in a clustering or failover scenario. In fact, until some real server-side state is created; that is, until a
persistent page property is recorded or the visit object created, it isn't really necessary to store any server-side state
for aparticular client.

Starting with Tapestry release 1.0.1, the framework will operate statelessly as long as possible. When triggered (by
the creation of a visit, or by a persistent page property) an Ht t pSessi on will be created and the engine stored
within it and the application will continue to operate pretty much as it does in Tapestry release 1.0.0.

While the application continues statelessly, the framework makes use of a pool of engine instances. This is more ef-
ficient, as it reduces the number of objects that must be created during the request cycle. However, the major reason
for running statelessly is to bypass the overhead statefulness imposes on the application server.

Of course, if rendering the Home page of your application triggers the creation of the Ht t pSessi on 5, then nothing
is gained. A well designed application will attempt to defer creation of the session so that, at least, the Home page
can be displayed without creating a session.

Engine Services

Engine services provide the structure for building aweb application from individual pages and components.

Each engine service has a unique name. Well known names exist for the basic services (page, action, direct, etc., de-
scribed in alater section).

Engine services are responsible for creating URLs (which are inserted into the response HTML) and for later re-
sponding to those same URLS. This keeps the meaning of URLS localized. In a typical servlet or JSP application,
code in one place creates the URL for some servlet to interpret. The servlet isin a completely different section of
code. In situations where the servlet's behavior is extended, it may be necessary to change the structure of the URL
the servlet processes ... and this requires finding every location such a URL is constructed and fixing it. Thisis the
kind of inflexible, ad-hoc, buggy solution Tapestry is designed to eliminate.

Most services have a relationship to a particular component. The basic services (action, direct, page) each have a
corresponding component (Acti onLi nk, DirectLink, PageLi nk). The following example shows how the

5 That is, changes a persistent page property, or forces the creation of the visit object.

35

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/PageLink.html)

Chapter 5. Application Engines and Services

PageLi nk component is used to create alink between application pages.

First, an extract from the page's HTML template:

Cick here to | ogin.

Thisis combined with the a <conponent > declaration in the the page's specification:

<component id="1ogi n" type="PageLink">
<st ati c- bi ndi ng name="page" >Logi n</ st ati c- bi ndi ng>
</ conmponent >

Thel ogi n component will locate the page service, and provide 'Login’ (the name of the target page) as a parameter.
The page service will build and return an appropriate URL, which the | ogi n component will incorporate into the
<a> hyperlink it generates.

The resulting HTML:

Click here to | ogin.

If the user later clicks that link, the application will invoke the page service to handle the URL; it will extract the
page name (Logi n) and render that page.

The other services are more or less complicated, but share the same basic trait: the service provides the URL and
later respondsif the URL istriggered.

Links (Act i onLi nk, Di r ect Li nk, etc.) and For ns use services in dightly different ways. Links encode all the in-
formation directly into the URL whereas For ns encode most of the information as hidden form fields.

Figure5.2. Services and Gestures

36

url(../ComponentReference/PageLink.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/Form.html)

Chapter 5. Application Engines and Services

SEMNVICE | gesture wiiter
|[Engine Service Sesture IFesponseVriter

bulldGesture{)

i

getFullURL()

o

| buildizesturel

T
|
I
H|
|
|
|
|

getservletFath(

getlluery Parameters()

- —

|
|
|
|
i
|
|
|
|
|
|
l
H|'
|
|

In the first part, a service generates a Gest ur e and then extracts the full URL from it, for use as the hr ef attribute
of the <a> tag.

In the second part, a service is used to access the servlet path (which becomes the act i on attribute of the <f or m»
element). The query parameters are individually extracted and encoded as hidden fields in the form.

Logging

Tapestry makes use of the Apache group's Log4J package to perform logging. Thisis an easy, fast, powerful frame-
work for adding logging to any Java application. Using Log4J, any number of loggers can be created, and alogging

37

url(../api/org/apache/tapestry/Gesture.html)
url(http://jakarta.apache.org/log4j)
url(http://jakarta.apache.org/log4j)

Chapter 5. Application Engines and Services

level for each logger assigned. Tapestry uses the compl ete class name as the logger for each class.

The Appl i cati onServl et class includes a method, set upLoggi ng(), to help initialize Log4J, alowing the de-
fault configuration to be overridden using command line parameters.

The Tapestry Inspector includes a Logging tab that allows the logging configuration to be dynamically changed. The
logging level for any logger can be assigned, and new loggers can be created.

What this means is that, using the Inspector, it is possible to control exactly what logging output is produced, dy-
namically, while the application is still running. The Tapestry Inspector is easily added to any Tapestry application.

Private Assets

The application engine is responsible for making private assets, assets that are stored on the Java classpath, visible
when necessary to client web browser.

This takes two forms:

» Dynamic download of asset data viathe application servlet.

» Dynamic copying of asset data into the web server's virtual file system.

The first form is the default behavior; each private asset requires an additiona round trip through the application
server and application engine to retrieve the stream of bytes which make up the asset. This is fine during develop-
ment, but less than ideal at deployment, since it places an extra burden on the servlet container, stealing valuable cy-
cles away from the main aspects of servicing end users.

The second form is better during deployment. The bytestreams are copied out of the classpath to a specific directory,
one that is mapped into the web server's virtual file system. Once it is so copied, the access to the asset is completely
static, as with any other image file or HTML page.

To enable dynamic copying, it is necessary to inform the framework about what file system directory to copy the as-
sets to, and what virtual file system directory that maps to. Thisis accomplished using a pair of VM system proper-
ties:

JVM System Properties

org. apache. tapestry. asset.dir
The complete pathname of a directory to which private assets may be copied by the asset externalizer.

org. apache. tapestry. asset. URL
The URL corresponding to the external asset directory.

38

url(../api/org/apache/tapestry/ApplicationServlet.html)
url(http://jakarta.apache.org/log4j)

Chapter 6. Understanding the Request
Cycle

Web applications are significantly different in structure from other types of interactive applications. Because of the
stateless nature of HTTP (the underlying communication protocol between web browsers and web servers), the
server is constantly "picking up the pieces' of a conversation with the client.

This is complicated further in a high-volumes systems that utilizes load balancing and fail over. In these cases, the
server is expected to pick up aconversation started by some other server.

The Java Servlet APl provides a base for managing the client - server interactions, by providing the Ht t pSessi on
object, which is used to store server-side state information for a particular client.

Tapestry picks up from there, allowing the application engine, pages and components to believe (with just alittle bit
of work) that they are in continuous contact with the client web browser.

At the center of thisis the request cycle. This request cycle is so fundamental under Tapestry that a particular object
representsit, and it is used throughout the process of responding to aclient request and creating an HTML response.

Each application service makes use of the request cycle in its own way. We'll describe the three common application
services (page, action and direct), in detail.

In most cases, it is necessary to think in terms of two consecutive request cycles. In the first request cycle, a particu-

lar page is rendered and, along the way, any number of URLSs are generated and included in the HTML. The second
request cycle istriggered by one of those service URLS.

Service URLs and query parameters

All URLs generated by the framework consist of the the path to the servlet, and up to three query parameters.

» servi ce: the name of the service that will be used to processes the request.

* cont ext : contextual information needed by the service; typically the name of the page or component involved.
Often there are several pieces of information, separated by slashes.

» sp: additional parameters that can be made available to the component. Thisis used by aDi r ect Li nk compo-
nent. If there is more than one service parameter, then there will be multiple sp parametersin the URL.

Page service

The page service is used for basic navigation between pages in the application. The page service istightly tied to the
PageLi nk component.

A page service stores the name of the page as the single value in the service context.

The request cycle for the page service isrelatively smple.

Figure 6.1. Page Service Sequence

39

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/PageLink.html)

Chapter 6. Understanding the Request Cycle

engine : SEMNICE : page - 1Page cycle :
|[Engine |Enginesenice IFeguestCycle
servicel)

: 5 getFagel)
validate() |_|
setPage()
renderFage() _

|

The URL contains the name of the page, and the corresponding page is aquired from the request cycle. The page is
given a chance to validate that the user can access it, it can throw PageRedi r ect Except i on to force arender of a
different page. Otherwise, set Page() tells the request cycle which page will be used to render a response, and
render Page() peformsthe actua render.

Action and Direct listeners

The Act i onLi nk, Di rect Li nk and For m components (which make use of the action and direct services) inform
the application when they have been triggered using listeners.

A listener is an object that implementsthe | Act i onLi st ener interface.

public void actionTriggered(l Conponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on;

Prior to release 1.0.2, it was necessary to create an object to be notified by the component; this was almost always an
annonymous inner class:

public | ActionListener getFornlistener()
return new | Acti onLi st ener ()

public void actionTriggered(l Conponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on

40

url(../api/org/apache/tapestry/PageRedirectException.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Form.html)
url(../api/org/apache/tapestry/IActionListener.html)

Chapter 6. Understanding the Request Cycle

/1 perform some operation ...

}
}s
}

Although elegant in theory, that's simply too much Java code for too little effect. Starting with Tapestry 1.0.2, it is
possible to create alistener method instead.

A listener method takes the form:

publ i c voi d nethod-nane(| Request Cycl e cycl e)
t hrows Request Cycl eExcepti on;

Note

:F The throws clause is optional and may be omitted. However, no other exception may be thrown.

In reality, listener objects have not gone away. Instead, there's a mechanism whereby a listener object is created au-
tomatically when needed. Each component includes a property, | i st ener s, that is a collection of listener objects
for the component, synthesized from the available public methods. The listener objects are properties, with the
names corresponding to the method names.

Tip

The class Abst r act Engi ne (the base class for Si npl eEngi ne) also implements a listeners property.
Thisallows you to easily add listener methods to your application engine.

The earlier example is much simpler:

public void fornBubmt (I RequestCycle cycle)

[l perform sone operation ...

However, the property path for the listener binding must be changed, from fornii stener to |isten-
ers. fornSubmit.

Direct service

The direct service is used to trigger a particular action. This service istied to the Di r ect Li nk component. The ser-
vice context identifies the page and component within the page. Any parameters specified by the Di r ect Li nk com-
ponent's cont ext parameter are encoded as well.

The request cycle for the direct service is more complicated that the page service.

Figure6.2. Direct Service Sequence

41

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/DirectLink.html)

Chapter 6. Understanding the Request Cycle

engine : Semvice cyele : page ; [Page direct ; [Direct listenar
[Engine [EngineService | | IReguestCycle lActionlistener
L sewice() ! D
getFage() | ! ! !
validate) U
setPagel() |"|
gethestedCormponent()
trigger '
goer) ; 5 actionTriggered(,)
renderPager) \7 LJ

As with the page service, the page involved has a chance validate the request. The component is located within the
page, and the page is set as the default response page. The listener is free to override this, and can load other pages,
change thier properties, or otherwise affect the state of the application.

After the listener has its chance to respond to the request, a response page is renderred.

| Direct vS.DirectLi nk

:F The sequence shown above is for the Di r ect Li nk component, which implementsthe | Di r ect inter-
face. In some rare cases, it is desirable to have a different component implement the | Di r ect interface
instead. It will till implement thet ri gger () method, but will respond in its own way, likely without
alistener.

Thisisthe primary way (besides forms) in which applications respond to the user. What's key is the component'slis-
tener, of type | Acti onLi st ener. This is the hook that allows pre-defined components from the Tapestry frame-
work to access application specific behavior. The page or container of the Di r ect Li nk component provides the
necessary listener objects using dynamic bindings.

The direct service is useful in many cases, but does have its limitations. The state of the page when the listener isin-
voked isits state just prior to rendering (in the previous request cycle). This can cause a problem when the action to
be performed is reliant on state that changes during the rendering of the page. In those cases, the action service (and
Act i onLi nk or For mcomponents) should be used.

TheDi r ect Li nk component has an optional parameter named par anet er s. The value for this may be a single ob-
ject, an array of objects, or a Li st. Each object is converted into a string encoding, that is included in the URL.
When the action is triggered, the array is reconstructed (from the URL) and stored in the | Request Cycl e, where it
is available to the listener. The type is maintained, thus if the third parameter is of type | nt eger when the URL is
generated, then the third parameter will still bean | nt eger when the listener method is invoked.

Thisisavery powerful feature of Tapestry, as it allows the devel oper to encode dynamic page state directly into the
URL when doing so is not compatible with the action service (described in the next section).

42

url(../ComponentReference/DirectLink.html)
url(../api/org/apache/tapestry/IDirect.html)
url(../api/org/apache/tapestry/IDirect.html)
url(../api/org/apache/tapestry/IActionListener.html)
url(../api/org/apache/tapestry/IActionListener.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/DirectLink.html)
url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 6. Understanding the Request Cycle

The most common use for these service parameters is to record an identifier for some object that is affected by the
link. For example, if the link is designed to remove an item from the shopping cart (in an e-commerce example), the
service parameters could identify which item to remove in terms of a primary key, or line number within the order.

Action service

The action service is also used to trigger a particular application-specific action using an Act i onLi nk component,
and its listener. The action service may also be used by the For mcomponent to process HTML form submissions.

An action service encodes the page name and component for the request. It aso includes an action id.

The request cycle for the action service is more complicated that the direct service. This sequence assumes that the
component isan Act i onLi nk, the details of handling form submissions are described in a later section.

Figure 6.3. Action Service Sequence

engine : SEICE cycle page : |Page action : lAction listener
IE nijine [EngineService FequestCycle l&ctionlistener

| service(| | getPagel) |

gethlestedC Dmpcrnent(]

i
|
|
|

| i
|

)
|
|

netRequiresSessgionl)

validate()

setPagel)

|
|
[
()]

rewindFage

renderPagel |

|
|
|
"
|

render(]

isFewound()
U actionTriggeradi|

:
i
|
|
|
|

renderFage()

-— — — — 1

-_—— — — — —]
________|

43

url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/ActionLink.html)

Chapter 6. Understanding the Request Cycle

The point of the action service is to restore the dynamic state of the page to how it was when the Act i onLi nk com-
ponent rendered the link. Only then is the listener notified.

The process of restoring the page's dynamic state is called rewinding. Rewinding is used to go beyond restoring a
page's persistent state and actually restore the page's dynamic state. Whatever state the page was in when the action
URL was rendered in the previous request cycle is restored before the Act i onLi nk component's listener isinvoked.

Use of the action service is convenient, but not always appropriate. Deeply nested For each components will result
in a geometric increase in processing time to respond to actions (as well as render the HTML).

If the data on the page is not easily accessible then the action service should be avoided. For example, if the page is
generated from along running database query. Alternate measures, such as storing the results of the query as persis-
tent page state should be used. Another alternative is to use the direct service (and Di r ect Li nk component) in-
stead, asit allows the necessary context to be encoded into the URL, using service parameters. This can be very use-
ful when the dynamic state of the page is dependant on expensive or unpredictably changing data (such as a database

query).

For example, a product catalog could encode the primary key of the products listed as the service parameters, to cre-
ate links to a product details page.

Services and forms

Processing of requests for For m components is a little more complicated than for ordinary Act i onLi nk compo-
nents. This is because a For mwill wrap a number of form-related components, such as Text Fi el d, Checkbox,
Propert ySel ecti on and others.

In order to accept the results posted in the HTML form, each of these components must be given a chance to re-
spond to the request. A component responds to the request by extracting a request parameter from the
Ht t pSer vl et Request , interpreting it, and assigning a value through a parameter.

Aswith an Act i onLi nk component, afull rewind must be done, to account for conditional portions of the page and
any For each components.

Note

? Starting with Tapestry release 1.0.2, For ns may now use the direct service instead of the action
service; thisis configurable. Using the direct service is the default behavior unless specified. A rewind
still oceurs, it simply starts directly with the For mcomponent, rather than having to "work down™ to it.
This can be a performance gain if a page contains many forms.

The For mcomponent doesn't terminate the rewind cycle until after all of its wrapped components have had a chance
to render. It then notifies its own listener.

The basic components, Text Ar ea and Text Fi el d, are quite simple. They simply move text between the applica
tion, the HTML and the submitted request.

Individual Checkbox components are also simple: they set a boolean property. A Radi oG oup and some Radi o
components allow a property to be set to a value (dependent on which radio button is selected by the user). The
PropertySel ecti on component is designed to more efficiently handle this and can produce HTML for either a
popup list or a collection of radio buttons.

Tapestry aso includes the more involved component, Val i dFi el d, which issimilar to the smple Text Fi el d com-
ponent, but provide greater validation and checking of input, and provides the ability to visualy mark fields that are
required or in error.

Regardless of which service the For muses, it encodes the query parameters (which identify the service and context)
as hidden field elements, rather than encoding them into the URL. Thisis necessary because some servlet containers

44

url(../ComponentReference/ActionLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/Checkbox.html)
url(../ComponentReference/PropertySelection.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/TextArea.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/Checkbox.html)
url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/PropertySelection.html)
url(../ComponentReference/ValidField.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/Form.html)

Chapter 6. Understanding the Request Cycle

ignore URL query parameters when using the HTTP POST request; therefore, it is necessary that all query parame-
ters (including the ones related to the engine service), be part of the form posting ... and that means the use of hidden
fieldsin the form.

45

Chapter 7. Designing Tapestry Applications

When first starting to design a Tapestry application, the designer consider some basic elements as a guide to the
overall design of the application.

Persistent Storage Strategy

Tapestry pages store a certain amount of client state between request cycles. Each implemention of the | Engi ne in-
terface provides a different strategy.

Currently, only the Si npl eEngi ne class is provided with the framework; it uses in-memory page recorders. When
the engine is serialized, the page recorders are serialized along with it.

The | PageRecor der interface doesn't specify anything about how a page recorder works. This opens up many pos-
sibilities for storage of state, including flat files, databases, stateful EJB session beans, or HT TP Cookies.

In fact, a very sophisticated application engine could mix and match, using cookies for some pages, in-memory for
others.

By default, page recorders stay active for the duration of the user session. If a page will not be referenced again, or
its persistent state is no longer relevant or needed, the application may explicitly "forget” its state.

Remember that for load balancing and fail over reasons, the engine will be serialized and de-serialized. Idedly, its
seridlized state should be less than two kilobytes; because Java serialization is inefficient, this does not leave much
room.

The Tapestry Inspector can be used to monitor the size of the serialized engine in arunning application.

Identify Pages and Page Flow

Early in the design process, the page flow of the application should be identified. Each page should be identified and
given a specific name.

Page names are less structured than other identifiers in Tapestry. They may contain letters, numbers, underscores,
dashes and periods. Tapestry makes absolutely no interpretation on the page names.

In many applications, certain parts of the functionality are implemented as "wizards', several related pages that are
used in sequence as part of a business process. A common example of thisisinitial user registration, or when sub-
mitting an order to an e-commerce system.

A good page naming convention for this case is "wi zard nanme.page nane" (a period separates the two names).
Thisvisualy identifies that several pages are related. In addition, a Java package for the wizard should be created to
contain the Java classes, component specifications, HTML templates and other assets related to the wizard. Having
the wizard name match the package nameis also helpful.

The designer must also account for additional entry points to the application beyond the standard home page. These
may require additional application services (see below).

Identify Common Logic

Many applications will have common logic that appears on many pages. For example, an e-commerce system may
have a shopping cart, and have many different places where an item can be added to the cart.

In many cases, the logic for this can be centralized in the visit object. The visit object may implement methods for
adding products to the shopping cart. This could take the form of Java methods, component listeners.

In addition, most web applications have a concept of a 'user'. The object representing the user should be a property

46

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/IPageRecorder.html)

Chapter 7. Designing Tapestry Applications

of the visit object, making it accessible to all pages and components.

Most Tapestry applications will involve some interaction with Enterprise JavaBeans. The code to lookup home in-
terfaces, or to gain access to ession beans, istypically located in the visit object.

Listener code, on various pages, will cast the visit object to the appropriate actual class and invoke methods.

The following example demonstrates this idea. Visit is a hypothetical visit object that uses EJBs.

publ i c voi d exanpl eLi st ener (| Request Cycl e cycl e)

Visit visit; O
| SomeHonel nt er f ace hone;

visit = (Visit)getVisit();
hone = visit. get SomeHonel nterface();
try
/'l etc.
catch (Renot eException ex)

t hrow new Appl i cati onRunti neExcepti on(ex);

0 Each application can freely define the type of the visit object, and its is common to call the class "Visit". An-
other option is to create a subclass for the engine and store home interfaces there.

Identify Engine Services

Tapestry applications will need to define new engine services when a page must be referenced from outside the
Tapestry application

This is best explained by example. It is reasonable in an e-commerce system that there is a particular page that
shows product information for a particular product. This information includes description, price, availability, user
reviews, etc. A user may want to bookmark that page and return to it on alater session.

Tapestry doesn't normally allow this; the page may be bookmarked, but when the bookmark is triggered, the page
may not render correctly, because it will not know which product to display. The URLs normally generated in a
Tapestry application are very context sensitive; they are only meaningful in terms of the user's navigation through-
out the application, starting with the Home page. When bookmarked, that context is lost.

By defining a new engine service, the necessary context can be encoded directly into the URL, in away similar to
how the direct action works. Thisis partially a step backwards towards typical serviet or JSP development, but even
here Tapestry offers superior services. In the e-commerce example, the service URL could encode some form of
product identifier.

An example of thisisin the Virtual Library application. In order to make certain pages bookmarkable, a new service
named "externa" was created.

The external service includes the name of a page and the primary key of an object that page displays (this was sim-
plified by the design of the Vlib entity beans, which alwaysuse an | nt eger asthe primary key).

The external service works much the same was as the page service, except that it invokes an additional method on
the page, set up() , which is passed the primary key extracted from the URL.

The end result is that when a user arrives at such a page, the URL used identifies the page and the primary key.
Bookmarking the page stores the URL so that when the bookmark is later opened, the correct data is read and dis-

47

url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 7. Designing Tapestry Applications

played.
Identify Common Components

Even before detailed design of an application, certain portions of pages will be common to most, if not all, pages.
The canonical example is a "navigation bar", a collection of links and buttons used to navigate to specific pages
within the application. An e-commerce site may have a shopping cart related component that can appear in many
places.

In many cases, common components may need to be parameterized: the navigation bar may need a parameter to
specify what pages are to appear; the shopping cart component will require a shopping cart object (the component is
the view and controller, the shopping cart object is the model).

Other examples of common components are viewers and editors of common data types.

In the Virtual Library, components that make use of the external service were created. The components, BookLi nk
and Per sonLi nk, took as parameters the corresponding objects (Book or Per son) and created links to the pages
that displayed the details of that Book or Per son.

48

Chapter 8. Coding Tapestry Applications

After performing the design steps from the previous chapter, it is time to start coding. The designs will imply certain
requirements for the implementations.

Application Engine

Application engines will be serialized and de-serialized as part of load balancing and fail over. As much as possible,
attributes of the application object should be transient. For example, the instance variable that holds the Appl i ca-

ti onSpeci fi cati on istransient; if needed (after de-serialization), the engine can locate the specification from its
servlet (the servlet reads the application specification once, when it isfirst initialized).

This is largely not an issue, since most applications use a provided class, such as Si npl eEngi ne. Subclassing is
only necessary when the application needs a different method of instantiating the visit object, or needs to store addi-
tional data (see Operating Stateless). In some cases, it is convienient to create a subclass to provide common compo-
nent listener methods.

Visit Object

The visit object will contain al the data about a client's visit to the web application. If possible, it should have a no-
arguments constructor (this allows Si npl eEngi ne to instantiate it as needed).

Keeping the size of the serialized engine small is a good goal for overall performance and scalability, and the visit
object is serialized with the engine. During initial development, the visit object should implement the
java.io. Serializabl e interface.

Once the application, and the structure of the visit object, is stable, the more efficient j ava. i 0. Ext er nal i zabl e
interface should be implemented instead.

In addition, deferring the creation of the visit object as |ate as possible is also of benefit, since thisis the best way to
keep the serialized engine small.

Operating Stateless

Tapestry applications can operate in a stateless mode, that is, without a Ht t pSessi on. The framework automati-
cally creates a session when needed; when the Visit object isfirst created, or when any persistent page properties are
changed.

Ideally, the Hone page of the application should not trigger the creation of a session: it should be careful not to cre-
ate the Visit object. Remember that hits on your application will form a curve: The Hone page is at the top of the
curve, and it drops of rapidly as users penetrate deeper into the application ... how many times have you visited the
front page of aweb site and gone no further?

Statel ess operations will affect Act i onLi nk, Di r ect Li nk and For mcomponents on your pages. By default, they
will reject requests while the application is running statel ess; the user will be redirected to the St al eSessi on page.
This is appropriate, since normally, the lack of a session means that the previous session timed out and was dis-
carded.

Each of these components has ast at ef ul parameter which may be bound to f al se. When st at ef ul isfase, the
components will accept statel ess requests.

As the developer, you must keep a careful eye on what's stateful vs. stateless, and look to move stateless data into
the engine, so as to avoid creating a visit object as long as possible. For example, the engine can resolve and store
EJB home interfaces and references to stateless session EJBs. Even read-only database data can be stored in the en-
gine. However, anything that is related to a particular user must be stored in the visit object (or a persistent page
property).

49

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Form.html)

Chapter 8. Coding Tapestry Applications

It is also important to not accidentally create the visit object. Every page includes avi si t property which will cre-
ate the visit if it doesn't aready exist. Thiswill, in turn, force the creation of an Ht t pSessi on. On the other hand,
the property path engi ne. vi si t will not create the visit object. To avoid creating the visit, you may need to wrap
some of your HTML template inside a Condi t i onal component whose condition parameter is bound to the prop-
erty engi ne. visit.

Enterprise JavaBeans Support

The visit object should provide access to the most commonly used Enterprise JavaBeans used in the application. It
can provide a central location for the common code (related to JNDI and to narrowing EJB references), rather than
have that scattered throughout the application.

It is important to remember that EJB references are not serializable. However, it is possible to convert between an
EJB reference and an EJB handle, and handles are serializable. The visit should make any instance variables that
store EJB references transient, and should perform extra serialization work to serialize and restore the necessary EJB
handles.

Also remember that persistent page properties that are EJB references are automatically converted to handles when
stored, and back into references when restored.

Page classes

It is often useful to create one or two subclasses of BasePage specific to your application. Often your application
will have a consistent navigational border on some or all pages that can be supported by the base class. Many appli-
cations have one set of pages that are visible to unidentified guests, and a second section that is visible once the user
logsin. A base class for the second set of pages could override the val i dat e() method to redirect to alogin page
if the user is not already logged in.

50

url(../ComponentReference/Conditional.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 9. Designing new components

Creating new components using Tapestry is designed to be quite simple.

Components are typically created through aggregation, that is, by combining existing components using an HTML
template and specification.

You will almost always want to define a short alias for your new component in the application specification. Thisin-
sulates developers from minor name changes to the component specification, such as moving the component to a
different Java package.

Like pages, components should reset their state back to default values when the page they are contained within isre-
turned to the pool.

Most components do not have any state. A component which does should implement the PageDet achLi st ener in-
terface, and implement the pageDet ached() method.

The pageDet ached() method isinvoked from the page's det at ch() method, which isinvoked at the very end of
the request cycle, just before the page is returned to the page pool.

Choosing a base class

There are two basic types of components: those that use an HTML template, and those that don't.

Nearly all of the base components provided with the Tapestry framework don't use templates. They inherit from the
class Abst r act Conponent . Such components must implement the protected r ender Conponent () method.

Components that use templates inherit from a subclass of Abst ract Conponent : BaseConponent . They should
leave ther ender Conponent () method alone.

In some cases, a new component can be written just by combining existing components (this often involves using in-
herited bindings). Such a codeless component will consist of just a specification and an HTML template and will use
the BaseConponent class without subclassing. Thisis even more possible when using helper beans.

Parameters and Bindings

Y ou may create a component that has parameters. Under Tapestry, component parameters are akind of "named slot"
that can be wired up as a source (or sink) of datain a number of ways. This "wiring up" is actually accomplished us-
ing binding objects.

Connected Parameters

Most components use "in" parameters and can have Tapestry connect the parameters to properties of
the component automatically. This discussion reveals some inner workings of Tapestry that developers
most often no longer need to be aware of .

The page |oader, the object that converts a component specification into an actual component, is responsible for cre-
ating and assigning the bindings. It uses the method set Bi ndi ng() to assign a binding with a name. Y our compo-
nent can retrieve the binding by name using get Bi ndi ng() .

For example, lets create a component that alows the color of a span of text to be specified using a

j ava. awt . Col or object. The component has a required parameter named col or. The classs render Conpo-
nent () method is below:

protected voi d render Conponent (I MarkupWiter witer, IRequestCycle cycle)

51

url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 9. Designing new components

t hrows Request Cycl eExcepti on

{
I Bi ndi ng col or Bi ndi ng = getBi ndi ng("col or");
Col or col or = (Col or)col orBi ndi ng. get Cbj ect ("col or", Col or.cl ass);
String encodedCol or = Request Cont ext. encodeCol or (col or);
writer.begin("font");
witer.attribute("color", encodedCol or);
render W apped(writer, cycle);
writer.end();
}

The call to get Bi ndi ng() is relatively expensive, since it involves rummaging around in a Map and then casting
theresult fromj ava. | ang. Obj ect toor g. apache. t apestry. | Bi ndi ng.

Because bindings are typically set once and then read frequently by the component, implementing them as private
instance variables is much more efficient. Tapestry allows for this as an optimization on frequently used compo-
nents.

The set Bi ndi ng() method in Abst r act Conponent checks to see if there is a read/write JavaBeans property
named "nanmeBinding" of type I Bi ndi ng. In this example, it would look for the methods get Col or Bi ndi ng()
and set Col or Bi ndi ng() .

If the methods are found, they are invoked from get Bi ndi ng() and set Bi ndi ng() instead of updating the Map.

This changes the example to:

private |Binding col orBi ndi ng;
publ i c voi d set Col or Bi ndi ng(IBi ndi ng val ue)

col or Bi ndi ng = val ue;

publ i ¢ 1Binding get Col or Bi ndi ng()
{

return col or Bi ndi ng;

protected voi d render Conponent (I MarkupWiter witer, IRequestCycle cycle)
t hrows Request Cycl eExcepti on

Col or col or = (Col or)col orBi ndi ng. get Cbj ect ("col or", Col or.cl ass);
String encodedCol or = Request Cont ext. encodeCol or (col or);

writer.begin("font");
witer.attribute("color", encodedCol or);

render W apped(witer, cycle);

witer.end();

}

Thisis atrade off; dightly more code for slightly better performance. There is also a memory bonus; the Map used
by Abst r act Conponent to store the binding will never be created.

Persistent Component State

Aswith pages, individual components may have state that persists between request cycles. Thisis rare for non-page
components, but still possible and useful in special circumstances.

A client that must persist some client state uses its page's changeQbserver. It simply posts Chserved-

52

url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/RequestContext.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/RequestContext.html)
url(../api/org/apache/tapestry/AbstractComponent.html)

Chapter 9. Designing new components

ChangeEvent s with itsalf (not its page) as the source. In practice, it still smply invokes the fireCbserved-
Change() method.

In addition, the component should implement the interface PageDet achLi st ener, and implement the method

pageDet ached(), and, within that method, reset all instance variables to default values, just as a page does (in its
det ach() method).

Component Assets

Tapestry components are designed for easy re-use. Most components consist of a specification, a Java class and an
HTML template.

Some components may need more; they may have additional image files, sounds, Flash animations, QuickTime
movies or whatever. These are collectively called "assets'.

Assets comein three flavors: external, context and private.

» Anexterna asset isjust afancy way of packaging a URL at an arbitrary web site.
* A context asset represents afile with a URL relative to the web server containing the Tapestry application.
e A private asset is afile within the classpath, that is, packaged with the component in a Java Archive (JAR) file.

Obviously, such assets are not normally visible to the web server.

Components which use assets don't care what flavor they are; they simply rely on the method bui | dURL() to pro-
vide a URL they can incorporate into the HTML they generate. For example, the | mage component has an image
parameter that is used to build the sr ¢ attribute of an HTML <i ng> element.

Assets figure prominently into three areas: reuse, deployment and localization.

Internal and private assets may be localized: when needed, a search occurs for alocalized version, relative to a base
name provided in the component specification.

Private assets simplify both re-use and deployment. They allow a re-usable Tapestry component, even one with as-
sociated images, style sheets (or other assets) to be incorporated into a Tapestry application without any special con-
sideration. For example, the standard exception page makes use of a private asset to access its stylesheet.

In atraditional web application, private assets would need to be packaged separately from the ‘component’ code and
placed into some pre-defined directory visible to the web server.

Under Tapestry, the private assets are distributed with the component specification, HTML templates and Java code,

within a Java Archive (JAR) file, or within the WEB- | NF/ ¢l asses directory of a Web Application Archive (WAR)

file. The resources are located within the running application's classpath.

The Tapestry framework takes care of making the private assets visible to the client web browser. This occursin one

of two ways:

» The private assets are copied out of the classpath and to a directory visible to the web server. This requires some
additional configuration.

e Theassets are dynamically accessed from the class path using the asset service.

Copying assets out of the classpath and onto the web site is the best solution for final deployment, since it allows the

assets to be retrieved as static files, an operation most web servers are optimized for.

Dynamically accessing assets requires additional operations in Java code. These operations are not nearly as effi-

53

url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../ComponentReference/Image.html)

Chapter 9. Designing new components

cient as static access. However, dynamic access is much more convenient during development since much less con-
figuration (in this case, copying of assets) is necessary before testing the application.

As with many things in Tapestry, the components using assets are blind as to how the assets are made visible to the
client.

Finally, every component has an asset s property that is an unmodifiable Map. The assets in the Map are accessible
asif they were properties of the Map. In other words, the property path asset s. wel cone isvalid, if the component
defines an asset named ‘welcome'.

Chapter 10. Tapestry and JavaScript

Building cutting edge Web applications is not entirely about the server side. A significant amount of work must be
done on the client side to support truly dynamic user experiences. Typically, this scripting is done using the
JavaScript language embedded into major web browsers such as Internet Explorer and Netscape Navigator.

These effects range from simple effects such as image rollovers (changing the icon used for alink when the cursor is
over it) to more involved patterns such as client side validation of forms or even complex animations.

In traditional, static web page development, the HTML producer (the person creating the static HTML page) is com-
pletely responsible for this aspect of development, usually aided by a web page authoring tool, such as

Dreamweaver. Ultimately, though, the HTML producer assigns unique names or ids to various elements on the
page, and attaches JavaScript event handlers to the elements.

Example 10.1. Traditional JavaScript usage

var preload = new Array();

prel oad[0] = new | mage();
preload[0].src = "/images/button.gif";
prel oad[1] = new I mage();

preload[1].src = "/i nages/ button-highlight.gif";
function rollover (i mage, index)

i mge. src = prel oad[index] . src;

<a href="...
onMouseOver ="j avascri pt:rol |l over (docunent. button, 1);"
onMouseCQut ="j avascri pt:rol | over (docunment. button, 0);">
/<i nmg nane="button" src="/inmages/button.gif">
</ a>

The preloading business is all about forcing the browser to load the image before it is needed, so that it is aready in
memory when the mouseover event handler needsiit.

From here, adding additional rollovers means extending the pr el oad array, providing names for the additional
<i mg> elements and writing the additional event handlers for the <a> elements.

Now, envision a running Tapestry application. With everything so dynamic (especially when you account for things
like the For each component), it's all but impossible to even know how many links and buttons will be on the page,
never mind what they'll all be named. At first glance, it may appear that Tapestry prevents the use of this kind of
scripting.

In fact, Tapestry is structured to enhance this kind of scripting. Thisis faciliated by the Body component, which re-
places the <body> element of the page. The next section described the services the Body component povides to fa-
cilitate complex client-side scripting.

The Body component

The Body component provides a number of services to the components it wraps. It handles preloading of images. It
provides the ability to add arbitrary JavaScript to the page, to include an external static JavaScript document, or to
add JavaScript to the <body> element's onload event handler. Finally, it provides an easy way to generate unique

55

url(../ComponentReference/Foreach.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)

Chapter 10. Tapestry and JavaScript

identifiers needed for things like image and function names.
When the Body component renders, it registers itself as an attribute of the | Request Cycl e. This alows compo-

nents wrapped by the Body component, directly or indirectly, to locate it and invoke methods on it. These methods
are used to define prel oaded images, and add JavaScript code to the response HTML.

Figure 10.1. Body Component Rendering Sequence

body : Body cycle wrapped
[ReguestCycle [Component

render() setAttributel)

render(

getAttributer)

addOtherscript()

LH removeAttributel)

SR

When rendering is compl ete, the Body component will have produced four distinct portions of the HTML response:

<script |anguage="JavaScript" src="..."></script> 0O
<script |anguage="JavaScript"><!-- [

function tapestry_onLoad() O

{
}

[/l --> </[script>
<body onl oad="j avascri pt:tapestry_onLoad();"> O

O
</ body>

O Any number of included static scripts may be added to the page.

0 Thisscript block is only emitted when necessary; that is, because some component needed to generate script-
ing or initialization (or preloaded images). The block is properly "commented" so that older browsers, those
that fail to support scripting, will not be confused by the JavaScript code.

O Theonload event handler function is only generated if some component requests some onload initialization.

0 The<body> tag only specfiesaonl oad event handler function if oneis needed.

56

url(../ComponentReference/Body.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)

Chapter 10. Tapestry and JavaScript

0 The content of the <body> element is defined by the Tapestry components it wraps. Importantly, the rollovers,
JavaScript, event handlers and the content are all generated in parallel (the Body component uses buffering so
that the JavaScript portion iswritten out first).

Script Specifications and Script Components

The Body component only lays the foundation for client-side JavaScript support in Tapestry. Tapestry includes its
own, XML -based language for create dynamic JavaScript.

A Tapestry Script Specification takes as input a number of symbols, each of which is a named object. These input
symbols are combined to form additional symbols. Additional XML tags allow a script to place JavaScript into the
main script body, or into theinitialization.
The most common use for script specificationsis to add client-side behavior to form elements. The input symbol isa
form component, from this, the name of the element and containing form are determined. Next, the name of one or
more event handler functions are defined.

In the body, the functions are actually created. In the initialization, the event handlers are wired to the form and form
elements.

In some cases, a script specification may produce usable output symbols (commonly, the names of a JavaScript
function that should be tied to some component's event handler).

Note
F A detailed example is coming.

57

url(../ComponentReference/Body.html)
url(../ComponentReference/Body.html)

Chapter 11. The Tapestry Inspector

Tapestry includes a powerful tool: the Inspector, which reveals the construction of arunning Tapestry application.

The | nspect or But t on component is used to include a link that launches the Inspector. This is typically included
in the navigational border of an application, so that it is available to the developer from any page. The Inspector it-
self is apage that is provided by the framework and available to any Tapestry application.

Specification View

Figure 11.1. Inspector - Specification View

3 Tapestry Inspector: Primix Yirtual Library - Microsoft Internet Explorer

[tosne |

Component Specification

S8 Embedded Components

Assets

MHame Asset

The Inspector allows the developer to see how the page is constructed. It reveals the page's specification, a list of
embedded components within the page, the page's HTML template and more.

Itis possible to dig down and see the same information for any component within the page.

Template View

Figure 11.2. Inspector - Template View

58

url(../ComponentReference/InspectorButton.html)

Chapter 11. The Tapestry Inspector

Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

showE rror

Component Template

-
-
-
-
o
-
-
o
-
o
-
-
o
-
-
o
-
-
-
-
-
-
o
-
o
-
o
-
-

The template view shows the HTML template for the component. Within the template, component references are
links that "dig down" into their template (if they have one).

Properties View

Figure 11.3. Inspector - Properties View

59

Chapter 11. The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

Persistent Properties

Component|Property Name]| Value Class Yalue

The properties view shows the persistent properties for the page and any components on the page.

Engine View

Figure 11.4. Inspector - Engine View

Chapter 11. The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

Application Engine

EnginefApplication Properties

Property

The engine view shows information about the running engine instance, including its name and class.

Not shown in the figure is the seriaized state of the application engine (in a hex dump format) and along display of
all the request cycle information (the same information produced when an uncaught exception is thrown).

Logging View

Figure 11.5. Inspector - Logging View

61

Chapter 11. The Tapestry Inspector

3 Tapestry Inspector: Primix ¥irtual Library - Microsoft Internet Explorer

== Logging

Catepory Lopeing Level

The final tab alows control of the logging behavior of the application. It allows the logging level for any category to
be set, and allows new categories to be created.

62

Appendix A. Tapestry JAR files

lib/runtinme/*.jar
Frameworks that are usually needed at runtime (but not at framework build time) and are not always supplied
by the servlet container. This currently isjust the Log4J framework.

liblext/*.jar
Frameworks needed when compiling the framework and at runtime. This is several other Jakarta frameworks
(including BSF and BCEL), plus the OGNL framework.

tapestry-x.x.jar
The main Tapestry framework. Thisis needed at compile time and runtime. At runtime, it is most often added to
the servlet container's classpath. The framework rel ease number is integrated into the file name.

tapestry-contrib-x.x.jar
Contains additional components and tools that are not integral to the framework itself, such as the Pal et t e.
Needed at runtime if any such components are used in an application. The framework release number is inte-
grated into the file name.

In addition, Tapestry applications may need the packages

<class>javax.servlet</class>

and

<class>javax.xml.</class>

at compile time and an XML parser at runtime. These are usually provided by the servlet container or application
server.

63

url(http://jakarta.apache.org/log4j)
url(http://jakarta.apache.org)
url(http://jakarta.apache.org/bsf)
url(http://jakarta.apache.org/bcel)
url(http://www.ognl.org)
url(../ComponentReference/contrib.Palette.html)

Appendix B. Tapestry Specification DTDs

This appendix describes the four types of specifications used in Tapestry.

TableB.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID

Application application <appl i cati on> -//Howard Lew s|http://tapestry.
Shi p/ / Tapestry sf. net/dtd/ Tapes
Speci fication try_1 3.dtd

1.3//EN

Page page page- |-//Howard Lewi s|http://tapestry.
<speci fication> |Ship//Tapestry sf. net/dtd/ Tapes
Speci fication try_1 3.dtd

1.3//EN

Component jwe conmponent - |-//Howard Lewi s|http://tapestry.
<speci fication> |Ship//Tapestry sf. net/dtd/ Tapes
Specification try_1 3.dtd

1.3//EN

Library library library-|-//Howard Lewi s|http://tapestry.
<specification> |Ship//Tapestry sf. net/dtd/ Tapes
Specification try_1 3.dtd

1.3//EN

Script script <script> -//Howard Lew s|http://tapestry.
Shi p/ / Tapestry sf.net/dtd/ Tapes
Script 1.2//EN try_1 2.dtd

The four general Tapestry specifications (<application>, <conponent-specification> page-
<speci fication>and<library-specification>)al sharethe same DTD, but use different root elements.

<appl i cati on> element
root element

The application specification defines the pages and components specific to a single Tapestry application. It also de-
fines any libraries that are used within the application.

FigureB.1. <appl i cati on> Attributes

Name Type Required ? Default Value Description

name string yes User presentable
name of application.

engine-class string yes Name of an imple-
mentation of IEngine
to instantiate.

Appendix B. Tapestry Specification DTDs

FigureB.2. <appl i cat i on> Elements

<descri ption>*, <property>*,
(<page> | <conponent - al i as> | <servi ce>|<li brary> | <ext ensi on>) *

<bean> element
Appearsin: <conponent - speci fi cati on> and <page- speci fi cati on>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a named Jav-
aBean that isinstantiated on demand. Beans are accessed through the OGNL expression beans. nane.

Once a bean is instantiated and initialized, it will be retained by the page or component for some period of time,
specified by the bean's lifecycle.

bean lifecycle

none
The bean is not retained, a new bean will be created on each access.

page
The bean isretained for the lifecycle of the page itself.

render

The bean is retained until the current render operation completes. This will discard the bean when a page or
form finishes rewinding.

request
The bean isretained until the end of the current request.

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a page within a
particular VM. Consecutive requests may be processed using different instances of the page, possibly in different
JVMs (if the application is operating in a clustered environment). No state particular to a single client session should
be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be configured
using the <set - pr oper t y> and <set - st ri ng- pr oper t y> elements.

Figure B.3. <bean> Attributes

Name Type Required ? Default Value Description

name string yes The name of the bean,
which must be avalid
Javaidentifier.

class string yes The name of the class
to instantiate.

lifecycle der no request As described above;

[re duration that bean is

65

Appendix B. Tapestry Specification DTDs

Name Type Required ? Default Value Description
quest retained.

Figure B.4. <bean> Elements

<descri ption>*, <property>*,
(<set - property>|<set-string-property>)*

<bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to an OGNL expression rooted in its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.5. <bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa
rameter to bind.

expression string yes The OGNL expres-

sion, relative to the
container, to be bound
to the parameter.

<conf i gur e> element
Appearsin: <ext ensi on>
Allows a JavaBeans property of the extension to be set from a statically defined value. The <conf i gur e> element

wraps around the static value. The value is trimmed of leading and trailing whitespace and optionally converted to a
specified type before being assigned to the property.

FigureB.6. <confi gur e> Attributes

Name Type Required ? Default Value Description
property-name string yes The name of the ex-
tension property to
configure.
type bool ean|int|long |no String The conversion to ap-
| doubl e| String ply to the value.

66

Appendix B. Tapestry Specification DTDs

<conponent > element

Appearsin: <conponent - speci fi cati on> and <page- speci fi cati on>

Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression conponent s. i d.

FigureB.7. <conponent > Attributes

Name

Type

Required ?

Default Value

Description

id

string

yes

Identifier for the com-
ponent here and in the
component's template.
Must be a valid Java
identifier.

type

string

no

A component type to
instantiate.

copy-of

string

no

The name of a previ-
ously defined compo-
nent. The type and
bindings of that com-
ponent will be copied
to this component.

Either t ype or copy- of must be specified.

A component type is either a simple name or a qualified name. A ssimple name is the name of an component either
provided by the framework, or provided by the application (if the page or component is defined in an application), or
provided by the library (if the page or component is defined in alibrary).

A quadlified nameis alibrary id, a colon, and a simple name of a component provided by the named library (for ex-
ample, contri b: Pal ette). Library ids are defined by a <l i br ar y> element in the containing library or applica-

tion.

Figure B.8. <conponent > Elements

<property>*,

(<bi ndi ng> | <fi el d- bi ndi ng> | <i nheri t ed- bi ndi ng> | <st ati c- bi ndi ng> | <stri ng- bi ndi ng>) *

<conponent - al i as> element

Appearsin: <appl i cati on>and <l i brary-specification>

Defines a component type that may latter be used in a <conponent > element (for pages and components also de-

fined by this application or library).

Figure B.9. <conponent - al i as> Attributes

67

Appendix B. Tapestry Specification DTDs

Name Type Required ? Default Value Description

type string yes A name to be used as
acomponent type.

specification-path string yes The complete re-

source path to the
component's specifi-
cation (including
leading slash and file
extension).

<conponent - speci fi cati on> element
root element
Defines anew component, in terms of its APl (<par anmet er >s), embedded components, beans and assets.
The structure of a <conponent - speci fi cati on> is very similar to a <page- speci fi cati on> except compo-

nents have additional attributes and elements related to parameters.

Figure B.10. <conponent - speci fi cati on> Attributes

Name Type Required ? Default Value Description

class string yes The Java class to in-
stantiate, which must
implement the inter-
face | Conponent.
Typicdly, this is
BaseConponent or a
subclass of it.

allow-body yes| no no yes
If yes, then any body
for this component,
from its containing
page or component's
template, is retained
and may be produced
using a Render Body
component.

If no, then any body
for this component is
discarded.

alow-infor-|yes| no no yes
mal-parameters If yes, then any in-
formal parameters
(bindings that don't
match a forma pa-
rameter) specified
here, or in the compo-
nent's tag within its
container's template,

68

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../ComponentReference/RenderBody.html)

Appendix B. Tapestry Specification DTDs

Name Type Required ? Default Value Description

are retained. Typi-
caly, they are con-
verted into additional
HTML attributes.

If no, then informal
parameters are not al-
lowed in the specifi-
cation, and discarded
if in the template.

Figure B.11. <conponent - speci fi cati on> Elements

<descri pti on>*, <par anet er > *, <r eser ved- par anet er > *, <pr opert y> *,
(<bean> | <conmponent > | <ext er nal - asset > | <cont ext - asset > | <pri vat e- asset >)*

<cont ext - asset > element

Specifies an asset located relative to the web application context root folder. Context assets may be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression asset s. nane.

FigureB.12. <cont ext - asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

path string yes The path to the asset,
assuming a root direc-
tory matching the
servlet context root
directory. The path
should begin with
leading forward slash.

<descri pti on> element
Appears in: many

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE to provide
help. The Tapestry Inspector may also display a description.

69

Appendix B. Tapestry Specification DTDs

Note

:F The DTD supports multiple <descri pt i on> elements, each localized to a different language. In prac-
tice, a single description, in English, is typically used. This approach to providing a localized descrip-
tion is likely to change in the future, and it is probably safest to expect just a single <descri pti on>
tag to be allowed in the next revision of the DTD.

The descriptive text appears inside the <descri pt i on> tags. Leading and trailing whitespace is removed and inte-
rior whitespace may be altered or removed. Descriptions should be short; external documentation can provide
greater details.

FigureB.13. <descri pti on> element

Name Type Required ? Default Value Description

xml:lang string no The language the
message is localized
to as an 1SO language
string.

<ext ensi on> element
Appearsin: <appl i cati on>and <l i brary-specification>

Defines an extension, a JavaBean that isinstantiated as needed to provide a global service to the application.

Figure B.14. <ext ensi on> Attributes

Name Type Required ? Default Value Description

name string yes A name for the exten-
sion, which can (and
should) look like a
qualified class name,
but may also include
the dash character.

class string yes The Java class to in-
stantiate. The class
must have a zero-
arguments construc-
tor.

immediate yes| no no no If yes, the extension
is instantiated when
the specification is
read. If no, then the
extension is not cre-
ated until first needed.

70

Appendix B. Tapestry Specification DTDs

Figure B.15. <conponent - speci fi cati on> Elements

<property>*, <configure>*

<ext er nal - asset > element
Appearsin: <conponent - speci fi cati on> and <page- speci fi cati on>

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same web server
as the application, or may be a complete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression asset s. nane.

FigureB.16. <ext er nal - asset > Attributes

Name Type Required ? Default Value Description

name string yes A name for the asset.
Asset names must be
valid Javaidentifiers.

URL string yes The URL used to ac-
cess the asset.

<fi el d- bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to a public static final field.
Note
:F Although the same result can be accomplished using a <bi ndi ng> element and the OGNL expression

@l ass-nane@i el d- nane, using a<f i el d- bi ndi ng> is more efficient, because Tapestry knows that
the vaueisinvariant.

The class name must be the qualified class name. If the package is ommitted, j ava. | ang is assumed (this makes it
easier to reference common fields such as Bool ean. TRUE).

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. narme.

FigureB.17. <f i el d- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

field-name string yes The name of a public

71

Appendix B. Tapestry Specification DTDs

Name Type Required ? Default Value Description

static final field, in
the form class-
nare. fi el d- nane.

<i nheri t ed- bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.18. <i nheri t ed- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

parameter-name string yes The name of a param-
eter of the containing
component.

<l'i brary> element
Appearsin: <appl i cati on>and <l i brary-specification>

Establishes that the containing application or library uses components defined in another library, and sets the prefix
used to reference those components.

FigureB.19. <l i br ar y> Attributes

Name Type Required ? Default Value Description

id string yes The id associated
with the library. Com-
ponents within the li-
brary can be refer-
enced with the com-
ponent typei d: nane.

specification-path string yes The complete re
source path for the li-
brary specification.

<l'i brary-specification>element

root element

72

Appendix B. Tapestry Specification DTDs

Defines the pages, components, services and libraries used by alibrary. Very similar to <appl i cat i on>, but with-
out attributes related application name or engine class.

The<li brary-specificati on>element has no attributes.

FigureB.20. <l i brary-speci fi cati on> Elements

<descri ption>*, <property>*,
(<page> | <conponent - al i as> | <servi ce>|<l i brary>|<extensi on>)*
<page> element

Appearsin: <appl i cati on>and <l i brary-specification>

Defines a page within an application (or contributed by alibrary). Relates alogical name for the page to the path to
the page's specification file.

Figure B.21. <page> Attributes

Name Type Required ? Default Value Description

name string yes The name for the
page, which must
start with a letter, and
may contain letters,
numbers, underscores
and the dash charac-
ter.

specification-path string yes The complete re-
source path to the
page's specification.

<page- speci fi cati on> element
root element

Defines a page within an application (or a library). The <page- speci fi cati on> is a subset of conponent -
<speci fi cat i on> with attributes and entities related to parameters removed.

Figure B.22. <page- speci f i cat i on> Attributes

Name Type Required ? Default Value Description

class string yes The Java class to in-
stantiate, which must
implement the inter-
face | Page. Typi-
caly, thisis BaseP-

73

url(../api/org/apache/tapestry/IPage.html)

Appendix B. Tapestry Specification DTDs

Name

Type

Required ?

Default Value

Description

age or a subclass of
it.

Figure B.23. <page- speci fi cat i on> Elements

<descri ption>*, <property>?*,
(<bean> | <conmponent > | <ext er nal - asset > | <cont ext - asset > | <pri vat e- asset >)*

<par anet er > element

Appearsin: <conponent - speci f i cati on>

Defines aformal parameter of a component.

Figure B.24. <par anet er > Attributes

Name

Type

Required ?

Default Value

Description

name

string

yes

The name of the pa-
rameter, which must
be avalid Java identi-
fier.

javartype

scalar name, or class
name

no

Required for con-
nected parameters.
Specifies the type of
the JavaBean property
that a connected pa-
rameter writes and
reads. The property
must match this exact
value, which can be a
fully specified class
name, or the name of
ascalar Javatype.

required

yes| no

no

no

If yes, then the pa
rameter must be
bound (though it is
possible that the bind-
ing's value will till
be null).

property-name

string

no

For connected param-
eters only; alows the
name of the property
to differ from the
name of the parame-
ter. If not specified,
the property name
will be the same as

74

url(../api/org/apache/tapestry/html/BasePage.html)

Appendix B. Tapestry Specification DTDs

Name

Type

Required ?

Default Value

Description

the parameter name.

direction

in|form custom

no

cust om

Identifies the seman-
tics of how the pa
rameter is used by the
component. cust om
the default, means the
component explicitly
controls reading and
writing values
through the binding.

in means the prop-
erty is set from the
parameter before the
component renders,
and is reset back to
default value after the
component renders.

f or m means that the
property is set from
the parameter when
the component ren-
ders (as with in).
When the formis sub-
mitted, the vaue is
read from the prop-
erty and used to set
the binding value af-
ter the component

rewinds.

<privat e- asset > element

Specifies located from the classpath. These exist to support reusable components packages (as part of a |i brary-
<speci fi cati on>) packaged in a JAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression asset s. nane.

FigureB.25. <pri vat e- asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

resource-path string yes The path to the asset

on the classpath. The
path should begin
with leading forward
slash.

75

Appendix B. Tapestry Specification DTDs

<pr operty> element
Appearsin: many

The <pr oper t y> element is used to store meta-data about some other element (it is contained within). Tapestr ig-

nores this meta-data Any number of name/value pairs may be stored. The value is the static text the <pr operty>
tag wraps around.

Figure B.26. <pr oper t y> Attributes

Name Type Required ? Default Value Description
name string yes The name of the prop-
erty.

<r eser ved- par anet er > element
Appearsin: <conponent - speci fi cati on>

Used in components that allow informal parameters to limit the possible informal parameters (so that there aren't
conflicts with HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved parameter named
"src" (or any variation), and be excluded.

Figure B.27. <r eser ved- par anet er > Attributes

Name Type Required ? Default Value Description
name string yes The name of the re-
served parameter.

<servi ce> element

Appearsin: <appl i cati on>and <l i brary-specification>
Definesan | Engi neSer vi ce provided by the application or by alibrary.

The framework provides several services (home, direct, action, external, etc.). Applications may override these ser-
vices by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the name) to
avoid name collisions.

FigureB.28. <ser vi ce> Attributes

76

url(../api/org/apache/tapestry/IEngineService.html)

Appendix B. Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes The name of the ser-
vice.

class string yes The complete class

name to instantiate.
The class must have a
zero-arguments con-
structor and imple-
ment the interface
| Engi neServi ce

<set - property> element

Appearsin: <bean>

Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing component or
page).

FigureB.29. <set - pr oper t y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

expression string yes The OGNL expres-
sion used to set the
property.

<set - string- property>element
Appearsin: <bean>

Allows a property of ahelper bean to be set to alocalized string value of its containing page or component.

FigureB.30. <set - st ri ng- propert y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

key string yes A string property key
of the containing page
or component.

77

url(../api/org/apache/tapestry/IEngineService.html)

Appendix B. Tapestry Specification DTDs

<st ati ¢- bi ndi ng> element
Appearsin: <conponent >

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is the wrapped
contents of the <st at i c- bi ndi ng> tag. Leading and trailing whitespace is removed.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.31. <st ati c- bi ndi ng> Attributes

Name Type Required ? Default Value Description
name string yes The name of the pa-
rameter to bind.

<st ri ng- bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to alocalized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

FigureB.32. <st ri ng- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa
rameter to bind.

key string yes The localized prop-
erty key to retrieve.

78

Appendix C. Tapestry Script Specification
DTD

Tapestry Script Specifications are frequently used with the Scri pt component, to create dynamic JavaScript func-
tions, typically for use as event handlers for client-side logic.

Theroot element is<scri pt >.

A script specifcation is a kind of specialized template that takes some number of input symbols and combines and
mani pulates them to form output symbols, as well as body and initialization. Symbols may be simple strings, but are
also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${ OGNL expr essi on} . The ex-
pression is evaluated relative to a Map of symbols.

<body> element
Appearsin: <scri pt >

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically declared.
This body will be passed to the Body component for inclusion in the page.

Figure C.1. <body> Elements

(text |<foreach>|<if>|<if-not>)*

<f or each> element
Appearsin: many

An element that renders its body repeatedly, much like a For each component. An expression supplies a collection
or array of objects, and its body is rendered for each element in the collection.

Figure C.2. <f or each> Attributes

Name Type Required ? Default Value Description

key string yes The symbol to be up-
dated with each suc-
cessive value.

expression string yes The OGNL expres-
sion which provides
the source of ee
ments.

Figure C.3. <f or each> Elements

79

url(../ComponentReference/Script.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)

Appendix C. Tapestry Script Specification DTD

(text |<foreach>|<if>|<if-not>)*

<i f > element
Appearsin: many

Conditionally renders its body, if a supplied OGNL expression istrue.

Figure C.4. <i f > Attributes

Name Type Required ? Default Value Description
expression string yes The OGNL expres-
sion to be evaluated.

Figure C.5. <i f > Elements

(text |<foreach>|<if>|<if-not>)*

<i f - not > element
Appearsin: many

Conditionally renders its body, if a supplied OGNL expression isfalse.

Figure C.6. <i f - not > Attributes

Name Type Required ? Default Value Description
expression string yes The OGNL expres-
sion to be evaluated.

Figure C.7. <i f - not > Elements

(text |<foreach>|<if>|<if-not>)*

<i ncl ude-scri pt > element

Appearsin: <scri pt >

80

Appendix C. Tapestry Script Specification DTD

Used to include a static JavaScript library. A library will only be included once, regardless of how many different
scripts reference it. Such libraries are located on the classpath.

Figure C.8. <i ncl ude- scri pt > Attributes

Name Type Required ? Default Value Description
resource-path string yes The location of the
JavaScript library.

<initialization>element
Appearsin: <scri pt >
Defines initialization needed by the remainder of the script. Such initialization is placed inside a method invoked

from the HTML <body> element's onl oad event handler ... that is, whatever is placed inside this element will not
be executed until the entire page is loaded.

FigureC.9.<initi al i zati on> Elements

(text |<foreach>|<if>|<if-not>)*

<i nput - synbol > element
Appearsin: <scri pt >
Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. As the script xe-
ecutes, it uses the input symbols to create new output symbols, redefine input symbols (not a recommended practice)
and define the body and initialization.
This element alows the script to make input symbols required and to restrict their type. Invalid input symbols
(missing when required, or not of the correct type) will result in runtime exceptions.

Figure C.10. <i nput - synbol > Attributes

Name Type Required ? Default Value Description

key string yes The input symbol to
be checked.

class string no If specified, thisis the

complete, quadlified
class name for the
symbol. The provided
symbol must be
assignable to this
class (be a subclass,
or implement the
specified class if the

81

Appendix C. Tapestry Script Specification DTD

Name Type Required ? Default Value Description
specified class is ac-
tually an interface).

required yes | no no no If yes, then a non-
null value must be

specified for the sym-
bol.

<l et > element

Appearsin: <scri pt >

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with leading and trail-
ing whitespace removed).

Figure C.11. <I et > Attributes

Name Type Required ? Default Value Description
key string yes The key of the sym-
bol to define.

Figure C.12. <I et > Elements

(text |<foreach>|<if>|<if-not>)*

<scri pt > element
Root element

The root element of a Tapestry script specification.

Figure C.13. <scri pt > Elements

<i ncl ude-scri pt>*, <i nput - synbol > *,
(<l et>]<set >) *,
<body>?,<initialization>?

<set > element
Appearsin: <scri pt >

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using an OGNL ex-

82

Appendix C. Tapestry Script Specification DTD

pression.

Figure C.14. <set > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

expression string yes The OGNL expres-
sion to evaluate.

83

