
Tapestry Tutorial
by Howard Lewis Ship

Tapestry Tutorial
by Howard Lewis Ship
Copyright © 2000, 2001, 2002, 2003 The Apache Software Foundation

Table of Contents
1. Introduction ...
2. Setting up the Tutorial ...
3. Hello World ...

ApplicationEngine ...3
Web Deployment Descriptor ..3
ApplicationSpecification ...4
Home Page Specification ...4
Home Page Template ..5
Run the Application ..5

4. Dynamic Content ..
5.Hangman ..

The Visit Object ..13
The Home Page ...14
The Guess Page ...16
Limitations ...18

6. Creating Reusable Components ...
7. The Tapestry Inspector ..

Navigation ..24
SpecificationView ...25
TemplateView ..26
PropertiesView ...26
EngineView ...27
LoggingView ...28

8. Tapestry Workbench ...
9.Localization ...

Localization of HTML Templates ... 34
Localization of Assets ...34
Other Options for Localization ... 34

10. Further Study ...

iv

List of Figures
2.1. Tutorial Index Page .. 2
3.1. Tutorial Deployment Descriptor (partial) .. 3
3.2.HelloWorld.application ...4
3.3.Home.page ..4
3.4.Home.html ..5
3.5. Hello World Application .. 5
4.1. Dynamic Application ..7
4.2.Simple.application ..7
4.3.Home.html ..8
4.4.Home.page ..9
4.5.Home.java ..9
4.6. HTML generated for Home page ... 10
5.1. Hangman Home Page .. 11
5.2. Hangman Guess Page .. 11
5.3. Hangman Failed Page ... 12
5.4. Hangman Success Page ... 13
5.5.Hangman.application ..13
5.6.Home.java ..14
5.7. Home.html (excerpt) ...15
5.8. Home.page (excerpt) ...16
5.9. Guess.html (excerpt) ...16
5.10. Guess.jwc (excerpt) ...17
5.11. Guess.java (excerpt) ..18
6.1. Border Home Page ... 19
6.2. Border Credo Page ... 19
6.3.Home.html ..20
6.4.Border.html ...20
6.5.Border.jwc ..21
6.6. Show Inspector Button .. 22
6.7. Home page specification .. 23
6.8. BorderEngine.java (excerpt) ...23
6.9. Border.application (excerpt) ...23
7.1. Tapestry Inspector ..24
7.2. Specification View ...25
7.3. Template View ..26
7.4. Properties View ...26
7.5. Engine View ...27
7.6. Logging View (Level Selection) .. 28
8.1.Workbench ...30
8.2. Workbench (Showing Requests) .. 30
9.1. L10N Page (English) ... 32
9.2. Locale Changed (German) ... 33
9.3. L10N Page (German) .. 33

v

Chapter 1. Introduction
Warning

This Tutorial is extremely out of date. A new tutorial should be ready before 3.0 reaches GA.

Tapestry is a new application framework for developing web applications. It uses a component object model to rep-
resent the pages of a web application. This is similar to spirit to using the Java Swing component object model to
build GUIs.

Just like using a GUI toolkit, there's some preparation and some basic ideas that must be cleared before going to
more ambitious things. Nobody writes a word processor off the top of their head as their first GUI project; nobody
should attempt a full-featured e-commerce site as their first attempt using Tapestry.

The goal of Tapestry is to eliminate most of the coding in a web application. Under Tapestry, nearly all code is di-
rectly related to application functionality, with very little "plumbing". If you have previously developed a web appli-
cation using Microsoft Active Server Pages, JavaServer Pages or Java Servlets, you may take for granted all the
plumbing: writing servlets, assembling URLs, parsing URLs, managing objects inside the HttpSession, etc.

Tapestry takes care of nearly all of that, for free. It allows for the development of rich, highly interactive applica-
tions.

This tutorial will start with basic concepts, such as the "Hello World" application, and will gradually build up to
more sophisticated examples.

The tutorial uses Jetty, a freely available servlet engine, which is packaged with the Tapestry distribution.

The format of this tutorial is to describe (visually and with text) an application within the tutorial, then describe how
it is constructed, using code excerpts. The reader is best served by having an IDE open so that they can look at the
code in detail, as well as run the applications.

1

url(http://sf.net/projects/jetty)

1 If you are using Solaris or another non-Windows operating system, you're expected to be savvy enough to translate to a sensibly constructed file
system.
2 The three numbers are the release number. At the time of this writing, the release was 2.2, but this is constantly changing. Simply adjust the ac-
tual pathname to reflect the release of Tapestry you downloaded.

Chapter 2. Setting up the Tutorial
This document expects that you will have extracted the full Tapestry distribution to your C: drive 1

This will have created a directory C:\Tapestry-x.x and, beneath it, several more directories. 2

The source code for the Tutorial is distributed as a JAR file, src/examples-src.jar. A precompiled WAR file,
lib/tutorial.war is included in the distribution.

The Tapestry distribution includes an Ant build file that allows the Tutorial to be directly executed. Ant release 1.5
is required.

From the Tapestry root directory, execute the command ant -emacs run-tutorial, which will launch the Jetty server
for the Tutorial.

Once Jetty is running, you can access the Tutorials using the URL http://localhost:8080/tutorial .

Figure 2.1. Tutorial Index Page

2

url(http://jakarta.apache.org/ant)
url(http://localhost:8080/tutorial)
url(http://localhost:8080/tutorial)

Chapter 3. Hello World
In this first example, we'll create a very simple "Hello World" kind of application. It won't have any real functional-
ity but it'll demonstrate the simplest possible variation of a number of key aspects of the framework.

We'll define our application, define the lone page of our application, configure everything and launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, i.e.,
C:\Tapestry-x.x.x\examples\Tutorial\src\tutorial\hello.

Application Engine
As each new client connects to the application, an instance of the application engine is created for them. The appli-
cation engine is used to track that client's activity within the application.

The application engine is an instance, or subclass of, the Tapestry class SimpleEngine.

In these first few examples, we have no additional behavior to add to the provided base class, so we simply use
SimpleEngine directly.

Web Deployment Descriptor
The application servlet is a "bridge" between the servlet container and the application engine. Its job is simply to
create (on the first request) or locate (on subsequent requests) the application engine.

All Tapestry applications use the same servlet class, however its configuration is different. Part of the configuration
is to identify the location of the application specification which is like a master index of all the pages in the applica-
tion.

The tutorial is a rare case; it is a single WAR that contains multiple Tapestry applications. This isn't a problem ...
each Tapestry application has its own servlet and has its own configuration. The following figure shows the deploy-
ment descriptor for the Tapestry Tutorial (but excludes the additional sections for the other applications within the
WAR).

Figure 3.1. Tutorial Deployment Descriptor (partial)

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>Tapestry Tutorial</display-name>

<servlet>
<servlet-name>hello</servlet-name>
<servlet-class>org.apache.tapestry.ApplicationServlet</servlet-class>
<init-param>

<param-name>org.apache.tapestry.application-specification</param-name>
<param-value>/tutorial/hello/HelloWorld.application</param-value>

</init-param>
<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>hello</servlet-name>
<url-pattern>/hello</url-pattern>

</servlet-mapping>

3

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/engine/SimpleEngine.html)

<session-config>
<session-timeout>15</session-timeout>

</session-config>

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>
</web-app>

Application Specification
The application specification is used to describe the application to the Tapestry framework. It provides the applica-
tion with a name, an engine class, and a list of pages.

This specification is a file that is located on the Java class path. In a deployed Tapestry application, the specification
lives with the application's class files, in the WEB-INF/classes directory of a War file.

Figure 3.2. HelloWorld.application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<application
name="Hello World Tutorial"
engine-class="org.apache.tapestry.engine.SimpleEngine">

<page name="Home"
specification-path="/tutorial/hello/Home.page"/>

</application>

Our application is very simple; we give the application a name, use the standard engine, and define a single page,
named "Home". In Tapestry, pages and components are specified with the path to their specification file (a file that
end with '.page' for page specifications or '.jwc' for component specifications).

Page "Home" has a special meaning to Tapestry: when you first launch a Tapestry application, it loads and displays
the "Home" page. All Tapestry applications are required to have such a home page.

Home Page Specification
The page specification defines the Tapestry component responsible for the page. In this first example, our compo-
nent is very simple.

Figure 3.3. Home.page

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification class="org.apache.tapestry.html.BasePage"/>

Chapter 3. Hello World

4

url(../api/org/apache/tapestry/engine/SimpleEngine.html)
url(../api/org/apache/tapestry/html/BasePage.html)

This simply says that Home is a kind of page. We use the supplied Tapestry class BasePage since we aren't adding
any behavior to the page.

Home Page Template
Finally, we get to the content of our application. This file is also a Java resource; it isn't directly visible to the web
server. It has the same location and name as the component specification, except that it ends in "html".

Figure 3.4. Home.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>

<title>Hello World</title>
</head>

<body>

Welcome to your first Tapestry Application.

</body>
</html>

Run the Application
You should already be running the Jetty server in a window, and have a browser running the tutorials page. Select
the first option, Hello World, from the list. You will be presented with the first (and only) page generated by
Tapestry for this application:

Figure 3.5. Hello World Application

Chapter 3. Hello World

5

url(../api/org/apache/tapestry/html/BasePage.html)

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's a start. Remem-
ber, there was no JavaServer page here, and no HTML directly visible to the web server. We used the Tapestry
framework to assembly an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

Chapter 3. Hello World

6

Chapter 4. Dynamic Content
In this chapter, we'll create a new web application that will show some dynamic content. We'll also begin to show
some interactivity by adding a link to the page. Our dynamic content will simply be to show the current date and
time. The interactivity will be a link to refresh the page. It all looks like this:

Figure 4.1. Dynamic Application

Clicking the word "here" will update the page showing the new data and time. Not incredibly interactive, but it's a
start.

The code for this section of the tutorial is in the package tutorial.simple.

The application specification is almost identical to the Hello World example:

Figure 4.2. Simple.application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<application name="Simple Tutorial" engine-class="org.apache.tapestry.engine.SimpleEngine">
<page name="Home" specification-path="/tutorial/simple/Home.page"/>

</application>

Things only begin to get more interesting when we look at the HTML template for the home page:

7

url(../api/org/apache/tapestry/engine/SimpleEngine.html)

3Of course, good and consistent naming is important.

Figure 4.3. Home.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Simple</title>
</head>
<body>

This application demonstrates some dynamic behavior using Tapestry components.

<p>The current date and time is: Current Date

<p>Click here to refresh.

</body>
</html>

This looks like ordinary HTML, except for the special jwcid attribute. "jwc" is short for "Java Web Component";
these attributes identify the tag as a placeholder for a dynamic Tapestry component.

We have two components. The first inserts the current date and time into the HTML response. The second compo-
nent creates a hyperlink that refreshes the page when clicked.

One of the goals of Tapestry is that the HTML should have the minimum amount of special markup. This is demon-
strated here ... the dynamic component tags blend into the standard HTML of the template. We also don't confuse
the HTML by explaining exactly what an insertDate or refresh is; that comes out of the specification
(described shortly). The ids used here are meaningful only to the developer 3, the particular type and configuration
of each component is defined in the component specification.

Tapestry doesn't really care what HTML tag you use, as long as you balance the tag correctly. In fact, it ignores the
tag entirely: the refresh component above could just has easily been identified with a tag, or any other tag
for that matter. Tapestry is only interested in the structure of the HTML template. The fact that you can use mean-
ingful tags is a convienience; it allows a Tapestry HTML template to be previewed in a WYSIWYG HTML editor,
such as HomeSite. Additionally, Tapestry edits out the content of tags for components that don't wrap around other
content: the insertDate component in this example. This allows a preview values to be kept in the template.

Very significant is the fact that a Tapestry component can wrap around other elements of the template. The re-
fresh component wraps around the word "here". What this means is that the refresh component will get a chance
to emit some HTML (an <a> hyperlink tag), then emit the HTML it wraps (the word "here"), then get a chance to
emit more HTML (the closing tag).

What's more important is that the component can not only wrap static HTML from the template (as shown in this ex-
ample), but may wrap around other Tapestry components and those components may themselves wrap text and com-
ponents, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more components inside of
it. In a real application, the single page of HTML produced by the framework may be the product of dozens of com-
ponents, effectively "woven" from dozens of HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static HTML that will be
passed directly back to the client web browser, with a few placeholders (the tags with the jwcid attribute) for where
dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data moves between the ap-
plication, page and any components.

Chapter 4. Dynamic Content

8

Figure 4.4. Home.page

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification class="tutorial.simple.Home">

<component id="insertDate" type="Insert">
<binding name="value" expression="currentDate"/>

</component>

<component id="refresh" type="PageLink">
<static-binding name="page">Home</static-binding>

</component>

</page-specification>

Here's what all that means: The Home page is implemented with a custom class, tutorial.simple.Home. It con-
tains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to specify what
should be inserted into the HTML produced by the page. The insertDate component has its value parameter
bound to a JavaBeans property of its container (the page), the currentDate property.

The refresh component is type PageLink, meaning it creates a link to some other page in the application.
PageLink components have a parameter, named page, which defines the name of the page to navigate to. The
name is matched against a page named in the application specification.

In this case, we only have one page in our application (named "Home"), so we can use a static binding for the page
parameter. A static binding provides a value for the component parameter statically, the same value every time. The
value is defined right in the specification.

That just leaves the implementation of the Home page component:

Figure 4.5. Home.java

package tutorial.simple;

import java.util.Date;
import org.apache.tapestry.html.BasePage;

public class Home extends BasePage
{

public Date getCurrentDate()
{
return new Date();

}
}

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate that the in-
sertDate component needs. When asked for the current date, the Home object returns a new instance of the
java.util.Date object.

Chapter 4. Dynamic Content

9

url(../ComponentReference/Insert.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/PageLink.html)
url(../api/org/apache/tapestry/html/BasePage.html)

The insertDate component converts objects into strings by invoking toString() on the object.

Now all the bits and pieces are working together.

Run the application, and use the View Source command to examine the HTML generated by by framework.

Figure 4.6. HTML generated for Home page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Simple</title>
</head>
<body>

This application demonstrates some dynamic behavior using Tapestry components.

<p>The current date and time is: Fri Nov 23 17:05:53 PST 2001

<p>Click here to refresh.

</body>
</html>

This should look very familiar, in that it is mostly the same as the HTML template for the page. Tapestry not only
inserted simple text (the current date and time, obtained from an java.util.Date object), but the refresh com-
ponent inserted the <a> and tags, and created an appropriate URL for the href attribute.

Chapter 4. Dynamic Content

10

Chapter 5. Hangman
So far, these examples have been a little bit cut-and-dried. Lets do a meatier example that uses a few more interest-
ing components. Let's play Hangman!

Our Hangman application consists of four pages. The Home page allows a new game to be started, which includes
selecting the difficulty of the game (how many wrong guesses you are allowed).

Figure 5.1. Hangman Home Page

The main page is the Guess page, where the partially filled out word is displayed, and the user can make guesses
(from a shrinking list of possible letters):

Figure 5.2. Hangman Guess Page

11

After you give up, or when you make too many mistakes, you end up on the the Failed page:

Figure 5.3. Hangman Failed Page

But, if you guess all the letters, you are sent to the Success page:

Chapter 5. Hangman

12

Figure 5.4. Hangman Success Page

The Visit Object
The center of this application is an object that represents game, an object of class HangmanGame. This object is used
to track the word being guessed, the letters that have been used, the number of misses and the letters that have been
correctly guessed.

This object is a property of the visit object. What's the visit object? The visit object is a holder of all information
about a single client's visit to your web application. It contains data and methods that are needed by the pages and
components of your application.

The visit object is owned and created by the engine object. It is serialized and de-serialized with the engine.

The application specification includes a little extra segment at the bottom to specify the class of the visit object.

Figure 5.5. Hangman.application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<application name="Tapestry Hangman" engine-class="org.apache.tapestry.engine.SimpleEngine">

<property name="org.apache.tapestry.visit-class">tutorial.hangman.Visit</property> ❶

<page name="Home" specification-path="/tutorial/hangman/Home.page"/>

<page name="Guess" specification-path="/tutorial/hangman/Guess.page"/>

Chapter 5. Hangman

13

url(../api/org/apache/tapestry/engine/SimpleEngine.html)

<page name="Failed" specification-path="/tutorial/hangman/Failed.page"/>

<page name="Success" specification-path="/tutorial/hangman/Success.page"/>

</application>

❶ This property specifies that the engine should instantiate an instance of tutorial.hangman.Visit when a
visit object is first required. This is the default way in which the visit object is specified, though if the visit ob-
ject doesn't have an empty constructor method, the engine method createVisit() must be implemented in-
stead.

So, returning from that distraction, the game object is a property of the visit object, which is accessible from any
page (via the page's visit property).

The Home Page
The Home page's job is to collect the difficulty and initiate a game:

Figure 5.6. Home.java

public class Home extends BasePage
{

public static final int EASY = 10;
public static final int MEDIUM = 5;
public static final int HARD = 3;

private int misses;
private String error;

public void detach()
{

misses = 0;
error = null;

super.detach();
}

public int getMisses()
{

return misses;
}

public void setMisses(int value)
{

misses = value;

fireObservedChange("misses", value);
}

public String getError()
{

return error;
}

public void formSubmit(IRequestCycle cycle)
{

if (misses == 0)
{

error = "Please select a game difficulty.";
return;

}

Chapter 5. Hangman

14

url(../api/org/apache/tapestry/html/BasePage.html)

Visit visit = (Visit) getVisit();

visit.start(misses);

cycle.setPage("Guess");
}

}

We're seeing all the familiar ideas: The misses property is a persistent page property (which means the page will
"remember" the value previously selected by the user).

We use a common trick for simple pages: the page contains a single Form component, so we use the page itself as
the form's listener, and have the page implement the IActionListener interface.

This saves a bit of code for creating an inner class as the form listener.

Initially, we don't select a difficulty level, and the user can click "Play!" without selecting a value from the list, so
we check that.

Otherwise, we get the visit object and ask it to start a new game with the selected number of misses. We then jump
to the Guess page to start accepting guesses from the user.

The interesting part of the Home page HTML template is the form:

Figure 5.7. Home.html (excerpt)

<form jwcid="form">

<table>
<tr>

<td><input jwcid="inputEasy"/></td>
<td>Easy game; you are allowed ten misses.</td>

</tr>

<tr>
<td><input jwcid="inputMedium"/></td>
<td>Medium game; you are allowed five misses.</td>

</tr>

<tr>
<td><input jwcid="inputHard"/></td>
<td>Hard game; you are only allowed three misses.</td>

</tr>

<tr>
<td></td>
<td><input type="submit" value="Play!"></td>

</tr>

</table>

</form>

Chapter 5. Hangman

15

url(../ComponentReference/Form.html)
url(../api/org/apache/tapestry/IActionListener.html)

Here, the interesting components are group, inputEasy, inputMedium and inputHard. group is type Radio-
Group, a wrapper that must go around the Radio components (the other three). The RadioGroup determines what
property of the page is to be read and updated (its bound to the misses property). Each Radio button is associated
with a particular value to be assigned to the property, when that radio button is selected by the user.

This comes together in the Home page specification:

Figure 5.8. Home.page (excerpt)

<component id="group" type="RadioGroup">
<binding name="selected" expression="misses"/>

</component>

<component id="inputEasy" type="Radio">
<field-binding name="value" field-name="tutorial.hangman.Home.EASY"/> ❶

</component>

<component id="inputMedium" type="Radio">
<field-binding name="value" field-name="tutorial.hangman.Home.MEDIUM"/>

</component>

<component id="inputHard" type="Radio">
<field-binding name="value" field-name="tutorial.hangman.Home.HARD"/>

</component>

❶ A <field-binding> is like a <static-binding>, except that the static value is taken from a public static
field of some class. This makes it easy to coordinate behaviors between the specification and the class.

This is a good thing, since if you decide to make a HARD game only allow two mistakes, you can make the
change in exactly one place .. your Java code.

So the end result is: when the user clicks the radio button for a Hard game, the static constant HARD is assigned to
the page's misses property.

The Guess Page
This is the page where uses make letter guesses. The page has four sections:

• A display of the word, with underscores replacing unguessed letters.

• A status area, showing the number of bad guesses and an optional error message after an invalid guess.

• A list of letters that may be guessed. Letters disappear after they are used.

• An option to give up and see the word, terminating the game.

Let's start with the HTML template this time:

Figure 5.9. Guess.html (excerpt)

<h1>Make a Guess</h1>

Chapter 5. Hangman

16

url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/RadioGroup.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/Radio.html)
url(../ComponentReference/Radio.html)

4 Tapestry takes care of converting objects into strings when constructing the URL, then converts those strings back into objects when the link is
clicked. Your listener method will be able to get copies of the original parameters.

<p>

You have made bad guesses,
out of a maximum of .

<p>

<p>Guess:

<p>Give up?

Most of these components should be fairly obvious by now; let's focus on the components that allow the user to
guess a letter. This could have been implemented in a number of ways using more radio buttons, a drop down list or
a text field the user could type into. In this example, we chose to simply create a series of links, one for each letter
the user may still guess.

Let's look at the specification for those three components (e, guess and insertLetter).

Figure 5.10. Guess.jwc (excerpt)

<component id="e" type="Foreach">
<binding name="source" expression="unused"/>

</component>

<component id="guess" type="DirectLink">
<binding name="listener" expression="listeners.makeGuess"/>
<binding name="parameters" expression="components.e.value"/>

</component>

<component id="insertLetter" type="Insert">
<binding name="value" expression="components.e.value"/>

</component>

Component e is simply a Foreach, the source is the unused property of the page (we'll see in a moment how the
page gets this list of unused letters from the game object).

Component insertLetter inserts the current letter from the list of unused letters. It gets this current letter directly
from the e component. On successive iterations, a Foreach component's value property is the value for the itera-
tion.

Component guess is type DirectLink, which creates a hyperlink on the page and notifies its listener when the
user clicks the link. Just knowing that the component was clicked isn't very helpful though; the application needs to
know which letter was actually clicked.

Passing that kind of information along is accomplished by setting the parameters parameter for the component.
The parameters parameter is an object, or array or objects, that will be encoded into the URL for the hyperlink.
When the component's listener is notified, it can obtain the array of objects from the IRequestCycle 4.

Chapter 5. Hangman

17

url(../ComponentReference/Foreach.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/DirectLink.html)
url(../api/org/apache/tapestry/IRequestCycle.html)

These service parameters are often used to encode primary keys of objects, names of columns or other information
specific to the application.

In this case, the service parameters consist of a single value, the letter to be guessed.

All of this comes together in the Java code for the Guess page.

Figure 5.11. Guess.java (excerpt)

public void makeGuess(IRequestCycle cycle)
{

Object[] parameters = cycle.getServiceParameters();
char letter = ((Character)parameters[0]).charValue();
HangmanGame game = getGame();

try
{

game.guess(letter);
}
catch (GameException ex)
{

error = ex.getMessage();

if (game.getFailed())
cycle.setPage("Failed");

return;
}

// A good guess.

if (game.getDone())
cycle.setPage("Success");

}

The component specification showed how data was encoded into the URL as the service parameters; here we see
how the makeGuess() listener method has access to the service parameters and uses them. The listener method ex-
tracts the letter and informs the game object, which throws an exception if the letter is not in the word being
guessed.

The method HangmanGame.getFailed() returns true when all the missed guesses are used up, at which point
we go to the Failed page to tell the user what the word was.

On the other hand, if an exception isn't thrown, then the guess was good. getDone() returns true if all letters have
been guessed, in which go to the Success page.

If all letters weren't guessed, we stay on the Guess page, which will display the word with the guessed letter filled
in, and with fewer options in the list of possible guesses.

Limitations
This is a very, very simple implementation of the game. For example, it's easy to cheat; you can give up, then use
your browser's back button to return to the Guess page and keep guessing (with accuracy, if your memory is any
good).

Chapter 5. Hangman

18

url(../api/org/apache/tapestry/IRequestCycle.html)

Chapter 6. Creating Reusable Components
In this tutorial, we'll show how to create a reusable component. One common use of components it to create a com-
mon "border" for the application that includes basic navigation. We'll be creating a simple, three page application
with a navigation bar down the left side.

Figure 6.1. Border Home Page

Navigating to another page results in a similar display:

Figure 6.2. Border Credo Page

19

Each page's content is confined to the silver area in the center. Note that the border adapts itself to each page: the ti-
tle "Home" or "Credo" is specific to the page, and the current page doesn't have an active link (in the above page,
"Credo" is the current page, so only "Home" and "Legal" are usable as navigation links).

The "i" in the gear is the Show Inspector link. It will be described in the next chapter.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files. The complete source
of the tutorial examples is available seperately, in the tutorial.border package.

Each of the three pages has a similar HTML template:

Figure 6.3. Home.html

Nothing much doing here on the home page. Visit one of our other
fine
pages.

Remember that Tapestry components can wrap around other HTML elements or components. For the border, we
have an HTML template where everything on the page is wrapped by the border component.

Note that we don't specify any <html> or <body> tags; those are provided by the Border component (as well as
the matching close tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds the border compo-
nent (as we'll see in the Home page's specification). This means that the Home page is implemented using the border
component.

However, the border component wraps the content of the Home page, the Home page HTML template indicates the
order in which components (and static HTML elements) are renderred. On the Home page, the border component
'bats' first and cleanup.

The construction of the Border component is driven by how it differs from page to page. You'll see that on each
page, the title (in the upper left corner) changes. The names of all three pages are displayed, but only two of the
three will have links (the third, the current page, is just text). Lastly, each page contains the specific content from its
own HTML template.

Figure 6.4. Border.html

 ❶
<body jwcid="body"> ❷
<table border=0 bgcolor=gray cellspacing=0 cellpadding=4>

<tr valign=top>
<td colspan=3 align=left>

<jwc id="insertPageTitle"/>
</td>

</tr>
<tr valign=top>
<td align=right>

 ❸

 ❹

Chapter 6. Creating Reusable Components

20

</td>
<td rowspan=2 valign=top bgcolor=silver>

 ❺
</td>
<td rowspan=2 width=4></td>

</tr>
<tr>

<td></td> ❻
</tr>
<tr>
<td colspan=3 height=4> </td>

</tr>
</table>
</body>

❶ The shell component provides the <html> and <head> elements of the response HTML.
❷ The body components provides the <body> element. It also provides support for JavaScript related to

Rollover buttons, such as the showInspector component.
❸ The e component is a Foreach configured to work through a list of page names (provided by the engine).
❹ The link and insertName components provide the inter-page navigation links.
❺ The renderBody component provides the actual content for the page. The Border component is used on all

three pages, but its a different instance on each page, wrapping around different content specific to the page.
❻ The showInspector component provides the button below the page names (the italicized "i" in a circle) and

will be explained shortly.

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard code the list of
page names. These must be provided to the component as a parameter. In fact, the application engine provides the
list.

Figure 6.5. Border.jwc

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component-specification PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<component-specification class="tutorial.border.Border" allow-informal-parameters="no">

<parameter name="title" java-type="java.lang.String" required="yes"/> ❶

<parameter name="pages" required="yes"/> ❷

<component id="shell" type="Shell">
<binding name="title" expression="page.engine.specification.name"/> ❸

</component>

<component id="insertPageTitle" type="Insert">
<inherited-binding name="value" parameter-name="title"/> ❹

</component>

<component id="body" type="Body"/>

<component id="e" type="Foreach"> ❺
<inherited-binding name="source" parameter-name="pages"/>
<binding name="value" expression="pageName"/>

</component>

<component id="link" type="PageLink"> ❻
<binding name="page" expression="pageName"/>
<binding name="disabled" expression="disablePageLink"/>

Chapter 6. Creating Reusable Components

21

url(../ComponentReference/Rollover.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/Shell.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/PageLink.html)

</component>

<component id="insertName" type="Insert">
<binding name="value" expression="pageName"/>

</component>

<component id="renderBody" type="RenderBody"/>

<component id="inspector" type="InspectorButton"/> ❼
</component-specification>

❶ Declares a required parameter for the border, the title that will appear on the page.
❷ Declares a parameter to specify the list of page names. We don't specify a particular type because its pretty un-

bounded; the framework will accept List, Iterator or a Java array.
❸ We then provide the shell component with its title parameter; this will be the window title. We use the ap-

plication's name, with is extracted from the application's specification.
❹ The <inherited-binding> element allows a component to share its parameters. Here the Border's title

is used as the value parameter of the insertPageTitle component (an Insert). Using these inherited
bindings simplifies the process of creating complex components from simple ones.

❺ Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from the Bor-
der component's pages parameter. It has been configured to store each succesive page name into the page-
Name property of the Border component; this is necessary so that the Border component can determine
which page link to disable (it disables the current page since we're already there).

❻ The link component creates the link to the other pages. It has a disabled parameter; which, when true,
causes the link component to not create the hyperlink (though it still allows the elements it wraps to render).
The Java class for the Border component, tutorial.border.Border, provides a method, getDis-
ablePageLink(), that returns true when the pageName instance variable (set by the e component) matches
the current page's name.

❼ This component will raise the Tapestry Inspector in a new window when clicked.

So, the specification for the Border component must identify the parameters it needs, but also the components it
uses and how they are configured.

Figure 6.6. Show Inspector Button

Clicking on the button raises a second window that describes the current page in the application (this is used when
debugging a Tapestry applicaton). The Inspector is described in the next chapter.

The final mystery is the wrapped component. It is used to render the elements wrapped by the Border on the page
containing the Border. Those elements will vary from page to page; running the application shows that they are dif-
ferent on the home, credo and legal pages (different text appears in the central light-grey box). There is no limitation
on the elements either: Tapestry is specifically designed to allow components to wrap other components in this way,
without any arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all, not just static

Chapter 6. Creating Reusable Components

22

url(../ComponentReference/Insert.html)
url(../ComponentReference/RenderBody.html)
url(../ComponentReference/InspectorButton.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)

HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is static, the literal
value "Home" (this isn't the best approach if localization is a concern).

Figure 6.7. Home page specification

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification class="org.apache.tapestry.html.BasePage">

<component id="border" type="Border">
<static-binding name="title">Home</static-binding>
<binding name="pages" expression="engine.pageNames"/>

</component>

</page-specification>

The pages property is retrieved from the application engine, which implements a pageNames JavaBeans property:

Figure 6.8. BorderEngine.java (excerpt)

private static final String[] pageNames =
{ "Home", "Credo", "Legal" };

public String[] getPageNames()
{
return pageNames;

}

How did Tapestry know that the type 'Border' corresponded to the specification
/tutorial/border/Border.jwc? Only because we defined an alias in the application specification:

Figure 6.9. Border.application (excerpt)

<component-alias type="Border" specification-path="/tutorial/border/Border.jwc"/>

Had we failed to do this, we would have had to specify the complete resource path, /tuto-
rial/border/Border.jwc, on each page's specification, instead of the short alias 'Border'. There is no magic
about the existing Tapestry component types (Insert, Foreach, PageLink, etc. ... they each have an alias pre-
registered into every application specification. These short aliases are simply a convienience.

Chapter 6. Creating Reusable Components

23

url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)
url(../ComponentReference/PageLink.html)

Chapter 7. The Tapestry Inspector
Unlike scripting systems (such as JavaServer Pages and the like), Tapestry applications are gifted with a huge
amount of information about how they are implemented. The same component object model that allows Tapestry to
perform so many ordinary functions can be leveraged to provide some unusual functionality.

Run the Border tutorial from the previous chapter and click on the show inspector button (the gear icon in the lower
right corner). A new window will launch, containing the Inspector:

Figure 7.1. Tapestry Inspector

The Inspector displays live information from the running application; in fact, it is simply another part of the applica-
tion (the drop-down list of pages will include the Inspector page itself). The Inspector is most often used to debug
HTML generation by viewing the HTML templates. It is also very useful in debugging problems where the wrong
data is displayed, since it allows the developer to navigate to the particular components and see directly what proper-
ties are used.

Navigation
The inspector allows the user to navigate to any page and any component on a page. The drop down list in the upper
left corner lists all pages in the application; changing the selection immediately updates the Inspector.

24

Next to the drop down list is the component path; a list of nested component ids, starting with "page" to represent
the page. Clicking on any id in the path changes the information displayed below.

Underneath the component navigation tools are a set of tab buttons for the different inspector views.

Specification View

Figure 7.2. Specification View

The specification view shows several sets of information about the selected component.

First shown are basic properties, such as the specification path and Java class.

Each formal parameter is displayed. Unbound parameters will show no value in the Binding column.

Beneath formal parameters are informal parameters (the Border component has none, so there is nothing to see).
Informal parameters are usually mapped directly to HTML attributes. They are most often used with components
that generate a single HTML tag, such as the ActionLink, DirectLink or TextField components.

If the component contains assets, they are shown next.

Any helper beans for the component are displayed last.

Chapter 7. The Tapestry Inspector

25

url(../ComponentReference/ActionLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/TextField.html)

On the right side is a list of each embedded component and its type. Clicking the component id will navigate to the
selected component.

Template View

Figure 7.3. Template View

The template view shows the HTML template for the component. It shows dynamic tags in bold, and makes the
component id a clickable link (which navigates to the component, but maintains the Template View). This allows
the developer to quickly drill down through the components.

Properties View

Figure 7.4. Properties View

Chapter 7. The Tapestry Inspector

26

The properties view shows persistant properties stored by the page (or any components on the page). Most pages do
not store any persistent state (it is more often stored in the application's visit object).

Engine View

Figure 7.5. Engine View

Chapter 7. The Tapestry Inspector

27

5 By default, the reset service (used by the reset button) is disabled. To enable it, set the JVM system property
org.apache.tapestry.enable-reset-service to true. The service is disabled since it is too tempting a target for a denial of service at-
tack.

The engine view shows information about the running application engine, as well as some details from the applica-
tion specification.

Under Operations are two buttons: the first restarts the application. The second (when enabled 5) resets the applica-
tion, which forces a reload of all component specifications and HTML templates. This is useful during development,
since it allows for incremental development without stopping and restarting the servlet container.

Below the operations is a binary dump of the application engine. This is useful when developing to see how large
the serialized state is, and perhaps gleam how it might be trimmed.

Further below (and not visible in the screen shot above), is a dump of the request context. This is that vast amount of
data also displayed when an unexpected exception is thrown.

Logging View

Figure 7.6. Logging View (Level Selection)

Chapter 7. The Tapestry Inspector

28

6 By convention, logging categories match the complete class name of the corresponding class. All Tapestry logging categories conform to this
convention.

The Logging view allows dynamic integration with the Log4J logging framework. The top half of the page allows
the logging level of any category to be dynamically set. This is useful when debugging, since logging output for spe-
cific classes 6 can be individually enabled or disable.

The right side is a small second form, allowing new categories to be created. This can be useful to make broad
changes in logging levels. For instance, creating a category "org.apache.tapestry" would allow the logging level of
all Tapestry classes to be set in a single place.

Chapter 7. The Tapestry Inspector

29

url(http://jakarta.apache.org/log4j)

Chapter 8. Tapestry Workbench
The Tapestry tutorial includes an additional application, the Workbench, which is used to show off interesting
Tapestry components and features.

Figure 8.1. Workbench

The Workbench is divided into several areas, as shown by the tabs across the top of the page. Over time, the Work-
bench and this tutorial document will expand together, and the number of tabs will increase.

In addition to the Inspector, the Workbench has a useful feature which can be activated using the checkbox at the
bottom. When enabled, the complete (and verbose) information available about the request, session and context
(normally displayed by the Inspector's engine view) is shown at the bottom of each page.

Figure 8.2. Workbench (Showing Requests)

30

This feature can be very useful if you are interested in exactly how Tapestry forms and links work.

Chapter 8. Tapestry Workbench

31

7 All the translations were performed using Babelfish, and are probably quite laughable to someone who actually speaks the alternate languages.
8 The "10" refers to the number of letters between 'l' and 'n' in the word 'localization'

Chapter 9. Localization
One of the most powerful and useful features of the Tapestry framework is the way in which it assists with localiza-
tion of a web application. This is normally an ugly area in web applications, with tremendous amounts of ad-hoc
coding necessary.

Because Tapestry does such a strong job of seperating the presentation of a component (its HTML template) from its
control logic (its specification and Java class) it becomes easy for it to perform localization automatically. It's as
simple as providing additional localized HTML templates for the component, and letting the framework select the
proper one.

However, the static text of an application, provided by the HTML templates, is not all.

Applications also have assets (images, stylesheets and the like) that must also be localized: that fancy button labeled
"Search" is fine for your English clients, but your French clients will require a similar button labeled "Recherche".

Again, the framework assists, because it can look for localized versions of the assets as it runs.

The locale application demostrates this. It is a very simply application that demonstrates changing the locale of a
running application 7

A demonstration of localization is built into the Workbench, under the L10N 8 tab. The page allows the user to se-
lect a new language for the application:

Figure 9.1. L10N Page (English)

Selecting "German" from the list and clicking the "Change" button brings you to a new page that acknowledges your
selection:

32

url(http://world.altavista.com/)

Figure 9.2. Locale Changed (German)

Clicking the button (it's labeled "Return" in German) returns you to the L10N page to select a new language:

Figure 9.3. L10N Page (German)

The neat thing here is that the L10N page has been localized into German as well; it shows equivalent German text,
the options in the popup list are in German, and the "Change" button has been replaced with a German equivalent.

Chapter 9. Localization

33

Localization of HTML Templates
Localization of HTML templates ia automatic. When Tapestry reads a template, it looks for a localized version of it.
In this example, in addition to the English language Localization.html, three additional files were created: Lo-
calization_de.html, Localization_fr.html and Localization_it.html.

Tapestry tracks the locale for each user using either an HTTP Cookie, or the HttpSession. It makes sure that all
templates for all components on the page use the best available template; it does a standard search.

Localization of Assets
In the L10N pages, there are images that are also localized. Tapestry has a hand in this as well. As with HTML tem-
plates, Tapestry searches for matches based on the user's locale.

Both context assets (assets that are part of the WAR) and private assets (assets that are stored in Java frameworks)
can be localized. This is demonstrated on the L10N page: the "Change" button is a private asset; the "Back" button
is a context asset.

Other Options for Localization
In some cases, different localizations of the a component will be very similar, perhaps having only one or two small
snippets of text that is different. In those cases, it may be easier on the developer to not localize the HTML template,
but to replace the variant text with an Insert component.

The page can read a localized strings file (a .properties file) to get appropriate localized text. This saves the
bother of maintaining multiple HTML templates. This is the same approach taken by the Apache Struts framework.

All components on a page share the single locale for the page, but each performs its own search for its HTML tem-
plate. This means that some components may not have to be localized, if they never contain any static HTML text.
This is sometimes the case for reusable components, even navigational borders.

Chapter 9. Localization

34

url(../ComponentReference/Insert.html)

Chapter 10. Further Study
The preceding chapters cover many of the basic aspects of Tapestry. You should be comfortable with basic Tapestry
concepts:

• Seperation of presentation, business and control logic

• Use of JavaBeans properties as the source of dynamic data

• How bindings access JavaBeans properties to provide data to components

• How components wrap each other, allowing for the creation of very complicated components through aggrega-
tion

• Different types of page properties (transient, dynamic, persistent)

Tapestry is capable of quite a bit more. Also available within the Tapestry Examples package (along with the tutorial
code and this document) is the Virtual Library application (Vlib).

Vlib is a full-blown J2EE application, that makes use of Tapestry as its front end, and a set of session and entity En-
terprise JavaBeans as its back end.

Vlib also demonstrates some of the other aspects of developing a Tapestry application. It shows how to create pages
that are bookmarkable (meaning that their URL includes enough information to reconstruct them in a subsequent
session). It shows how to handle logging in to an application, and how to protect pages from being accessed until the
user is logged in. It has many specialized reusable components for creating links to pages about books and people.

35

