Tapestry Contributor's Guide
by Howard Lewis Ship

Tapestry Contributor's Guide
by Howard Lewis Ship
Copyright © 2002, 2003 The Apache Software Foundation

Table of Contents

O 1 1 o [Tox 1 o o

A AV Y o T PP

T =01 Lo [T o I L= i o PP
QLI 01 TS oo 0] <ot £ 5
0T o = = £ 6
[o ot g T= g1 = 0 S (o J R 6
O [0y S (U] o PSPPSR 7

4. DeVEl OPMENT SEBNAAITSevvteeeeti et ettt e ettt e et e e e ettt e e e e eba e e e ee bt e e e eete e e eeeteaeeees
USEOF BIOB SYMDION ...ttt ettt sttt sttt e e e e e eeenee e 8
B/ 01100 011 47 o PRSP 8
JAVADIOC ...ttt e et et et e e e e e naa s 8
= Y= L0 0 (= 0] 011 o 9
NBMING CONVENTIONS ...ttt ettt e et e et e e e et e e ettt e et e et e e e eeteraeeeabanaeeentnaaaeees 10

5. Tapestry REIEase NUMDENINGiiiiii e

6. DeVElOPMENT PrOCEAUIES ... ettt e e et e e e et e e et e e et e e et e e eneeannns
Deprecating MethOdSand ClaSSEScuu i e et e e e e e eaa e 13
00 T 1= PSP 13
(Dol 19 1< o1 =1 (o o PP 15
CompPONENt DOCUMENTELION ... eeeeee ettt et e e et et e et e e e eeb e e eaban e eeanans 16
CheCKINPIOCEOUIES ... et et et e e e e e et e e et e e e e eanas 17
CreatiNg EXAMPIES ... e et ettt e eaa s 18
L0 oTe = T 0o [@0)70 1 £ P 18

List of Figures

2.1. Eclipse: JavaClasspath PrefErenCeSccvvuiii e e e e e e e e
2.2. Eclipse: New CV S REPOSITONY LOCAIONuuieeeeiiieeeie e et ee e e e e s e e e e e n e et e e e e e et e e e anneeenneeennas
2.3 EClipse: CheCK OUL PIOJECEccevi ettt e e et e et e e et e e eate e eeenes

4.1. Type Comment

4.2. Eclipse: JavaCode Formatting PrefErenCeSocuuiiiiieii et
6.1. Component Documentation TEMPIEEEccuiiiieiiiei e e e e e et e e e aneeans
6.2, ECliPSE: TOAM PrEfEIENCES . .evuiiii i eiii et e e e e e e e e e e e et e et e e et e eetnaeeanaeees

List of Examples

6.1. Example checkin comment

Vi

Chapter 1. Introduction

This document is a guide to developers who want to go beyond merely developing applications using Tapestry, and
want to extend and improve Tapestry itself.

Tapestry has benefitted over the first two years of its development from having a focused vision and, predominantly,
a single developer. At the time of this writing, May 2002, the Tapestry community is truly coming alive, with new
developers contributing fixes, components and documentation.

The goal is to maintain the stability of Tapestry even as it shifts from a one-man-show to a true community effort.
Meanwhile it is vitally important to not to sacrifice quality in either code or documentation if Tapestry is to stay on
track.

Contributing to Tapestry requires a commitment to produce excellent code, examples and documentation. In fact,
proper documentation in JavaDoc and as updates to the tutorials and manual's represents the dominant amount of ef-
fort when contributing to Tapestry.

Chapter 2. CVS Access

Using Eclipse, obtaining the source code takes only afew steps. Tapestry compiles using some libraries from JBoss

3.0.6 and Jetty 4.x which must be downloaded first.

Eclipse must be configured with the location of JBoss, this is done from the preferences panel. A new entry for

JBOSS_DI R should be added.

Figure 2.1. Eclipse: Java Classpath Preferences

i
3= Preferences

+ Instal/Update # || Classpath variables
= JE?‘: A classpath variable can be added to a project's class path. It can be
ppearance used to define the location of a JAR fie that isn't part of the workspace.
+ Classpath Variab The reserved dass path variables JRE_LIB, JRE_SRC, JRE_SRCROOT are
- Code Formatter set internally depending on the JRE setting.
Ende ?EHEI’BUDH Defined classpath variables:
- Dt;r;up;er = ECLIPSE_HOME - C:\eclpse _ New..
% Editor = HIBERNATE_DIR - C:\Work\hibernate-1.2
- Instaled JREs 4 IBOSS_DIR - C:\Work\jboss-3.0.6 Edit..
- Javadoc = IDK_DIR - C:\j2sdki.4.1_01
Jore @ JETTY_DIR - C:\Work\Jetty-4.2.8 Remove
. (B JRE_LIB (reserved) - C:\j2sdk1.4.1_01\jre\lb\rt.jar —
- New P.m]ect (8 JRE_SRC (reserved) - C:\j2sdk1.4.1_01\src.zip
~Organize Import | |g5 JRF SRCROOT (reserved) - (empty)
~ Refactoring & JYTHON_DIR - C:\Work\Jython21
- Task Tags @ _ORG_ECLIPSE_JDT_SOURCE - C:\edipse\plugins\org
Plug-In Developmer | |@ ORG_ECLIPSE_PDE_SOURCE - C:\ecipse\plugins\org
+ SolarEclpse & _ORG_ECLIPSE_PLATFORM_SOURCE - C:\edipse\plug
[+-Team = _ORG_ECLIPSE_PLATFORM_WIN32_SOURCE - C:\ed
- XML 3
< » < »
Import... Export... CK Cancel

Activate the CV S Repositories view and use the context menu to create a new CV'S Repository location. This raises

apanel for defining connection information. Fill in your own Jakarta name and password:

Figure 2.2. Eclipse: New CVS Repository L ocation

url(http://www.jboss.org)
url(http://sf.net/projects/jetty)

Chapter 2. CVS Access

F

3= Add CV5 Repository

Add a new CVS Repository

Add a new CVS Repository to the CVS Repositories view vs
~Location

Host: cvs.apache.org hd
Repository path: | /home/cvs A
- Authentication

User: hiship hd

Password: | ¥##*%x%

~Connection

Connection type: em:ssh "I

* Use Default Port
" Use Port: |

v Validate Connection on Finish

Finish Cancel

Next, open the new CV'S Repository location. Expand the "HEAD" node, then scroll down to the "jakarta-tapestry”
module. Right click and select "Check Out As Project".

Figure 2.3. Eclipse: Check Out Project

Chapter 2. CVS Access

bl CVS Repositories
@@ jakarta-taglbs.bu
@ jakarta-taglbs-sandbox

=@ h
...[;i,, conf =~ DNew
[; y Check Out As Project
oc Check Out As...
TEEW hedkOut]
* G5 exar eck Out Into...
g ?rxt— Tag as Version...
an . L
[; mac Tag with Existing...
[:'_"' img- Compare With...
E‘" JEE Compare
g jll_Eﬂft 4% Add to Branch List...
-G | |
5
+ G pack 4 Configure Branches and Versions...
* & SUPL b Refresh View
@@ web
[.dasspath 1.31
[.cvsignore 1.4

Eclipse will checkout the latest versions of all the Tapestry code and compileit.

Y ou can access the Tapestry repository using command line CV S or other tools, as well. Details for using command
line CVS are available at the Jakarta.

url(http://jakarta.apache.org)

Chapter 3. Building Tapestry

Tapestry is built using Ant 1.5. In addition, Tapestry includes the necessary control filesto allow development using
the excellent open-source IDE, Eclipse.

To perform afull build from the command line, you must have JDK 1.3 or better installed, as well as JBoss 3.0.6.
You must create the file conf i g/ bui | d. properti es (under the Tapestry root directory). This file defines a prop-

erty, j boss. di r that identifies the full pathname to the JBoss installation and the Jetty installation. A sasmplefileis
provided.

Tip
Be sure to use forward slashes for the path name, even under Windows. Using backslashes, the escape

character in property files, will cause the build to fail, since Ant will be using incorrect paths to the li-
braries obtained from the JBoss distribution.

Tapestry has some additional, external dependencies on libraries that (due to licensing conflicts) are not supplied in
the distribution or stored in CVS. More details available shortly ...

Tapestry Subprojects

The Tapestry source tree contains multiple sub-projects, each in its own subdirectory, with its own Ant build file and
own source code tree. A root level build file (described in the next section) performs builds over all sub-projects.

Tapestry Sub-Projects

f ramewor k
Contains the core framework, buildst apest ry-x. x. j ar .

contrib
Buildst apestry-contrib-x.x.jar.

junit
Builds and runs JUnit tests.

exanpl es/ Wor kbench
Buildswor kbench. war .

exanpl es/ VI i bBeans
Buildsvl i bbeans. j ar, the EJBs used by the Virtual Library demonstration.

exanmples/Vlib
Buildsvl i b. war , the presentation layer of the Virtual Library demonstration.

exanpl es/ VI i bEAR
Buildsvl i b. ear fromvl i bbeans.jar andvlib. war.

doc/ src/ Tutori al
Builds the Tapestry Tutorial documentation.

doc/ src/ Devel oper sGui de
Builds the Tapestry Developer's Guide documentation. This guideis out of date, asis being replaced.

doc/ src/ User sGui de

url(http://jakarta.apache.org/ant)
url(http://www.eclipse.org)
url(http://www.jboss.org)
url(http://sf.net/projects/jetty)

Chapter 3. Building Tapestry

Builds the Tapestry Users' Guide (the replacement for the Developer's Guide). This document is still incom-
plete. See, you just can't win.

doc/ src/ Contri but orsGui de
Builds this very documentation.

doc/ src/ Conponent Ref er ence
Builds the component reference documentation.

Build Targets

The following Ant build targets are available from the Tapestry root directory:

Root Targets

clean
Cleans each sub-project and deletes derived files (such as the Tapestry framework JAR and examples).

clean-all
Aswith cl ean, but also deletes all documentation.

documentation
Builds all documentation (see notes below).

install
Performs afull build, by re-invoking i nst al | in each sub-project.

javadoc
Creates Tapestry APl documentation.

junit
Runs al JUnit tests.

clover
Runs all JUnit tests and builds a code coverage report (using the Clover tool).

Documentation Setup

Tapestry documentation, including this manual, is aso generated using Ant. Documentation source is in DocBook
XML format, and uses XSL transformation to generate readable HTML. Tapestry uses Saxon to generate HTML
documentation, and FOP to generate PDF documentation.

» Download and unpack the Saxon distribution, release 6.5.2 exactly (later versions do not work).

» Obtain the latest copies of the two DocBook distributions and place the files in the ext - di st directory. Details
areinthefiledoc/ src/ common/ Readne. ht m .

e Copy saxon. jar intothe Antl i b directory.

» Update your ANT_OPTS environment variable to add the following two system properties:

e -Djavax.xml.parsers.DocumentBuilderFactory=org.apache.crimson.jaxp.DocumentBuil derFactorylmpl

url(http://www.junit.org)
url(http://www.junit.org)
url(http://docbook.sourceforge.net/)
url(http://sf.net/projects/saxon)
url(http://xml.apache.org/fop)
url(http://sf.net/projects/saxon)

Chapter 3. Building Tapestry

» -Djavax.xml.parsers.SA X ParserFactory=org.apache.crimson.jaxp.SA X ParserFactoryl mpl

» Download FOP 0.20.4 and unpack into a permanent directory.

e Update confi g/ buil d. properties and add afop. di r entry, identifying the directory into which you un-
packed FOP. Be sure to use an absolute path name, and only forward slashes.

» Get acopy of JMI (an imaging package from Sun, needed by FOP to process PNG image files), and unpack it to
temporary directory.

e Copy Ji m Prod asses. zi p intothe FoP/ | i b directory.

Clover Setup

Clover is a properietary tool that gathers code coverage information and generates reports from it. They have kindly
donated alicense for Clover to the Tapestry project.

To configure for clover:

» Get acopy of the Clover distribution. Cortex eBusiness has donated a copy of Clover to support Tapestry. The
distribution is available from Howard M. Lewis Ship.

» Extract the Clover distribution to a non-temporary directory.

» Maodify confi g/ buil d. properties and add an entry for cl over. di r. As usua, provide the absolute path-
name to the Clover directory, using only forward slashes.

* Copyclover.jar totheant/Iib directory.
The Clover report executes from the j uni t directory, using the Ant target cl over. It runs builds the clover-en-

hanced version of the framework classes, and executs the JUnit test suite twice (with all logging enabled and all log-
ging disabled), then generates the HTML report into theweb/ doc/ cl over directory.

url(http://xml.apache.org/fop)
url(http://java.sun.com/products/jimi/)
url(http://www.thecortex.net/clover)
url(http://www.thecortex.net/clover/)
url(http://www.thecortex.net/clover/)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)

Chapter 4. Development Standards

This chapter covers a number of standards, both in code and in procedure, expected by Tapestry contributors.

Use of Id Symbol

Every file checked into the CV S repository should have the ld symbol inside a comment, near the top of the file.
The $1 d$ token is expanded by CV S into a useful header, identifying the revision of the file, date last changed, and
name of last user to change thefile.

For example, the Id for this document is $I1 d: Contri but or sGui de. xml , v 1.20 2003/ 04/21 15:39: 20
hl ship Exp $.

Type Comment

Each Java file must have a complete and useful type comment. Type comments must come after al i nport state-
ments, and before the start of the class.

Figure4.1. Type Comment

*

~

¥ % ok % X X 3k X X

A useful description of the class or interface, especially covering
how it is used, and what other classes or interfaces it interacts wth.

@ut hor Your Nane
@ersion $1d$
@i nce Version

*
~

The Ver si on should be replaced with the numeric version number of the Tapestry release the type will first appear
in. This is the minor release number; for example, a change introduced in release 2. 3- bet a- 3 would be identified
as2. 3.

JavaDoc

All methods should be commented, with the following exceptions:

» Simple accessor methods with no side-effects.

e Maethodsthat are fully described by an interface and don't add any additional behaviors.

Parameters and return values should be identified. @ hr ows should identify when any checked exceptions are
thrown; additional @ hr ows entries should describe any runtime exceptions that may also be thrown.

Methods should always include a @i nce entry, unless the method was added as part of a new Java class or inter-
face, in which case the @i nce for the containing type is sufficient. Use the same version number as type comments
when adding individual methods.

Try not to skimp on the comment (it is often best to write the comment before writing any code). Tapestry has some
of the best documentation of any open source project and that should be maintained. Remember to try and answer
the question why?, which is always much moreinteresting and useful than how? or what?.

Chapter 4. Development Standards

It is appropriate to create JavaDoc comments for variables, even private variables (to at least provide an @i nce
value).

Callections (from package j ava. ut i |) should be documented to identify the type of object stored, and for Map the
type of key. Example: List of {@ink |Render}, or Map of {@ink IBinding} keyed on String
namne.

When a method returns a collection type, the documentation should indicate if it is safe for the caller to modify the
collection or not. In general, it is best to always return an immutable copy of a collection, but for efficiency thisis
not always reasonable.

And don't forget to make liberal use of JavaDoc links (@ i nk) which makes the documentation far eaiser to use.

Javadoc Formatting

? The standard for formatting Javadoc comments in Tapestry is to close the comment with **/ . You
should attempt to follow this, especialy when modifying existing code.

Java Code Formatting

Ah, areligous issue. The most important things are to be consistent (an editor that indents code for you is helpful)
and to conform to the existing style when editting someone else's code.

Tapestry isformatted using spaces (not tabs), and an indent of four.
All the code currently in the repository has been formatted using the Eclipse IDE. My personal preference isto in-

clude a newline before opening braces. In addition, a maximum line-length of 100 characters has been used. These
preferences are easy to setup in Eclipse:

Figure4.2. Eclipse: Java Code For matting Preferences

Chapter 4. Development Standards

Code Formatter

Options for the Java Code Formatter:
New Lines | Line Sgl’rtting] Style]
W Insert a new line before an opening brace
M Insert new lines in control statements
I Clear all blank lines
v Insert new line between 'else if
v Insert a new line inside an empty block

”
if (=ize < currentiize)

try

gize = (long) inStream.available():

H

catch (ICException e)

h
}
elze

if (zize == currentSize) 3

Naming Conventions

Standard Java guidelines are expected to be followed. Class names are capitalized (example: MyCl ass). Method-
sstart with alower-case character (example: my Met hod).

Static final variables used as constants are in upper-case (example: MY_CONSTANT).

Private member variables (both instance and static) are named with aleading underscore (example: _nyVari abl e).
Public member variables are to be avoided.

Naming in transition

F I've resisted the leading underscore syntax for along time; the rationale behind it is to make it possible,
at aglance, to visually seperate instance variables from local variables and parameters. Previoudly, I've
always maintained that the problem was methods that were too large; lately I've changed my mind ...
the underscore naming helps when debugging and helps avoid a number of naming collisions.

At the time of thiswriting, 2.1-beta-1, very little of the code used the new naming. Over time, mixed in

10

Chapter 4. Development Standards

with other bug fixes, renaming will occur (Eclipse helps with this greatly). New code will be written to
conform.

Interfaces in Tapestry are prefixed with the letter 'I' (example: | Request Cycl e). Implementations (often in a differ-
ent package) strip off the'l' (example: Request Cycl e). Interfaces related to JavaBean events do not start with an'l'

(example: PageDet achlLi st ener).

Base classes, classes which are concrete and functional, but often extended, are prefixed with '‘Base’ (example:
BaseConponent). Abstract classes are prefixed with 'Abstract’ (example: Abst r act Engi ne). Classes which are
functional and only rarely subclassed are often prefixed with 'Default’ (example: Def aul t Scri pt Sour ce).

The base package for the framework JAR (t apestry-x. x. j ar) iSor g. apache. t apest ry. The base package for
the contrib JAR (t apestry-contri b-x. x.jar)isorg. apache. t apestry. contrib.

11

url(http://www.eclipse.org)

Chapter 5. Tapestry Release Numbering

Tapestry release numbering isrelatively simple, as long as you don't look back in time (the less managable number-
ing system used through release 2.0.5 is described shortly).

Tapestry releases consist of a major version, a minor version and a incrementa version. The pattern
maj or . mi nor - i ncrement al - i ndex isused, for example: 2. 1, 2. 2- al pha- 3 or 2. 3- bet a- 1.

The major version represents large-scale changes in the framework ... short of trandating Tapestry to another lan-
guage (say, Python or Ruby), thisis not likely to happen again. Tapestry is currently in major release 2.

The minor version represents a milestone release, encompassing the introduction of new functionality and bug fixes
in astable manner. 2. 1 or 2. 2 would be examples of milestone releases.

An incremental release represents a transition from one milestone release to the next. Incremental releases are al -
pha, bet a or r ¢ (release candidate). Typically, after a milestone release there will be a series of apha, then beta,
then rc releases, leading up to the next milestone release. A possible sequenceis?2. 1, 2. 2- al pha- 1, 2. 2- bet a- 1,
2.2-rc-1,2. 2.

Typically, there will be several incremental releases of the same type, numbered from 1 up. Alpha releases contain
significant functionality changes, beta releases represent bug fixes to those changes (stabilizing the changes), and rc
(release chandidate) releases are expected to be stable versions of the next minor release (though any problems can
spur further release candidates).

Through Tapestry release 2.0.5, numbering was a bit different. Under the modern scheme, 2.0.1 would be named
2.1-al pha-1, 2.0.2 would be 2. 1- al pha- 2, and 2.0.5 would be 2. 1- bet a- 1. Modern release numbering begins
with 2. 1- bet a- 2 (the release immediately following 2.0.5).

12

Chapter 6. Development Procedures

This chapter defines procedures for development of Tapestry. This includes many things not directly related to cod-
ing, such as documentation and interacting with the CV S repository.

Deprecating methods and classes

Tapestry is being used by aincreasingly large community of developers and it is necessary that they have some sta-
bility in their development.

To that end, classes and methods must follow a developer-friendly lifecycle. If a method or class must be deleted, it
should be marked as deprecated in one minor release, and can be removed in the following minor release.

For example, a method may be marked as deprecated in release 2.2-alpha-1. This change isn't considered "real" until
release 2.2. The method can be removed any time after that, say in release 2.3-alpha-3, and the removal becomes
"red" inrelease 2.3.

Don't simply mark a method as deprecated, give the end-devel oper the information needed adapt their code. Use the
following template as part of the Javadoc comment:

@leprecated To be renopved in Version.
Use { @i nk Soned ass#someMethod(...)} instead.

It is aso important for the changer to make the transition as simple as possible for the end-developer. Base classes
and default implementations should be changed to make use of the new API in such as way that, at most, a recom-
pile of the end-devel oper's classes is required.

Sometimes, changes require alack of backwards compatibility. If a method has to change and the old signature can't
be maintained, then simply change it ... but be sure to document the change in the Tapestry release notes web/
(new. ht ml).

JUnit Tests

Tapestry has an excellent JUnit test suite, with code coverage figures over 80% at the time of this writing
(2.4-alpha-4). It isrequired that changes to the framework be accompanied by additional JUnit tests (typically, mock
tests; see below) to validate the changes. In addition, there is an ongoing effort to fill in the gaps in the existing
suite; the suite should reach over 90% code coverage.

Some of the JUnit tests now require Jython. Y ou must download and install Jython 2.1, then configurej yt hon. di r
inconfi g/ buil d. properti es to point to theinstall directory. Asusual, use an absolute path and forward slashes
only. To run the JUnit test suite within Eclipse, you must set the JYTHON_DI R classpath variable.

JUnit test source code is placed into the junit/src source tree. The package name for JUnit tests is
org. apache.tapestry.junit.

Less than half of Tapestry is tested using traditional JUnit tests. The majority of JUnit testing occurs using a system
of mock unit tests. Mock testing involves replacing the key classes of the Servlet API (Ht t pSer vl et Request
Ht t pSessi on, etc.) with out own implementations, with extensions that allow for checks and validations. Instead of
processing a series of requests over HTTP, the requests are driven by an XML script file, which includes output
checks.

Generally, each bit of functionality can be tested using its own mini-application. Create the application as j uni t/
cont ext X. Thisis much easier now, using Tapestry 3.0 features such as dynamic lookup of specifications and im-
plicit components.

The Mock Unit Test Suite is driven by scripts (whose structure is described below). The suite searches the directory
j uni t/ nmock-scri pts for fileswith the ".xml" extension. Each of these is expected to be atest script. The order in

13

url(http://www.jython.org)

Chapter 6. Development Procedures

which scripts are executed is arbitrary; scripts (and JUnit tests in general) should never rely on any order of execu-
tion.

Test scripts are named Test Nane. xm .

Note

T The XML script is not validated, and invalid elements are generally ignored. The class MockTest er
performs the test, and its capabilities are in fluxx, with new capabilities being added as needed.

A test script consists of an <nock- t est > element. Within it, the virtual context and servlet are defined.

<nock-t est >
<cont ext nanme="c6" root="context6"/>

<servl et name="app" class="org. apache.tapestry. Applicati onServlet">
<i nit-paraneter nanme="org. apache.tapestry. engi ne-cl ass"
val ue="org. apache. tapestry.junit.nock. c6. C6Engi ne"/ >
</servlet>

The name for the context becomes the leading term in any generated URLs. Likewise, the servlet name becomes the
second term. The above example will generate URL s that reference/ c6/ app. Specifying ar oot for a context iden-
tifies the root context directory (beneath the top level j uni t directory). In this example, HTML templates go in
cont ext 6 and specificationsgo in cont ext 6/ WEB- | NF.

Following the <ser vl et > and <cont ext > elements, a series of <r equest > elements. Each such element simulates
areguest. A request specifies any query parameters passed as part of the request, and contains a number of asser-
tions that test either the results, generally in terms of searching for strings or regular expressions within the HTML
response.

<r equest > _ i
<par aneter nane="service" val ue="direct"/> ;
<par anet er nane="context" val ue="0/ Hone/ $Di r ect Li nk"/ >

<assert-out put name="Page Title">
<! [CDATA[
<title>Persistant Page Property</title>
1>
</ assert - out put >

Warning
As in the above example, it is very important that HTML tags be properly escaped with the XML

CDATA construct.

Adding f ai | over ="t rue" to the <r equest > simulates a failover. The contents of the Ht t pSessi on are serial-
ized, then deserialized. This ensures that all the data stored into the Ht t pSessi on will survive afailover to a new
server within a cluster.

All of the assertion elements expect a nane attribute, which is incorporated into any error message if the assertion
fails (that is, if the expected output is not present).

The <assert - out put > element checks for the presence of the contained literal output, contained within the ele-
ment. Leading and trailing whitespace is trimmed before the check is made.

14

Chapter 6. Development Procedures

<assert name="Session Attribute">
request . sessi on. get Attri but e("app/ Home/ nessage") . equal s(" Changed")
</ assert >

The <assert > element checks that the provided OGNL expression evaluates to true.

<assert-regexp nane="Error Message">
<! [CDATA[
\s*You nust enter a value for Last Nane\.\s*
1>

</ assert-regexp>

The<assert - regexp> looksfor aregular expression in the result, instead of asimple literal string.

<assert - out put - mat ches nane="Sel ect ed Radi 0" subgroup="1">

<! [CDATA]

<i nput type="radi 0" name="i nput Sex" checked="checked" val ue="(.*?)"/>
>

<mat ch>1</ mat ch>
</ assert - out put - mat ches>

The <assert - out put - mat ches> isthe most complicated assertion. It contains aregular expression which is eval-
uated. For each match, the subgroup value is extracted, and compared to the next <mat ch> value. Also, the count of
matches (vs. the number of match elements) is checked.

<assert - out put - stream nane="Asset Content"
cont ent -t ype="i mage/ gi f"
pat h="f oo/ bar/baz.gi f"/>

The <assert - out put - st r ean> element is used to compare the entire response to a static file (thisis normally as-
sociated with private assets). A content type must be specified, as well as arélative path to afile to compare against.
The path is relative to the junit directory. The response must match the specified content type and actual content.

<assert-exception name="Exception">
File foo not found.
</ assert - excepti on>

The <assert - excepti on> element is used to check when an request fails entirely (is unable to send back a re-
sponse). This only occurs when the application specification contains invalid data (such as an incorrect class for the
engine), or when the Exception page is unable to execute. The body of the element is matched against the excep-
tion's message property.

Forceafailure, then check for correctness
:F Sometimes the tests themselves have bugs. A useful technique is to purposely break the test to ensure
that it is checking for what it should check, then fix the test. For example, adding XXX into a assert -

<out put >. Run the test suite and expect a failure, then remove the XXX and re-run the test, which
should succeed.

Documentation

15

Chapter 6. Development Procedures

Documentation is much harder than coding, but the ongoing success of Tapestry depends on maintaining the quality
of documentation. Tapestry documentation iswritten using DocBook XML format, using XSL stylesheets to convert
to final documentation.

Changes to the framework usually require a change in documentation to the Tapestry Devel oper's Guide.

Component Documentation

Warning

This section is out of date. In general, each component should include a link to the Component Refer-
ence page for the component. The Component Reference page has a format and content similar to
what's listed here.

Although thereis limited documentation about components in their component specification file, that documentation
is designed to be a short reminder, not the complete documentation. Full documentation goes into the component's
Javafile, as part of its type comment JavaDoc.

Component documentation consists of atable, identifying all the formal parameters of the component. In addition, a

note indicating whether informal parameters are allowed, and if the component may have a body (that is, wrap other
components) is supplied at the end.

Figure 6.1. Component Documentation Template

*

Type comment docunentation ...

<p><t abl e border=1>
<tr>
<t h>Par anet er </ t h>
<t h>Type</t h>
<th>Direction</th>
<t h>Requi r ed</t h>
<t h>Def aul t </t h>
<t h>Descri pti on</t h>
</[tr>

<tr>
<t d>nane</t d>
<td>{@ink Type}</td>
<td>in|lout|in-out</td> O
<t d>yes| no</t d>
<t d>Default value</td> O
<t d>Ful | description</td>
</tr>

<p>I nformal paraneters are [not] allowed. The conponent
may [not] contain a body.

b I I S R R R R I S S R I I I .

*
~

O

This describes how the component uses its binding. i n indicates the binding is read, but never updated, which
is the most common case. out indicates the binding is updated, but not read; this is rare, but does apply to
some parameters of For each, for example. i n- out iscommon used with certain form parameters.

O If the parameter is required, then thisis usually specified as & nbsp; (non-breaking space).

16

url(http://docbook.sourceforge.net/)
url(../ComponentReference/Foreach.html)

Chapter 6. Development Procedures

Recently, seperate HTML component documentation has been created. This will be the standard location for Frame-
work component documentation. Javadoc for the component should ssimply have a link to the correct Component
Reference page.

The component reference is simply HTML (at least, for the time being). There are many examples and a template
available, for creating new reference pages.

Checkin Procedures

Run JUnit tests before doing a checkin. Y ou should always have a SourceForge bug or feature request. When check-
ing code in, use the SourceForge request as the checkin comment.

Example 6.1. Example checkin comment

[553310] Set properties from paraneter bindings

In addition, update the Tapestry release notes, the fileweb/ new. ht i , to identify the feature request.

Be very careful when checking files in that they are checked in with the correct keyword substitution type. Files
should be either binary or text; text should be checked in with keyword expansion turned on (this is the - kkv op-
tion).

When new files are added using Eclipse, it must decide whether they are binary or text. Eclipse aways assumes bi-
nary unless specifically informed that afileistext. Use the Team preferences panel to set this.

Figure6.2. Eclipse: Team Preferences

17

url(../ComponentReference/index.html)
url(../ComponentReference/index.html)
url(../ComponentReference/index.html)
url(../ComponentReference/index.html)

Chapter 6. Development Procedures

i
3= Preferences

(m

H-Appearance # | | File Content
- Classpath Variab

File extensions with known content:
- Code Formatter -

- Code Generation Extension | Contents 4 Add...
-~ Compiler bmp Binary
+ Debug class Binary Rermoye
[+ Editor classpath ASCII = —
- Installed JREs cvsignore ASCII Charige
~ Javadoc dll Binary -
~JUnit doc Binary
emsd ASCII

- MNew Project

- Qrganize Import E;EE E:::W
- Refactoring Etm Ascﬁr
- Task Tags html ASCII
#-Plug-In Developmer ico Binary
#-SolarEclpse jar Binary
=l Team java ASCII
"CVS jpage ASCII
B ic Conten JRRSRN L Binary
~Ignored Resourc o | |jpg Binary
;S 3 launch ASCII v
Import... | Export... CK Cancel

Creating Examples

Extending the Workbench application to demonstrate new features or components is expected for any significant
changes or additions to the framework, or to the contrib library.

Updating Copyrights

All source code stored in the repository must contain the standard Apache copyright and license. A copy of the li-
cense, as acomment block, isstored assupport/1icense. t xt

The contents of thisfile can be pasted in directly before the package statement of a Java sourcefile.

Alternately, a Python script is provided which can locate all Java source files within a directory tree and ensure that
the leading comment block is correct. It modifies any source files where the leading comment doesn't match, but
does not modify any files where the leading comment matches.

To use the script, execute the command python support/update-copyrights.py LICENSE.txt di rectory

Y ou may specify any number of directories, though the script is fast enough that just using "." (for current directory)
iseasiest.

18

url(http://www.python.org)

Chapter 6. Development Procedures

Cygwin Python

On my computer (running Windows XP and/or 2000), when using the Cygwin version of Python, it is
necessary to execute the script from the Bash shell, not the standard Windows command line.

19

url(http://sources.redhat.com/cygwin)

