
Tapestry User's Guide
by Howard Lewis Ship

Tapestry User's Guide
by Howard Lewis Ship
Copyright © 2003 The Apache Software Foundation

Table of Contents
1. Introduction ...

Pages and Components ..1
Engines, Services and the Visit ... 2

2. Managing Server-Side State ..
Understanding Servlet State ...3
Engine ...4
VisitObject ..4
GlobalObject ..5
Persistent Page Properties ..5
Implementing Persistent Page Properties Manually ... 7
Manual Persistent Component Properties .. 8
StatelessApplications ...9

3. Configuring Tapestry ...
Web Deployment Descriptor ..11
Configuration Search Path ...12
ApplicationExtensions ...13

A. Tapestry Specification DTDs ..
applicationelement ..15
beanelement ...16
bindingelement ...17
component element ..17
component-typeelement ..18
component-specificationelement ..19
configureelement ...20
context-asset element ..20
descriptionelement ..21
extensionelement ...21
external-asset element ...22
inherited-bindingelement ..22
libraryelement ..23
library-specificationelement ..23
listener-bindingelement ..23
message-bindingelement ...24
pageelement ...24
page-specificationelement ...25
parameter element ..25
private-asset element ..27
propertyelement ..27
property-specificationelement ..28
reserved-parameter element ..29
serviceelement ..29
set-message-propertyelement ...30
set-propertyelement ...30
static-bindingelement ...30

B. Tapestry Script Specification DTD ..
bodyelement ...32
foreachelement ...32
if element ...33
if-not element ..33
include-script element ...33
initializationelement ..34
input-symbolelement ..34
let element ..35

iv

script element ..35
set element ..36
uniqueelement ..36

Tapestry User's Guide

v

List of Figures
A.1. application Attributes ...15
A.2. application Elements ..16
A.3. bean Attributes ..16
A.4. bean Elements ...17
A.5. binding Attributes ..17
A.6. component Attributes ...18
A.7. component Elements ..18
A.8. component-type Attributes ..18
A.9. component-specification Attributes ...19
A.10. component-specification Elements ..20
A.11. configure Attributes ...20
A.12. context-asset Attributes ...21
A.13. extension Attributes ...21
A.14. component-specification Elements ..22
A.15. external-asset Attributes ..22
A.16. inherited-binding Attributes ...22
A.17. library Attributes ...23
A.18. library-specification Elements ..23
A.19. listener-binding Attributes ...24
A.20. message-binding Attributes ..24
A.21. page Attributes ..24
A.22. page-specification Attributes ..25
A.23. page-specification Elements ...25
A.24. parameter Attributes ...26
A.25. private-asset Attributes ...27
A.26. property Attributes ...28
A.27. property-specification Attributes ...28
A.28. reserved-parameter Attributes ...29
A.29. service Attributes ...29
A.30. set-message-property Attributes ..30
A.31. set-property Attributes ..30
A.32. static-binding Attributes ..31
B.1. body Elements ..32
B.2. foreach Attributes ..32
B.3. foreach Elements ...32
B.4. if Attributes ..33
B.5. if Elements ...33
B.6. if-not Attributes ...33
B.7. if-not Elements ..33
B.8. include-script Attributes ..34
B.9. initialization Elements ..34
B.10. input-symbol Attributes ...34
B.11. let Attributes ...35
B.12. let Elements ..35
B.13. script Elements ..35
B.14. set Attributes ...36
B.15. unique Attributes ...36
B.16. unique Elements ..36

vi

List of Tables
A.1. Tapestry Specifications ...15

vii

List of Examples
2.1. Accessing the Visit object .. 4
2.2. Defining the Visit class ... 4
2.3. Persistent Page Property: Java Class ... 6
2.4. Persistent Page Property: Page Specification .. 6
2.5. Use of initialize() method .. 7
2.6. Manual Persistent Page Property ... 8
2.7. Manual Persistent Component Properties .. 8
3.1. Virtual Library Deployment Descriptor .. 11

viii

Chapter 1. Introduction
Tapestry is a component-based web application framework, written in Java. Tapestry is more than a simple templat-
ing system; Tapestry builds on the Java Servlet API to build a platform for creating dynamic, interactive web sites.
More than just another templating language, Tapestry is a real framework for building complex applications from
simple, reusable components. Tapestry offloads much of the error-prone work in creating web applications into the
framework itself, taking over mundane tasks such as dispatching incoming requests, constructing and interpretting
URLs encoded with information, handling localization and internationalization and much more besides.

The "mantra" of Tapestry is "objects, methods and properties". That is, rather than have developers concerned about
the paraphanlia of the Servlet API: requests, responses, sessions, attributes, parameters, URLs and so on, Tapestry
focuses the developer on objects (including Tapestry pages and components, but also including the domain objects
of the application), methods on those objects, and JavaBeans properties of those objects. That is, in a Tapestry appli-
cation, the actions of the user (clicking links and submitting forms) results in changes to object properties combined
with the invocation of user-supplied methods (containing application logic). Tapestry takes care of the plumbing
necessary to connect these user actions with the objects.

This is not to say the Servlet API is inaccessible; it is simply not relevant to a typical Tapestry user.

This document describes many of the internals of Tapestry. It is not a tutorial, that is available as a separate docu-
ment. Instead, this document is a guide to some of the internals of Tapestry, and is intended for experienced devel-
opers who wish to leverage Tapestry fully.

Tapestry is currently in release 3.0, and has come a long way in the last couple of years. Tapestry's focus is still on
generating dynamic HTML pages.

Nearly all of Tapestry's API is described in terms of interfaces, with default implementations supplied. By substitut-
ing new objects with the correct interfaces, the behavior of the framework can be changed significantly. This allows
for changes to where Tapestry specifications and templates originate from, and how server-side state is persisted (for
example).

Finally, Tapestry boasts extremely complete JavaDoc API documentation. This document exists to supplement that
documentation, to fill in gaps that may not be obvious. The JavaDoc is often the best reference.

Pages and Components
Tapestry divides an application into a set of pages. Each page is assembled from Tapestry components. Components
themselves may be assembled from other components ... there's no artificial depth limit.

Tapestry pages are themselves components, but are components with some special responsibilities.

All Tapestry components can be containers of other components. Tapestry pages, and most user-defined compo-
nents, have a template, a special HTML file that defines the static and dynamic portions of the component, with
markers to indicate where embedded components are active. Components do not have to have a template, most of
the components provided with Tapestry generate their protion of response in code, not using a template.

Components may have one or more named parameters which may be set (or, "bound") by the page or component
which contains them. Unlike Java method parameters, Tapestry component parameters may be bidirectional; a com-
ponent may read a parameter to obtain a value, or write a parameter to set a value.

Most components are concerned only with generating HTML. A certain subset of components deal with the flip-side
of requests; handling of incoming requests. Link classes, such as PageLink, DirectLink and ActionLink, create
clickable links in the rendered page and are involved in dispatching to user-supplied code when such a link is trig-
gered by clicking it.

Other components, Form, and the form element components (TextField, PropertySelection, Checkbox, etc.),
facillitate HTML forms. When such components render, they read properties from application objects so as to pro-

1

url(../ComponentReference/PageLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/PropertySelection.html)
url(../ComponentReference/Checkbox.html)

vide default values. When forms are submitted, the components within the form read HTTP query parameters, con-
vert the values to appropriate types and then update properties of application objects.

Engines, Services and the Visit
Tapestry has evolved its own jargon over time.

The Engine is a central object, it occupies the same semantic space in Tapestry that the HttpSession does in the
Servlet API. The Engine is ultimately responsible for storing the persistant state of the application (properties that
exist from one request to the next), and this is accomplished by storing the Engine into the HttpSession. This doc-
ument will largely discuss the default implementation, with notes about how the default implementation may be ex-
tended or overriden, where appropriate.

Engine services are the bridge between servlets and URLs and the rest of Tapestry. Engine services are responsible
for encoding URLs, providing query parameters that identify, to the framework, the exact operation that should oc-
cur when the generated URL is triggered (by the end user clicking a link or submitting a form). Services are also re-
sponsible for dispatching those incoming requests. This encapsulation of URL encoding and decoding inside a sin-
gle class is key to how Tapestry components can flexibily operate without concern for how they are contained and
on which page ... the services take into account page and location when formulating URLs.

The Visit is not a particular object, it is an application-defined object that acts as a focal point for all server-side
state (not associated with any single page). Individual applications define for themselves the class of the Visit object.
The Visit is stored as a property of the Engine, and so is ultimately stored persistantly in the HttpSession

Chapter 1. Introduction

2

1 This is the replication strategy employed by BEA's WebLogic server.

Chapter 2. Managing Server-Side State
Server-side state is any information that exists on the server, and persists between request cycles. This can be any-
thing from a single flag all the way up to a large database result set. In a typical application, server-side state is the
identity of the user (once the user logs in) and, perhaps, a few important domain objects (or, at the very least, pri-
mary keys for those objects).

In a typical servlet application, managing server-side state is entirely the application's responsibility. The Servlet
API provides just the HttpSession, which acts like a Map, relating keys to arbitrary objects. It is the application's
responsibility to obtain values from the session, and to update values into the session when they change.

Tapestry takes a different tack; it defines server-side state in terms of the Engine, the Visit and persistent page prop-
erties.

Understanding Servlet State
Managing server-side state is oneof the most complicated and error-prone aspects of web application design, and
one of the areas where Tapestry provides the most benefit. Generally speaking, Tapestry applications which are
functional within a single server will be functional within a cluster with no additional effort. This doesn't mean plan-
ning for clustering, and testing of clustering, is not necessary; it just means that, when using Tapestry, it is possible
to narrow the design and testing focus.

The point of server-side state is to ensure that information about the user acquired during the session is available
later in the same session. The canonical example is an application that requires some form of login to access some or
all of its content; the identify of the user must be collected at some point (in a login page) and be generally available
to other pages.

The other aspect of server-side state concerns failover. Failover is an aspect of highly-available computing where the
processing of the application is spread across many servers. A group of servers used in this way is referred to as a
cluster. Generally speaking (and this may vary significantly between vendor's implementations) requests from a par-
ticular client will be routed to the same server within the cluster.

In the event that the particular server in question fails (crashes unexpectedly, or otherwise brought out of service),
future requests from the client will be routed to a different, surviving server within the cluster. This failover event
should occur in such a way that the client is unaware that anything exceptional has occured with the web applica-
tion; and this means that any server-side state gathered by the original server must be available to the backup server.

The main mechanism for handling this using the Java Servlet API is the HttpSession. The session can store at-
tributes, much like a Map. Attributes are object values referenced with a string key. In the event of a failover, all
such attributes are expected to be available on the new, backup server, to which the client's requests are routed.

Different application servers implement HttpSession replication and failover in different ways; the servlet API
specification is delibrately unspecific on how this implementation should take place. Tapestry follows the conven-
tions of the most limited interpretation of the servlet specification; it assumes that attribute replication only occurs
when the HttpSession setAttribute() method is invoked 1.

Attribute replication was envisioned as a way to replicate simple, immutable objects such as String or Integer.
Attempting to store mutable objects, such as List, Map or some user-defined class, can be problematic. For exam-
ple, modifying an attribute value after it has been stored into the HttpSession may cause a failover error. Effec-
tively, the backup server sees a snapshot of the object at the time that setAttribute() was invoked; any later
change to the object's internal state is not replicated to the other servers in the cluster! This can result in strange and
unpredictable behavior following a failover.

Tapestry attempts to sort out the issues involving server-side state in such a way that they are invisible to the devel-
oper. Most applications will not need to explicitly access the HttpSession at all, but may still have significant
amounts of server-side state. The following sections go into more detail about how Tapestry approaches these is-

3

sues.

Engine
The engine, a class which implements the interface IEngine, is the central object that is responsible for managing
server-side state (among its many other responsibilities). The engine is itself stored as an HttpSession attribute.

Because the internal state of the engine can change, the framework will re-store the engine into the HttpSession at
the end of most requests. This ensures that any changes to the Visit object are properly replicated.

The simplest way to replicate server-side state is simply not to have any. With some care, Tapestry applications can
run stateless, at least until some actual server-side state is necessary.

Visit Object
The Visit object is an application-defined object that may be obtained from the engine (via the visit property of
the IEngine or IPage). By convention, the class is usually named Visit, but it can be any class whatsoever, even
Map.

The name, "Visit", was selected to emphasize that whatever data is stored in the Visit concerns just a single visit to
the web application. Tapestry is stricly concerned with providing the presentation layer of the application; it doesn't
include any kind of database access, or any other kind of long-term data storage. However, it is very easy to inter-
face a Tapestry application to any kind of backend system.

The following example demonstrates how a listener method may access the visit object.

Example 2.1. Accessing the Visit object

public void formSubmit(IRequestCycle cycle)
{

Visit visit = (Visit)getPage().getVisit();

visit.doSomething();
}

In most cases, listener methods, such as formSubmit(), are implemented directly within the page. In that case, the
first line can be abbreviated to:

Visit visit = (Visit)getVisit();

The Visit object is instantiated lazily, the first time it is needed. Method createVisit() of AbstractEngine is
responsible for this.

In most cases, the Visit object is an ordinary JavaBean, and therefore, has a no-arguments constructor. In this case,
the complete class name of the Visit is specified as configuration property
org.apache.tapestry.visit-class.

Typically, the Visit class is defined in the application specification, or as a <init-parameter> in the web deploy-
ment descriptor (web.xml).

Example 2.2. Defining the Visit class

Chapter 2. Managing Server-Side State

4

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

<application name="Tapestry Component Workbench">
<property name="org.apache.tapestry.visit-class" value="tutorial.workbench.Visit"/>

...

In cases where the Visit object does not have a no-arguments contructor, or has other special initialization require-
ments, the method createVisit() of AbstractEngine can be overridden.

There is a crucial difference between accessing the visit via the visit property of IPage and the visit property of
IEngine. In the former case, accessing the visit via the page, the visit will be created if it does not already exist.

Accessing the visit via the IEngine is different, the visit will not be created if it does not already exist.

Carefully crafted applications will take heed of this difference and try to avoid creating the visit unnecessarilly. It is
not just the creation of this one object that is to be avoided ... creating the visit will likely force the entire application
to go stateful (create an HttpSession), and applications are more efficient while stateless.

Global Object
The application Global object is very similar to the application Visit object with some key differences. The Global
object is shared by all instances of the application engine; ultimately, it is stored as a ServletContext attribute.
The Global object is therefore not persistent in any way. In a failover, the engine will connect to a new instance of
the Global object within the new server.

The Global object may be accessing using the global property of either the page or the engine (unlike the visit
property, they are completely equivalent).

Care should be taken that the Global object is threadsafe; since many engines (from many sessions, in many threads)
will access it simultanenously. The default Global object is a synchronized HashMap. This can be overriden with
configuration property org.apache.tapestry.global-class.

The most typical use of the Global object is to interface to J2EE resources such as EJB home and remote interfaces
or JDBC data sources. The shared Global object can cache home and remote interfaces that are efficiently shared by
all engine instances.

Persistent Page Properties
Servlets, and by extension, JavaServer Pages, are inherently stateless. That is, they will be used simultaneously by
many threads and clients. Because of this, they must not store (in instance variables) any properties or values that are
specified to any single client.

This creates a frustration for developers, because ordinary programming techniques must be avoided. Instead, client-
specific state and data must be stored in the HttpSession or as HttpServletRequest attributes. This is an awk-
ward and limiting way to handle both transient state (state that is only needed during the actual processing of the re-
quest) and persistent state (state that should be available during the processing of this and subsequent requests).

Tapestry bypasses most of these issues by not sharing objects between threads and clients. For the duration of a re-
quest, a page and all components within the page are reserved to the single request. There is no chance of conflicts
because only the single thread processing the request will have access to the page. At the end of the request cycle,
the page is reset back to a pristine state and returned to the shared pool, ready for reuse by the same client, or by a
different client.

In fact, even in a high-volume Tapestry application, there will rarely be more than a few instances of any particular
page in the page pool.

For this scheme to work it is important that at the end of the request cycle, the page must return to its pristine state.
The prisitine state is equivalent to a freshly created instance of the page. In other words, any properties of the page

Chapter 2. Managing Server-Side State

5

url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

that changed during the processing of the request must be returned to thier initial values.

Tapestry separates the persistent state of a page from any instance of the page. This is very important, because from
one request cycle to another, a different instance of the page may be used ... even when clustering is not used.
Tapestry has many copies of any page in a pool, and pulls an arbitrary instance out of the pool for each request.

In Tapestry, a page may have many properties and may have many components, each with many properties, but only
a tiny number of all those properties needs to persist between request cycles. On a later request, the same or different
page instance may be used. With a little assistance from the developer, the Tapestry framework can create the illu-
sion that the same page instance is being used in a later request.

Each persistent page property is stored individually as an HttpSession attribute. Like the Servlet API, persistent
properties work best with immutable objects such as String and Integer;. For mutable objects (including List and
Map), Tapestry makes a copy of the property. In the worst case, Tapestry may have to serialize and deserialize the
object to make a copy. Using several properties with simple, immutable types is therefore much less expensive than
using a single, custom, complex, mutable object.

Persistent properties make use of a <property-specification> element in the page or component specification.
Tapestry does something special when a component contains any such elements; it dynamically generates a subclass
that provides the desired fields, methods and whatever extra initialization or cleanup is required.

You may also, optionally, make your class abstract, and define abstract accessor methods that will be filled in by
Tapestry in the generated subclass. This allows you to read and update properties inside your class, inside listener
methods.

Note

Properties defined this way may be either transient or persistent. It is useful to define even transient
properties using the <property-specification> element because doing so ensures that the prop-
erty will be properly reset at the end of the request (before the page is returned to the pool for later
reuse).

Example 2.3. Persistent Page Property: Java Class

public abstract class MyPage extends BasePage
{

abstract public int getItemsPerPage();

abstract public void setItemsPerPage(int itemsPerPage);
}

Example 2.4. Persistent Page Property: Page Specification

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

"-//Howard Lewis Ship//Tapestry Specification 3.0//EN"
"http://tapestry.sf.net/dtd/Tapestry_1_4.dtd">

<page-specification class="MyPage">

<property-specification name="itemsPerPage" persistent="yes" type="int" initial-value="10"/>

</page-specification>

Chapter 2. Managing Server-Side State

6

url(../api/org/apache/tapestry/html/BasePage.html)

Again, making the class abstract, and defining abstract accessors is optional. It is only useful when a method within
the class will need to read or update the property. It is also valid to just implement one of the two accessors. The en-
hanced subclass will always include both a read and a write accessor.

This exact same technique can be used with components as well as pages.

A last note about initialization. After Tapestry invokes the finishLoad() method, it processes the initial value
provided in the specification. If the initial-value attribute is ommitted or blank, no change takes place. Tapestry
then takes a snapshot of the property value, which it retains and uses at the end of each request cycle to reset the
property back to its "pristine" state.

This means that you may perform initialization for the property inside finishLoad() (instead of providing a ini-
tial-value). However, don't attempt to update the property from initialize() ... the order of operations when
the page detaches is not defined and is subject to change.

Implementing Persistent Page Properties Manually

Warning

There is very little reason to implement persistent page properties manually. Using the property-
<specification> element is much easier, and nearly as efficient. It is highly unlikely that the extra
developer effort used to implement persistent page properties manually will pay off in any improve-
ment in application throughput.

The preferred way to implement persistent page properties without using the <property-specification> ele-
ment is to implement the method initialize() on your page. This method is invoked once when the page is first
created; it is invoked again at the end of each request cycle. An empty implementation of this method is provided by
AbstractPage.

The first example demonstrates how to properly implement a transient property. It is simply a normal JavaBean
property implementation, with a little extra to reset the property back to its pristine value (null) at the end of the re-
quest.

Example 2.5. Use of initialize() method

public class MyPage extends BasePage
{

private String _message;

public String getMessage()
{

return _message;
}

public void setMessage(String message)
{

_message = message;
}

protected void initialize()
{

_message = null;
}

}

Chapter 2. Managing Server-Side State

7

url(../api/org/apache/tapestry/AbstractPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

If your page has additional attributes, they should also be reset inside the initialize() method.

Now that we've shown how to manually implement transient state, we'll show how to handle persistent state.

For a property to be persistent, all that's necessary is that the accessor method notify the framework of changes.
Tapestry will record the changes (using an IPageRecorder) and, in later request cycles, will restore the property
using using the recorded value and whichever page instance is taken out of the page pool.

This notification takes the form of an invocation of the method fireObservedChange(). This method is provided
by AbstractComponent and is overloaded for all the scalar types, and for Object.

Example 2.6. Manual Persistent Page Property

public class MyPage extends BasePage
{

private int _itemsPerPage;

public int getItemsPerPage()
{

return _itemsPerPage;
}

public void setItemsPerPage(int itemsPerPage)
{

_itemsPerPage = itemsPerPage;

fireObservedChange("itemsPerPage", itemsPerPage);
}

protected void initialize()
{

_itemsPerPage = 10;
}

}

This sets up a property, itemsPerPage, with a default value of 10. If the value is changed (perhaps by a form or a
listener method), the changed value will "stick" with the user who changed it, for the duration of their session.

Manual Persistent Component Properties
Implementing transient and persistent properties inside components involves more work. The fireObserved-
Change() method is available to components as well as pages, but the initialization of the component is more com-
plicated.

Components do not have the equivalent of the initialize() method. Instead, they must register for an event noti-
fication to tell them when the page is being detached from the engine (prior to be stored back into the page pool).
This event is generated by the page itself.

The Java interface PageDetachListener is the event listener interface for this purpose. By simply implementing
this interface, Tapestry will register the component as a listener and ensure that it receives event notifications at the
right time (this works for the other page event interface, PageRenderListener as well; simply implement the in-
terface and leave the rest to the framework).

Tapestry provides a method, finishLoad(), for just this purpose: late initialization.

Example 2.7. Manual Persistent Component Properties

Chapter 2. Managing Server-Side State

8

url(../api/org/apache/tapestry/IPageRecorder.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/event/PageRenderListener.html)

public class MyComponent extends BaseComponent implements PageDetachListener
{

private String _myProperty;

public void setMyProperty(String myProperty)
{

_myProperty = myProperty;

fireObservedChange("myProperty", myProperty);
}

public String getMyProperty()
{

return _myProperty;
}

protected void initialize()
{

_myProperty = "a default value";
}

protected void finishLoad()
{

initialize();
}

/**
* The method specified by PageDetachListener.
*
**/

public void pageDetached(PageEvent event)
{

initialize();
}

}

Again, there is no particular need to do all this; using the <property-specification> element is far, far simpler.

Stateless Applications
In a Tapestry application, the framework acts as a buffer between the application code and the Servlet API ... in par-
ticular, it manages how data is stored into the HttpSession. In fact, the framework controls when the session is
first created.

This is important and powerful, because an application that runs, even just initially, without a session consumes less
resources that a stateful application. This is even more important in a clustered environment with multiple servers;
any data stored into the HttpSession will have to be replicated to other servers in the cluster, which can be expen-
sive in terms of resources. Using less resources means better throughput and more concurrent clients, always a good
thing in a web application.

Tapestry defers creation of the HttpSession until one of two things happens: When the visit is created, or when
the first persistent page property is recorded. At this point, Tapestry will create the HttpSession and store the en-
gine into it.

Earlier, we said that the IEngine instance is stored in the HttpSession, but this is not always the case. Tapestry
maintains a pool of IEngine instances that are used for stateless requests. An instance is checked out of the pool
and used to process a single request, then checked back into the pool for reuse in a later request, by the same or dif-
ferent client.

For the most part, your application will be unaware of when it is stateful or stateless; statefulness just happens on its
own. Ideally, at least the first, or "Home" page, should be stateless (it should be organized in such a way that the
visit is not created, and no persistent state is stored). This will help speed the initial display of the application, since

Chapter 2. Managing Server-Side State

9

url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

no processing time will be used in creating the session.

Chapter 2. Managing Server-Side State

10

Chapter 3. Configuring Tapestry
Web Deployment Descriptor

All Tapestry applications make use of the ApplicationServlet class as their servlet; it is rarely necessary to cre-
ate a subclass.

Example 3.1. Virtual Library Deployment Descriptor

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<distributable/> ❶
<display-name>Tapestry Virtual Library Demo</display-name>
<servlet>
<servlet-name>vlib</servlet-name> ❷
<servlet-class>org.apache.tapestry.ApplicationServlet</servlet-class> ❸
<init-param>

<param-name>org.apache.tapestry.application-specification</param-name> ❹
<param-value>/net/sf/tapestry/vlib/Vlib.application</param-value>

</init-param>
<load-on-startup>0</load-on-startup>

</servlet>

<!-- The single mapping used for the Virtual Library application -->

<servlet-mapping>
<servlet-name>vlib</servlet-name>
<url-pattern>/app</url-pattern> ❺

</servlet-mapping>

<session-config>
<session-timeout>15</session-timeout>

</session-config>

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>
</web-app>

❶ This indicates to the application server that the Tapestry application may be clustered. Most application servers
ignore this element, but future servers may only distribute applications within a cluster if this element is
present.

❷ The servlet name may be used when locating the application specification (though not in this example).
❸ The servlet class is nearly always ApplicationServlet. There's rarely a need to create a subclass; Tapestry

has many other hooks for extending the application.
❹ The Virtual Library application stores its specification on the classpath, rather than under WEB-INF, so it is

necessary to provide the complete path to the specification. Most applications can omit this <init-param>.
❺ The servlet is mapped to /app within the context. The context itself has a path, determined by the application

server, but typically /vlib. The client web browser will see the Tapestry application as /
http://hostvlib/app.

Using /app as the URL is a common convention when creating Tapestry applications, but is not a require-
ment.

On initialization, the Tapestry servlet will locate its application specification; a file that identifies details about the
application, the pages and components within it, and any component libraries it uses. Tapestry provides a great deal
of flexibility on where the specification is stored; trivial Tapestry applications can operate without an application

11

url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)

specification.

Prior to release 3.0, application specifications had to be stored on the classpath. This is maintained for backwards
compatibility. In modern applications, the specification is stored under WEB-INF. In fact, Tapestry performs a search
to find the specification:

1. On the classpath, as defined by the org.apache.tapestry.application-specification configuration
parameter.

2. As /WEB-INF/name/name.application. The name is the servlet name. This location is only used in the rare
case of a single WAR containing multiple Tapestry applications.

3. As /WEB-INF/name.application. Again, name is the servlet name. This is the standard scenario.

If the application specification still can not be found, then an empty, "stand in" application specification is used.

Configuration Search Path
Tapestry occasionally must obtain a value for a configuration property. These configuration properties are items that
are frequently optional, and don't fit into any particular specification. Many are related to the runtime environment,
such as which class to instantiate as the Visit object.

Tapestry is very flexible about where values for such properties may be obtained. In general, the search path for con-
figuration properties is:

• As a <property> of the <application> (in the application specification, if the application uses one).

• As an <init-parameter> for the servlet, in the web application deployment descriptor.

• As an <init-parameter> for the servlet context, also in the web application deployment descriptor.

• As a JVM system property.

• Hard-coded "factory" defaults (for some properties).

It is expected that some configurations are not defined at any level; those will return null.

Applications are free to leverage this lookup mechanism as well. IEngine defines a propertySource property (of
type IPropertySource) that can be used to perform such lookups.

Applications may also want to change or augment the default search path; this is accomplished by overriding Ab-
stractEngine method createPropertySource(). For example, some configuration data could be drawn from
a database.

The following table lists all the configuration values currently used in Tapestry.

Configuration Values

org.apache.tapestry.template-extension
Overrides the default extension used to locate templates for pages or components. The default extension is
"html", this configuration property allows overrides where appropriate. For example, an application that pro-
duces WML may want to override this to "wml".

This configuration property does not follow the normal search path rules. The <property> must be provided in

Chapter 3. Configuring Tapestry

12

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

the <page-specification> or <component-specification>. If no value is found there, the immediate
containing <application> or <library-specification> is checked. If still not found, the default is used.

org.apache.tapestry.asset.dir, org.apache.tapestry.asset.URL
These two values are used to handle private assets. Private assets are assets that are stored on the classpath, and
not normally visible to client web browsers.

By specifying these two configuration values, Tapestry can export private assets to a directory that is visible to
the client web browser. The URL value should map to the directory specified by the dir value.

org.apache.tapestry.visit-class
The fully qualified class name to instantiate as the Visit object.

If not specified, an instance of HashMap will be created.

org.apache.tapestry.default-page-class
By default, any page that omits the class attribute (in its <page-specification>) will be instantiated as
BasePage. If this is not desired, the default may be overridden by specifying a fully qualified class name.

org.apache.tapestry.engine-class
The fully qualified class name to instantiate as the application engine. This configuration value is only used
when the application specification does not exist, or fails to specify a class. By default, BaseEngine is used if
this configuration value is also left unspecified.

org.apache.tapestry.global-class
The fully qualified class name to instantiate as the engine global property. The Global object is much like
Visit object, except that it is shared by all instances of the application engine rather than being private to any
particular session. If not specified, a synchronized instance of HashMap is used.

org.apache.tapestry.default-script-language
The name of a BSF-supported language, used when a <listener-binding> element does not specify a lan-
guage. If not overridden, the default is "jython".

org.apache.tapestry.enable-reset-service
If not specified as "true", then the reset service will be non-functional. The reset service is used to force the
running Tapestry application to discard all cached data (including templates, specifications, pooled objects and
more). This must be explicitly enabled, and should only be used in development (in production, it is too easily
exploited as a denial of service attack).

Unlike most other configuration values, this must be specified as a JVM system property.

org.apache.tapestry.disable-caching
If specified (as "true"), then the framework will discard all cached data (specifications, templates, pooled ob-
jects, etc.) at the end of each request cycle.

This slows down request handling by a noticable amount, but is very useful in devlopment; it means that
changes to templates and specifications are immediately visible to the application. It also helps identify any er-
rors in managing persistent page state.

This should never be enabled in production; the performance hit is too large. Like
org.apache.tapestry.enable-reset-service, this must be specified as a JVM system property.

Application Extensions
Tapestry is designed for flexibility; this extends beyond simply configuration behavior, and encompasses actually
replacing or augmenting behavior. In some cases, it is necessary to subclass framework classes in order to alter be-
havior, but in many cases, it is possible to use an application extension.

Chapter 3. Configuring Tapestry

13

url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)
url(http://jakarta.apache.org/bsf)

Application extensions are JavaBeans declared in the application specification using the <extension> element.
Each extension consists of a name, a Java class to instantiate, and an optional configuration (that is, properties of the
bean may be set). The framework has a finite number of extension points. If an extension bean with the correct name
exists, it will be used at that extension point.

Each application extension must implement an interface particular to the extension point.

Application Extension Points

org.apache.tapestry.property-source (IPropertySource)
This extension is fit into the configuration property search path, after the servlet context, but before JVM sys-
tem properties. A typical use would be to access some set of configuration properties stored in a database.

org.apache.tapestry.request-decoder (IRequestDecoder)
A request decoder is used to identify the actual server name, server port, scheme and request URI for the re-
quest. In some configurations, a firewall may invalidate the values provided by the actual HttpServletRe-
quest (the values reflect the internal server forwarded to by the firewall, not the actual values used by the ex-
ternal client). A request decoder knows how to determine the actual values.

org.apache.tapestry.monitor (IMonitor)
A monitor is informed about key events during each request and is intended to support performance monitoring.

org.apache.tapestry.specification-resolver-delegate (ISpecificationResolverDelegate)
An object which is used to find page and component specifications that are not located using the default search
rules. The use of this is open-ended, but is generally useful in very advanced scenarios where specifications are
stored externally (perhaps in a database), or constructed on the fly.

org.apache.tapestry.template-source-delegate (ITemplateSourceDelegate)
An object which is used to find page or component templates that are not located using the default search rules.
The use of this is open-ended, but is generally useful in very advanced scenarios where templates are stored ex-
ternally (perhaps in a database), or constructed on the fly.

org.apache.tapestry.multipart-decoder (IMultipartDecoder)
Allows an alternate object to be responsible for decoding multipart requests (context type multipart/form-data,
used for file uploads). Generally, this is used to configure an instance of DefaultMultipartDecoder with
non-default values for the maximum upload size, threshold size (number of bytes before a temporary file is cre-
ated to store the) and repository directory (where temporary files are stored).

Chapter 3. Configuring Tapestry

14

url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/request/IRequestDecoder.html)
url(../api/org/apache/tapestry/engine/IMonitor.html)
url(../api/org/apache/tapestry/resolver/ISpecificationResolverDelegate.html)
url(../api/org/apache/tapestry/engine/ITemplateSourceDelegate.html)
url(../api/org/apache/tapestry/multipart/IMultipartDecoder.html)
url(../api/org/apache/tapestry/multipart/DefaultMultipartDecoder.html)

Appendix A. Tapestry Specification DTDs
This appendix describes the four types of specifications used in Tapestry.

Table A.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID

Application application <application> -//Apache Soft-
ware Foundation/
/Tapestry Speci-
fication 3.0//EN

http://jakarta.a
pache.org/tapest

ry/
dtd/

Tapestry_3_0.dtd

Page page page-
<specification>

-//Apache Soft-
ware Foundation/
/Tapestry Speci-
fication 3.0//EN

http://jakarta.a
pache.org/tapest

ry/
dtd/

Tapestry_3_0.dtd

Component jwc component-
<specification>

-//Apache Soft-
ware Foundation/
/Tapestry Speci-
fication 3.0//EN

http://jakarta.a
pache.org/tapest

ry/
dtd/

Tapestry_3_0.dtd

Library library library-
<specification>

-//Apache Soft-
ware Foundation/
/Tapestry Speci-
fication 3.0//EN

http://jakarta.a
pache.org/tapest

ry/
dtd/

Tapestry_3_0.dtd

Script script <script> -//Apache Soft-
ware Foundation/
/Tapestry Script
Specification
3.0//EN

http://jakarta.a
pache.org/tapest

ry/
dtd/

Script_3_0.dtd

The four general Tapestry specifications (<application>, <component-specification> page-
<specification> and <library-specification>) all share the same DTD, but use different root elements.

<application> element
root element

The application specification defines the pages and components specific to a single Tapestry application. It also de-
fines any libraries that are used within the application.

Figure A.1. <application> Attributes

Name Type Required ? Default Value Description

name string no User presentable
name of application.

engine-class string no Name of an imple-
mentation of

15

Name Type Required ? Default Value Description

IEngine to instanti-
ate. Defaults to
BaseEngine if not
specified.

Figure A.2. <application> Elements

<description> ?, <property> *,
(<page> | <component-type> | <service> | <library> | <extension>) *

<bean> element
Appears in: <component-specification> and <page-specification>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a named Jav-
aBean that is instantiated on demand. Beans are accessed through the OGNL expression beans.name.

Once a bean is instantiated and initialized, it will be retained by the page or component for some period of time,
specified by the bean's lifecycle.

bean lifecycle

none
The bean is not retained, a new bean will be created on each access.

page
The bean is retained for the lifecycle of the page itself.

render
The bean is retained until the current render operation completes. This will discard the bean when a page or
form finishes rewinding.

request
The bean is retained until the end of the current request.

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a page within a
particular JVM. Consecutive requests may be processed using different instances of the page, possibly in different
JVMs (if the application is operating in a clustered environment). No state particular to a single client session should
be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be configured
using the <set-property> and <set-message-property> elements.

Figure A.3. <bean> Attributes

Appendix A. Tapestry Specification DTDs

16

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)

Name Type Required ? Default Value Description

name string yes The name of the bean,
which must be a valid
Java identifier.

class string yes The name of the class
to instantiate.

lifecycle none|page|render
|request

no request As described above;
duration that bean is
retained.

Figure A.4. <bean> Elements

<description> ?, <property> *,
(<set-property> | <set-message-property>) *

<binding> element
Appears in: <component>

Binds a parameter of an embedded component to an OGNL expression rooted in its container.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

If the expression attribute is omitted, then the body of the element is used. This is useful when the expression is
long, or contains problematic characters (such as a mix of single and double quotes).

Figure A.5. <binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

expression string yes The OGNL expres-
sion, relative to the
container, to be bound
to the parameter.

<component> element
Appears in: <component-specification> and <page-specification>

Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression components.id.

Appendix A. Tapestry Specification DTDs

17

Figure A.6. <component> Attributes

Name Type Required ? Default Value Description

id string yes Identifier for the com-
ponent here and in the
component's template.
Must be a valid Java
identifier.

type string no A component type to
instantiate.

copy-of string no The name of a previ-
ously defined compo-
nent. The type and
bindings of that com-
ponent will be copied
to this component.

Either type or copy-of must be specified.

A component type is either a simple name or a qualified name. A simple name is the name of an component either
provided by the framework, or provided by the application (if the page or component is defined in an application), or
provided by the library (if the page or component is defined in a library).

A qualified name is a library id, a colon, and a simple name of a component provided by the named library (for ex-
ample, contrib:Palette). Library ids are defined by a <library> element in the containing library or applica-
tion.

Figure A.7. <component> Elements

<property> *,
(<binding> | <inherited-binding> | <listener-binding> | <static-binding> | <message-binding>) *

<component-type> element
Appears in: <application> and <library-specification>

Defines a component type that may latter be used in a <component> element (for pages and components also de-
fined by this application or library).

Figure A.8. <component-type> Attributes

Name Type Required ? Default Value Description

type string yes A name to be used as
a component type.

specification-path string yes An absolute or rela-
tive resource path to

Appendix A. Tapestry Specification DTDs

18

Name Type Required ? Default Value Description

the component's spec-
ification (including
leading slash and file
extension). Relative
resources are evalu-
ated relative to the lo-
cation of the contain-
ing application or li-
brary specfication.

<component-specification> element
root element

Defines a new component, in terms of its API (<parameter>s), embedded components, beans and assets.

The structure of a <component-specification> is very similar to a <page-specification> except compo-
nents have additional attributes and elements related to parameters.

Figure A.9. <component-specification> Attributes

Name Type Required ? Default Value Description

class string no The Java class to in-
stantiate, which must
implement the inter-
face IComponent. If
not specified, BaseC-
omponent is used.

allow-body yes|no no yes
If yes, then any body
for this component,
from its containing
page or component's
template, is retained
and may be produced
using a RenderBody
component.

If no, then any body
for this component is
discarded.

allow-infor-
mal-parameters

yes|no no yes
If yes, then any in-
formal parameters
(bindings that don't
match a formal pa-
rameter) specified
here, or in the compo-
nent's tag within its
container's template,
are retained. Typi-
cally, they are con-

Appendix A. Tapestry Specification DTDs

19

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../ComponentReference/RenderBody.html)

Name Type Required ? Default Value Description

verted into additional
HTML attributes.

If no, then informal
parameters are not al-
lowed in the specifi-
cation, and discarded
if in the template.

Figure A.10. <component-specification> Elements

<description> ?, <parameter> *, <reserved-parameter> *, <property> *,
(<bean> | <component> | <external-asset> | <context-asset> | <private-asset> | <property-specification>)*

<configure> element
Appears in: <extension>

Allows a JavaBeans property of the extension to be set from a statically defined value. The <configure> element
wraps around the static value. The value is trimmed of leading and trailing whitespace and optionally converted to a
specified type before being assigned to the property.

Figure A.11. <configure> Attributes

Name Type Required ? Default Value Description

property-name string yes The name of the ex-
tension property to
configure.

type boolean|int|long
|double|String

no String The conversion to ap-
ply to the value.

value no The value to config-
ure, which will be
converted before be-
ing assigned to the
property. If not pro-
vided, the character
data wrapped by the
element is used in-
stead.

<context-asset> element
Specifies an asset located relative to the web application context root folder. Context assets may be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression assets.name.

Appendix A. Tapestry Specification DTDs

20

The path may be either absolute or relative. Absolute paths start with a leading slash, and are evalulated relative to
the context root. Relative paths are evaluated relative to the application root, which is typically the same as the con-
text root (the exception being a WAR that contains multiple Tapestry applications, within multiple subfolders).

Figure A.12. <context-asset> Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Java identifier.

path string yes The path to the asset.

<description> element
Appears in: many

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE to provide
help. The Tapestry Inspector may also display a description.

The descriptive text appears inside the <description> tags. Leading and trailing whitespace is removed and inte-
rior whitespace may be altered or removed. Descriptions should be short; external documentation can provide
greater details.

The <description> element has no attributes.

<extension> element
Appears in: <application> and <library-specification>

Defines an extension, a JavaBean that is instantiated as needed to provide a global service to the application.

Figure A.13. <extension> Attributes

Name Type Required ? Default Value Description

name string yes A name for the exten-
sion, which can (and
should) look like a
qualified class name,
but may also include
the dash character.

class string yes The Java class to in-
stantiate. The class
must have a zero-
arguments construc-
tor.

immediate yes|no no no If yes, the extension
is instantiated when
the specification is
read. If no, then the

Appendix A. Tapestry Specification DTDs

21

Name Type Required ? Default Value Description

extension is not cre-
ated until first needed.

Figure A.14. <component-specification> Elements

<property> *, <configure> *

<external-asset> element
Appears in: <component-specification> and <page-specification>

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same web server
as the application, or may be a complete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression assets.name.

Figure A.15. <external-asset> Attributes

Name Type Required ? Default Value Description

name string yes A name for the asset.
Asset names must be
valid Java identifiers.

URL string yes The URL used to ac-
cess the asset.

<inherited-binding> element
Appears in: <component>

Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure A.16. <inherited-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

parameter-name string yes The name of a param-
eter of the containing
component.

Appendix A. Tapestry Specification DTDs

22

<library> element
Appears in: <application> and <library-specification>

Establishes that the containing application or library uses components defined in another library, and sets the prefix
used to reference those components.

Figure A.17. <library> Attributes

Name Type Required ? Default Value Description

id string yes The id associated
with the library. Com-
ponents within the li-
brary can be refer-
enced with the com-
ponent type id:name.

specification-path string yes The complete re-
source path for the li-
brary specification.

<library-specification> element
root element

Defines the pages, components, services and libraries used by a library. Very similar to <application>, but with-
out attributes related application name or engine class.

The <library-specification> element has no attributes.

Figure A.18. <library-specification> Elements

<description> ?, <property> *,
(<page> | <component-type> | <service> | <library> | <extension>) *

<listener-binding> element
Appears in: <component>

A listener binding is used to create application logic, in the form of a listener (for a DirectLink, ActionLink,
Form, etc.) in place within the specification, in a scripting language (such as Jython or JavaScript). The script itself
is the wrapped character data for the <listener-binding> element.

When the listener is triggered, the script is executed. Three beans, page, component and cycle are pre-declared.

The page is the page activated by the request. Usually, this is the same as the page which contains the component
... in fact, usually page and compoment are identical.

The component is the component from whose specification the binding was created (that is, not the DirectLink,
but the page or component which embeds the DirectLink).

Appendix A. Tapestry Specification DTDs

23

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(http://www.jython.org)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/DirectLink.html)

The cycle is the active request cycle, from which service parameters may be obtained.

Figure A.19. <listener-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the lis-
tener parameter to
bind.

language string no The name of a -
BSFsupported lan-
guage that the script
is written in. The de-
fault, if not specified,
is jython.

<message-binding> element
Appears in: <component>

Binds a parameter of an embedded component to a localized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure A.20. <message-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

key string yes The localized prop-
erty key to retrieve.

<page> element
Appears in: <application> and <library-specification>

Defines a page within an application (or contributed by a library). Relates a logical name for the page to the path to
the page's specification file.

Figure A.21. <page> Attributes

Name Type Required ? Default Value Description

name string yes The name for the
page, which must
start with a letter, and
may contain letters,

Appendix A. Tapestry Specification DTDs

24

url(http://jakarta.apache.org/bsf)

Name Type Required ? Default Value Description

numbers, underscores
and the dash charac-
ter.

specification-path string yes The path to the page's
specification, which
may be absolute (start
with a leading slash),
or relative to the ap-
plication or library
specification.

<page-specification> element
root element

Defines a page within an application (or a library). The <page-specification> is a subset of component-
<specification> with attributes and entities related to parameters removed.

Figure A.22. <page-specification> Attributes

Name Type Required ? Default Value Description

class string no The Java class to in-
stantiate, which must
implement the inter-
face IPage. Typi-
cally, this is BaseP-
age or a subclass of
it. BasePage is the
default if not other-
wise specified.

Figure A.23. <page-specification> Elements

<description> ?, <property> *,
(<bean> | <component> | <external-asset> | <context-asset> | <private-asset> | <property-specification>)*

<parameter> element
Appears in: <component-specification>

Defines a formal parameter of a component. Parameters may be connected (in, form or auto) or unconnected
(custom). If a parameter is connected, but the class does not provide the property (or does, but the accessors are ab-
stract), then the framework will create and use a subclass that contains the implementation of the necessary property.

For auto parameters, the framework will create a synthetic property as a wrapper around the binding. Reading the
property will read the value from the binding and updating the property will update the binding value. auto may

Appendix A. Tapestry Specification DTDs

25

url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

only be used with required parameters. auto is less efficient than in, but can be used even when the component is
not rendering.

Figure A.24. <parameter> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter, which must
be a valid Java identi-
fier.

type scalar name, or class
name

no Required for con-
nected parameters.
Specifies the type of
the JavaBean property
that a connected pa-
rameter writes and
reads. The property
must match this exact
value, which can be a
fully specified class
name, or the name of
a scalar Java type.

required yes|no no no If yes, then the pa-
rameter must be
bound (though it is
possible that the bind-
ing's value will still
be null).

property-name string no For connected param-
eters only; allows the
name of the property
to differ from the
name of the parame-
ter. If not specified,
the property name
will be the same as
the parameter name.

direction in|form|auto|cus
tom

no custom
Identifies the seman-
tics of how the pa-
rameter is used by the
component. custom,
the default, means the
component explicitly
controls reading and
writing values
through the binding.

in means the prop-
erty is set from the
parameter before the
component renders,
and is reset back to
default value after the
component renders.

Appendix A. Tapestry Specification DTDs

26

Name Type Required ? Default Value Description

form means that the
property is set from
the parameter when
the component ren-
ders (as with in).
When the form is sub-
mitted, the value is
read from the prop-
erty and used to set
the binding value af-
ter the component
rewinds.

auto creates a syn-
thetic property that
works with the bind-
ing to read and up-
date. auto parame-
ters must be required,
but can be used even
when the component
is not rendering.

<private-asset> element
Specifies located from the classpath. These exist to support reusable components packages (as part of a library-
<specification>) packaged in a JAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression assets.name.

The resource path may either be complete and absolute, and start with a leading slash, or be relative. Relative paths
are evaluated relative to the location of the containing specification.

Figure A.25. <private-asset> Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Java identifier.

resource-path string yes The absolute or rela-
tive path to the asset
on the classpath.

<property> element
Appears in: many

The <property> element is used to store meta-data about some other element (it is contained within). Tapestry ig-

Appendix A. Tapestry Specification DTDs

27

nores this meta-data Any number of name/value pairs may be stored. The value is provided with the value at-
tribute, or the character data for the <property> element.

Figure A.26. <property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the prop-
erty.

value string no The value for the
property. If omitted,
the value is taken
from the character
data (the text the tag
wraps around). If
specified, the charac-
ter data is ignored.

<property-specification> element
Appears in: <component-specification>, <page-specification>

Defines a transient or persistent property to be added to the page or component. Tapestry will create a subclass of
the page or component class (at runtime) and add the necessary fields and accessor methods, as well as end-
of-request cleanup.

It is acceptible for a page (or component) to be abstract, and have abstract accessor methods matching the names
that Tapestry will generate for the subclass. This can be useful when setting properties of the page (or component)
from a listener method.

A connected parameter specified in a <parameter> element may also cause an enhanced subclass to be created.

An initial value may be specified as either the initial-value attribute, or as the body of the property-
<specification> element itself.

Figure A.27. <property-specification> Attributes

Name Type Required ? Default Value Description

name string yes The name of the prop-
erty to create.

type string no java.lang.Object The type of the prop-
erty. If abstract acces-
sors exist, they must
exactly match this
type. The type may be
either a fully qualified
class name, or the
name of one of the
basic scalar types.

persistent yes|no no no If true, the generated
property will be per-
sistent, firing change

Appendix A. Tapestry Specification DTDs

28

Name Type Required ? Default Value Description

notifications when it
is updated.

initial-value string no An optional OGNL
expression used to
initialize the property.
The expression is
evaluated only when
the page is first con-
structed.

<reserved-parameter> element
Appears in: <component-specification>

Used in components that allow informal parameters to limit the possible informal parameters (so that there aren't
conflicts with HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved parameter named
"src" (or any variation), and be excluded.

Figure A.28. <reserved-parameter> Attributes

Name Type Required ? Default Value Description

name string yes The name of the re-
served parameter.

<service> element
Appears in: <application> and <library-specification>

Defines an IEngineService provided by the application or by a library.

The framework provides several services (home, direct, action, external, etc.). Applications may override these ser-
vices by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the name) to
avoid name collisions.

Figure A.29. <service> Attributes

Name Type Required ? Default Value Description

name string yes The name of the ser-
vice.

class string yes The complete class
name to instantiate.

Appendix A. Tapestry Specification DTDs

29

url(../api/org/apache/tapestry/IEngineService.html)

Name Type Required ? Default Value Description

The class must have a
zero-arguments con-
structor and imple-
ment the interface
IEngineService

<set-message-property> element
Appears in: <bean>

Allows a property of a helper bean to be set to a localized string value of its containing page or component.

Figure A.30. <set-message-property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

key string yes A string property key
of the containing page
or component.

<set-property> element
Appears in: <bean>

Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing component or
page).

The value to be assigned to the bean property can be specified using the expression attribute, or as the content of
the <set-property> element itself.

Figure A.31. <set-property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

expression string no The OGNL expres-
sion used to set the
property.

<static-binding> element

Appendix A. Tapestry Specification DTDs

30

url(../api/org/apache/tapestry/IEngineService.html)

Appears in: <component>

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is specified as
the value attribute, or as the wrapped contents of the <static-binding> tag. Leading and trailing whitespace is
removed.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure A.32. <static-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

value string no The string value to be
used. If omitted, the
wrapped character
data is used instead
(which is more con-
vienient if the value is
large, or contains
problematic punctua-
tion).

Appendix A. Tapestry Specification DTDs

31

Appendix B. Tapestry Script Specification
DTD

Tapestry Script Specifications are frequently used with the Script component, to create dynamic JavaScript func-
tions, typically for use as event handlers for client-side logic.

The root element is <script>.

A script specifcation is a kind of specialized template that takes some number of input symbols and combines and
manipulates them to form output symbols, as well as body and initialization. Symbols may be simple strings, but are
also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${OGNL expression}. The ex-
pression is evaluated relative to a Map of symbols.

<body> element
Appears in: <script>

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically declared.
This body will be passed to the Body component for inclusion in the page.

Figure B.1. <body> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<foreach> element
Appears in: many

An element that renders its body repeatedly, much like a Foreach component. An expression supplies a collection
or array of objects, and its body is rendered for each element in the collection.

Figure B.2. <foreach> Attributes

Name Type Required ? Default Value Description

key string yes The symbol to be up-
dated with each suc-
cessive value.

expression string yes The OGNL expres-
sion which provides
the source of ele-
ments.

Figure B.3. <foreach> Elements

32

url(../ComponentReference/Script.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)

(text | <foreach> | <if> | <if-not> | <unique>) *

<if> element
Appears in: many

Conditionally renders its body, if a supplied OGNL expression is true.

Figure B.4. <if> Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-
sion to be evaluated.

Figure B.5. <if> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<if-not> element
Appears in: many

Conditionally renders its body, if a supplied OGNL expression is false.

Figure B.6. <if-not> Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-
sion to be evaluated.

Figure B.7. <if-not> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<include-script> element
Appears in: <script>

Appendix B. Tapestry Script Specification DTD

33

Used to include a static JavaScript library. A library will only be included once, regardless of how many different
scripts reference it. Such libraries are located on the classpath.

Figure B.8. <include-script> Attributes

Name Type Required ? Default Value Description

resource-path string yes The location of the
JavaScript library.

<initialization> element
Appears in: <script>

Defines initialization needed by the remainder of the script. Such initialization is placed inside a method invoked
from the HTML <body> element's onload event handler ... that is, whatever is placed inside this element will not
be executed until the entire page is loaded.

Figure B.9. <initialization> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<input-symbol> element
Appears in: <script>

Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. As the script exe-
cutes, it uses the input symbols to create new output symbols, redefine input symbols (not a recommended practice)
and define the body and initialization.

This element allows the script to make input symbols required and to restrict their type. Invalid input symbols
(missing when required, or not of the correct type) will result in runtime exceptions.

Figure B.10. <input-symbol> Attributes

Name Type Required ? Default Value Description

key string yes The input symbol to
be checked.

class string no If specified, this is the
complete, qualified
class name for the
symbol. The provided
symbol must be
assignable to this
class (be a subclass,
or implement the
specified class if the

Appendix B. Tapestry Script Specification DTD

34

Name Type Required ? Default Value Description

specified class is ac-
tually an interface).

required yes | no no no If yes, then a non-
null value must be
specified for the sym-
bol.

<let> element
Appears in: <script>

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with leading and trail-
ing whitespace removed).

Figure B.11. <let> Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

unique boolean yes|no no If yes, then the string
is ensured to be
unique (by possibly
adding a suffix) be-
fore being assigned to
the symbol.

Figure B.12. <let> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<script> element
Root element

The root element of a Tapestry script specification.

Figure B.13. <script> Elements

<include-script> *, <input-symbol> *,
(<let> | <set>) *,
<body> ?, <initialization> ?

Appendix B. Tapestry Script Specification DTD

35

<set> element
Appears in: <script>

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using an OGNL ex-
pression.

Figure B.14. <set> Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

expression string yes The OGNL expres-
sion to evaluate.

<unique> element
Appears in: many

Creates a block that is only evaluated once, no matter how many times the block is evaluated during the rendering of
a single page.

Figure B.15. <unique> Attributes

Name Type Required ? Default Value Description

tag string yes A unique tag used to
detect the first time
the block defined by
the <unique> ele-
ment has been evalu-
ated.

Figure B.16. <unique> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

Appendix B. Tapestry Script Specification DTD

36

