Tapestry User's Guide
by Howard Lewis Ship

Tapestry User's Guide
by Howard Lewis Ship
Copyright © 2003 The Apache Software Foundation

Table of Contents

O 1 1 o [Tox 1 o o
PAgES AN COMPONENTSttt ettt ettt e e et e e et e e et et e e et et e e et ab e e e e rb e e e eraaes 1
Engines, Servicesandthe ViSit e e e 2

2. Tapestry Page and Component TEMPIALEScvuiieiei e e e e e e e e e e e e e e anaas
I 1010 = =1 Lo 1o g 3
LI 1010 = (=T @] 1= g £ 3
ComPONENESTN TEMPIAIES ... ettt ettt e e ettt e e e et eeeraa s 4

COMPONENETAS ...t ettt et e et et e e e et e e e eaa e e eenans 4
SPECIHTYING PArAMELEIS ... e ettt aa e 5
Formal and INformal ParameLers 5

3. M aANAgIiNG SENVEr-SIHE SIAE ... ev e eeie i ee et e e e e e e e e e e e e r e r e aaaaa
UNderstanding SErVIEE SEAEEuueei i e 6
0o] PSP OPP 7
RV A= T @ =t P 7
(€1l 072 @ o 1= o: AR PP 8
PerSi StENt Page PrOPEITIESce et 8
Implementing Persistent Page PropertiesSManuallycouiiiiiiiiiiiii e 10
Manual Persistent Component PrOPEItIESuiii it e e e e anas 11
SR ESSAPPIICAIIONS ...ttt 12

4. CONFIGUITNG TAPESITY e e ettt ettt ettt ettt ettt e et e e et et e e et e be e e e ee bt e e e eebe e eeenbeaeeees
WED DEPIOYMENE DESCITPION ... eeteeit ettt e e ettt et et e et e e et e e et e e et e e e an e e e eeennns 14
ConfigurationSearCh Patho.iiiii e 15
PN ool 1Tor= 1 o]] S (= o] = 17

F = o= VS o =N o= o 1 I I 1
APPIICALTONEIEMENT ...ttt ettt e et e et e e e e e e e b e eaaans 18
DEAN B BMBNT ... e et aa e eaas 19
DINAINGEIEMENT ... e e ettt e e e e e e e et e eaa e eees 20
(o0 0100 aT< 1= = 0= | 20
(o0) 01010 01c a1t 1Y/ 01T = 001 o1 A 21
component-SPECifiCatiONElEMENLciiui i e e e e e e e anas 22
(ool g 1o B g=T= 1 o 1 o PSPPI 23
CONEXE-BSSEL Bl BIMENT ...t e et e et e e et e e et e e et e e e e eanas 24
AESCIIPLIONEIEIMENT ... e et ettt et e et e et e et e e et e e et e e e bn e e e e eennns 24
EXEENS ON B BIMEBNT e ettt e et e ettt e e e 24
EXEENAL-BSSEL B EMENT ... et e aaan 25
iNherited-bindiNGEIEMENT ..o e e e e e 25
Tl o= YA = = 01T o | TP 26
library-specifiCatioN EEMENToouu e et e 26
listener-bDiNAING EIEMENLot e e et e e e e e et e eaa e eaes 26
MESSAgE-DINAINGEIEMENT e et e e e e e e e e e e 27
Q720 1= T= =0 | 27
PagE-SPECIICAION B EMENT ... et e e e e e 28
PArEAMELEN EEIMENT ...ttt ettt ettt e et e e e e e et eaeab e aee 28
PrIVAIE-SSEL B BIMENT ...ttt ettt e e ettt e et e et e e e e e e e eee 30
o101 A A= L= 0= | PP 31
Property-SpeCifiCatiON @ EMENTe e e 31
5SS Ao o 0 0= (= = L= 0= | 32
S YT =T [0T o PP 32
SEt-MESSAgE-PrOPErtY ElEMENTeei ettt 33
SEL-PrOPEITY EBlOIMENT ...ttt et ettt e 33
St C-DINAINGEIEMENT ... e et e e e e e e 34

B. Tapestry Script SPeCifiCatioN DTDccuiieiiiii e e e e e eanes
000 V1= = 0= o) 35

Tapestry User's Guide

L0 L== o 1= = 007 | PSP 35
L= =41 o SR 36
L0 1= = 0 1= 0| 36
INCIUAE-SCHIPLEIEIMENT ... ettt e et e e ettt e e e e et e e e eeba e eeees 37
INItIAliZAHTONEIEMENT ... e e et e e e e et e ean e eees 37
INPUE-SYMBDOL ElEMENT ... et et ea e eees 37
1S = =0T o P 38
LS o 1] 01 1=. =07 | 38
LSS 1= = 00 o 39
UNIQUEEIBIMENT ..ottt ettt ettt ettt e ettt e e e et b r e e ettt r e e e e ebeteeeeeteneeeenbe e eeentnaaeeee 39

List of Figures

A = o o 1= 1 o I AN T o0 1= 18
JANZE oo [T or= o]] == 4=) PR 19
NG T o= 1 AN] o1 == P 19
YN o=] [011 g £ PPN 20
A5 DINAING ATIIDULES et e e et e et e et eeea e aean s 20
ALB. COMPONENE ATIITIULES ...t e e e e e e et e et e e e e e et e e e e e e e e e eaneees 21
AL 7. COMPONENE EIEMENES ... it e e e e e e e e e et e et e e et e e et e e et e e e an e eaaaeaanaaes 21
A.8. COMPONENE-LYPEAIITDULESeeiiii e e e e e e e e e e e e e e e et e e e s e e an e e aaneeeanaees 21
A.9. component-sPeCifiCatioN ALIITDULESiiii e e 22
A.10. component-SpPeCifiCatioN EIEMENTSiiiiii e 23
ALLL CONFIGUIBATIITDULES ...ttt e e e e e et e e et e e et e e e at e eeaeaeanaas 23
AL 12, CONEXE-ASSEL ATIIDULES ...t ettt e et e et e e e e ea e 24
ALL3. eXENSIONALLIDULESveiiiiii ettt e et e e e et r e e e et e e e et e e eennns 24
A.14. component-SPeCifiCatiON EIEMENESivieiiii e e e e 25
ALLS. exXternal-asset ALHIDULES e e e e 25
A.16. inherited-biNdiNG ALIIDULESooei e 25
AL7.0IDrary ATIDULESo et et e e et e et e et e e e e ea s 26
A.18. library-speCifiCaliON EIEMENEScouiiiie e e e 26
A.19. listener-bindiNg AIBULEScoveeii e e e e e e 27
A.20.mMessage-biNdiNG At DULESe e e e e e 27
AL2L PAJEATIITDULES ...ttt et ettt eaans 28
A.22. page-specifiCatioN ATIDULESooue e 28
A.23.page-SpeCifiCatiON EIEMENTScee ettt e e ea s 28
AL24. parameEter ATIHDULES ... e 29
AL25. PrivatE-aSSEL AITDULESiieiiii e e et e e e e e e e e e e e e et e e et e e e e e aaaaes 30
AL26. Property AtIIDULES ... e 31
A.27. property-SpecifiCation ATHIDULESoouue e 31
A.28.reserved-parameter AUHDULES. e 32
AL29.SEIVICEATIIDULES ... et et e e et e e et e e at e e ea e e eanaas 33
A.30. set-message-property AtIDULES oo e 33
A.3L. SEt-Property AtBULES ... 33
A.32.statiC-biNdING ALIOULESee e e e e e e e e e e e 34
B.1.DOOY ETEIMENES ...ttt et ettt et 35
B.2.TOr€aCh ATIIDULES ... et e e e 35
B.3.TOrEBCI EIEMENLS ... e ettt et eaas 36
| N L] 010 1= PP UPPR PPN 36
N L=t 41 o (PR 36
S T 0o N 1] o LU (=SSP 36
) o 0 = = 0= £ 36
B.8.iNCIUAE-SCrIPL ATIITIDULES ...t et e et e et e e e s 37
B.O.iNitialiZatiON EIEMENLS ... e ettt e aas 37
B.10. iNpUt-SYMBDOI AIFDULES ...t e e e e e e e e e e e e e 37
2 N T AN 1] o0 1= PP 38
2 D T L= 40T £ PPR 38
B.A3. SCHPLEIEBMENES ...t 38
B4, SEt ATIIOULES ... e e e e e et aaes 39
B.15. UNIQUEETEIMENES ..ottt et et e e e et e e et e ettt e e ea e e et e e et e e eanaaeees 39

Vi

List of Tables

A.1. Tapestry Specifications

Vii

List of Examples

2.1. Example HTML template ContaiNiNg COMPONENEScvuuerrieriieeeieeei e e e e e e eeat e e e e e et eraneeeneeaenns 4
T AN wor =S o L=V 1 0] oo 7
3.2. DEfININGTNEVISITCIASS ...vuiiiiii e e e et e e et e e et e eeenes 7
3.3. Persistent Page Property: JAVACIESSciieet ettt ettt ettt 9
3.4. Persistent Page Property: Page SpeCifiCation 9
3.5, Useof initidize() MEhOA oo e 10
3.6. Manual PersiStent Page PrOPEITYoieee i ee e e e e e e e e e 11
3.7.Manual Persistent CoOmpPonent ProPErtiEScvuuiiiiiieii e e e e e e e e e e et e e e eeen s 11
4.1. Virtua Library Deployment DESCIIPLONccuuuiiiittieeeiii ettt ettt e e et e e e e e eeaanns 14

viii

Chapter 1. Introduction

Tapestry is a component-based web application framework, written in Java. Tapestry is more than a simple templat-
ing system; Tapestry builds on the Java Servlet API to build a platform for creating dynamic, interactive web sites.
More than just another templating language, Tapestry is a real framework for building complex applications from
simple, reusable components. Tapestry offloads much of the error-prone work in creating web applications into the
framework itself, taking over mundane tasks such as dispatching incoming requests, constructing and interpretting
URLs encoded with information, handling localization and internationalization and much more besides.

The "mantra" of Tapestry is "objects, methods and properties’. That is, rather than have devel opers concerned about
the paraphanlia of the Servlet API: requests, responses, sessions, attributes, parameters, URLs and so on, Tapestry
focuses the developer on objects (including Tapestry pages and components, but also including the domain objects
of the application), methods on those objects, and JavaBeans properties of those objects. That is, in a Tapestry appli-
cation, the actions of the user (clicking links and submitting forms) results in changes to object properties combined
with the invocation of user-supplied methods (containing application logic). Tapestry takes care of the plumbing
necessary to connect these user actions with the objects.

Thisis not to say the Servlet API isinaccessible; it issimply not relevant to atypical Tapestry user.

This document describes many of the internals of Tapestry. It is not a tutorial, that is available as a separate docu-
ment. Instead, this document is a guide to some of the internals of Tapestry, and is intended for experienced devel-
opers who wish to leverage Tapestry fully.

Tapestry is currently in release 3.0, and has come along way in the last couple of years. Tapestry's focusis still on
generating dynamic HTML pages.

Nearly al of Tapestry's API is described in terms of interfaces, with default implementations supplied. By substitut-
ing new objects with the correct interfaces, the behavior of the framework can be changed significantly. This allows
for changes to where Tapestry specifications and templates originate from, and how server-side state is persisted (for
example).

Finally, Tapestry boasts extremely complete JavaDoc APl documentation. This document exists to supplement that
documentation, to fill in gaps that may not be obvious. The JavaDoc is often the best reference.

Pages and Components

Tapestry divides an application into a set of pages. Each page is assembled from Tapestry components. Components
themselves may be assembled from other components ... there's no artificial depth limit.

Tapestry pages are themselves components, but are components with some special responsibilities.

All Tapestry components can be containers of other components. Tapestry pages, and most user-defined compo-
nents, have a template, a special HTML file that defines the static and dynamic portions of the component, with
markers to indicate where embedded components are active. Components do not have to have a template, most of
the components provided with Tapestry generate their protion of response in code, not using a template.

Components may have one or more named parameters which may be set (or, "bound") by the page or component
which contains them. Unlike Java method parameters, Tapestry component parameters may be bidirectional; a com-
ponent may read a parameter to obtain avalue, or write a parameter to set avalue.

Most components are concerned only with generating HTML. A certain subset of components deal with the flip-side
of requests; handling of incoming requests. Link classes, such as PageLi nk, Di r ect Li nk and Act i onLi nk, create
clickable links in the rendered page and are involved in dispatching to user-supplied code when such alink is trig-
gered by clicking it.

Other components, For m and the form element components (Text Fi el d, Pr opert ySel ect i on, Checkbox, €etc.),
facillitate HTML forms. When such components render, they read properties from application objects so as to pro-

url(../ComponentReference/PageLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/PropertySelection.html)
url(../ComponentReference/Checkbox.html)

Chapter 1. Introduction

vide default values. When forms are submitted, the components within the form read HTTP query parameters, con-
vert the values to appropriate types and then update properties of application objects.

Engines, Services and the Visit

Tapestry has evolved its own jargon over time.

The Engine is a central object, it occupies the same semantic space in Tapestry that the Ht t pSessi on doesin the
Servlet API. The Engine is ultimately responsible for storing the persistant state of the application (properties that
exist from one request to the next), and this is accomplished by storing the Engine into the Ht t pSessi on. This doc-
ument will largely discuss the default implementation, with notes about how the default implementation may be ex-
tended or overriden, where appropriate.

Engine services are the bridge between servlets and URLs and the rest of Tapestry. Engine services are responsible
for encoding URLS, providing query parameters that identify, to the framework, the exact operation that should oc-
cur when the generated URL istriggered (by the end user clicking alink or submitting a form). Services are also re-
sponsible for dispatching those incoming requests. This encapsulation of URL encoding and decoding inside a sin-
gle classis key to how Tapestry components can flexibily operate without concern for how they are contained and
on which page ... the services take into account page and location when formulating URLSs.

The Visit is not a particular object, it is an application-defined object that acts as a focal point for all server-side
state (not associated with any single page). Individual applications define for themselves the class of the Visit object.
The Visit is stored as a property of the Engine, and so is ultimately stored persistantly inthe Ht t pSessi on

Chapter 2. Tapestry Page and Component
Templates

Unlike many other web frameworks, such as Struts or WebWork, Tapestry does not "plug into" an external templat-
ing system such as JavaServer Pages or Velocity. Instead, Tapestry integrates its own templating system.

Tapestry templates are designed to look like valid HTML files (component HTML templates will just be snippets).
Tapestry "hides' its extensions into special attributes of ordinary HTML elements.

Don't be fooled by the terminology; we say "HTML templates' because that is the prevalent use of Tapestry ... but
Tapestry is equally adept at WML or XML.

Template locations

The general rule of thumb is that a page's HTML template is simply an HTML file, stored in the context root direc-
tory. That is, you'll have a wPage. ht i HTML template, a WEB- | NF/ MyPage. page page specification, and a My-
Page class, in some Java package.

Tapestry always starts knowing the name of the page and the location of the page's specification when it searches for
the page's HTML template. Starting with this, it performs the following search:

* Inthe same location as the specification

* Inthe web application's context root directory (if the page is an application page, not a page from alibrary)

In addition, any HTML template in the web application context is considered a page, even if there is no matching
page specification. For simple pages that don't need to have any page-specific logic or properties, there's no need for
a page specification. Such a page may still use the special Tapestry attributes (described in the following sections).

Finally, with some minor configuration it is possible to change the extension searched for, which is appropriate if
you are, for example, building a WML application using Tapestry.

Template Contents

Tapestry templates contain amix of the following elements:

o Static HTML markup

» Tapestry components

» Localized messages

» Specia template directives

Usually, about 90% of atemplate is ordinary HTML markup. Hidden inside that markup are particular tags that are
placeholders for Tapestry components; these tags are recognized by the presence of the j wei d attribute. "JWC" is
short for "Java Web Component”, and was chosen as the "magic" attribute so as not to conflict with any real HTML
attribute.

Tapestry's parser is quite flexible, accepting al kinds of invalid HTML markup. That is, attributes don't have to be

guoted. Start and end tags don't have to balance. Case is ignored when matching start and end tags. Basically, the
kind of ugly HTML you'll find "in the field" is accepted.

url(http://jakarta.apache.org/struts/)
url(http://opensymphony.com/webwork/)
url(http://jakarta.apache.org/velocity/)

Chapter 2. Tapestry Page and Component Templates

Components in Templates

Components can be placed anywhere inside a template, simply by adding the j wci d attribute to any existing tag.
For example:

Example 2.1. Example HTML template containing components

<htm >
<head>
<title>Exanpl e HTML Tenpl ate</title>
</ head>
<body>
 [

Hel | o,
Joe User [

</ span>
</ body>
</htm >

0 Thisisareference to a declared component; the type and parameters of the component are in the page's speci-
fication.
implicit componentl nser t OGNLuser . name

The point of all thisisthat the HTML template should preview properly inaWY SIWYG HTML editor. Unlike Ve-
locity or JSPs, there are no strange directives to get in the way of a preview (or necessitate a special editting tool),
Tapestry hides what's needed inside existing tags; at worst, it adds a few non-standard attributes (such asj wci d) to
tags. Thisrarely causes a problem with most HTML editors.

Templates may contain components using two different styles. Declared components are little more than a place-
holder; the type of the component is defined el sewhere, in the page (or component) specification.

Alternately, an implicit component can be defined in place, by preceding the component type with an "@" symboal.
Tapestry includes over forty components with the framework, additional components may be created as part of your
application, or may be provided inside a component library.

In the above example, a was used for both components. Tapestry doesn't care what tag is used for a compo-
nent, as long as the start and end tags for components balance (it doesn't even care if the case of the start tag matches
the case of the end tag). The example could just as easily use <di v> or <f r ed>, the rendered page sent back to the
client web browser will be the same.

Component Ids

Every component in Tapestry hasits own id. In the above example, the first component has the id "border". The sec-
ond component is anonymous; the framework provides a unique id for the component since one was not supplied in
the HTML template. The framework provided id is built from the component's type; this component would have an
id of $I nsert ; other I nsert components would haveids $I nser t $0, $I nser t $1, €etc.

A component's id must only be unique within its immediate container. Pages are top-level containers, but compo-
nents can also contain other components.

Implicit components can also have a specific id, by placing theid in front of the "@" symbol:

Joe User

The component is still implicit; nothing about the component would go in the specification, but the id of the compo-

4

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(http://www.ognl.org)
url(http://jakarta.apache.org/velocity/)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)

Chapter 2. Tapestry Page and Component Templates

nent would be "insert".

Each component may only appear once in the template. Y ou ssimply can't use the same component repeatedly ... but
you can duplicate a component fairly easily; make the component a declared component, then use the copy- of at-
tribute of the <conponent > element to create clones of the component with new ids.

Specifying Parameters

Using either style, parameters of the component may be bound by adding attributes to the tag. Most attributes bind
static parameters, equivalent to using the <st at i ¢- bi ndi ng> element in the specification.

Prefixing an attribute value with ognl : indicates that the value is really an OGNL expression, equivalent to using
the <bi ndi ng> element in the specification.

Finally, prefixing an attribute value with message: indicates that the value is really a key used to get a localized
message, equivalent to the <nmessage- bi ndi ng> element in the specification.

Formal and Informal Parameters

Components may accept two types of parameters: formal and informal. Formal parameters are those defined in the
component specification, using the <par anmet er > element. Informal parameters are additional parameters, beyond
those known when the component was created.

The mgjority of components that accept informal parameters simply emit the informal parameters as additional at-
tributes. Why is that useful? Because it allows you to specify common HTML attributes such as cl ass or i d, or
JavaScript event handlers, without requiring that each component define each possible HTML attribute (alist which
expands all the time).

Informal and formal parameters can be specified in either the specification or in the template. Informal parameters
are not limited to literal strings, you may usethe ognl : and nessage: prefixeswith them aswell.

Not al components alow informal parameters; this is controlled by the al | ow- i nf or mal - par anet er s attribute
of the <conponent - speci fi cati on> element. Many components do not map directly to an HTML element, those
are the ones that do not allow informal parameters. If a component forbids informal parameters, then any informal
parameters in the specification or the template will result in errors, with one exception: static strings in the HTML
template are simply ignored when informal parameters are forbidden; they are presumed to be there only to support
WY SIWY G preview.

Each component declares a list of reserved names using the <r eser ved- par anet er > element; these are hames
which are not allowed as informal parameters, because the component generates the named attribute itself, and
doesn't want the value it writes to be overriden by an informal parameter. For example, the Di r ect Li nk component
reserves the name "href" ... putting an hr ef attribute in the HTML template is simply ignored (again, presumed to
be there to support WY SIWY G preview). Case isignored when comparing attribute names to reserved names.

url(http://www.ognl.org)
url(../ComponentReference/DirectLink.html)

Chapter 3. Managing Server-Side State

Server-side state is any information that exists on the server, and persists between request cycles. This can be any-
thing from a single flag all the way up to alarge database result set. In atypical application, server-side state is the
identity of the user (once the user logs in) and, perhaps, a few important domain objects (or, at the very least, pri-
mary keys for those objects).

In a typical servlet application, managing server-side state is entirely the application's responsibility. The Servlet
API provides just the Ht t pSessi on, which acts like a Map, relating keys to arbitrary objects. It is the application's
responsibility to obtain values from the session, and to update values into the session when they change.

Tapestry takes a different tack; it defines server-side state in terms of the Engine, the Visit and persistent page prop-
erties.

Understanding Servlet State

Managing server-side state is oneof the most complicated and error-prone aspects of web application design, and
one of the areas where Tapestry provides the most benefit. Generally speaking, Tapestry applications which are
functional within a single server will be functional within a cluster with no additional effort. This doesn't mean plan-
ning for clustering, and testing of clustering, is not necessary; it just means that, when using Tapestry, it is possible
to narrow the design and testing focus.

The point of server-side state is to ensure that information about the user acquired during the session is available
later in the same session. The canonical example is an application that requires some form of login to access some or
all of its content; the identify of the user must be collected at some point (in alogin page) and be generally available
to other pages.

The other aspect of server-side state concerns failover. Failover is an aspect of highly-available computing where the
processing of the application is spread across many servers. A group of servers used in thisway is referred to as a
cluster. Generally speaking (and this may vary significantly between vendor's implementations) requests from a par-
ticular client will be routed to the same server within the cluster.

In the event that the particular server in question fails (crashes unexpectedly, or otherwise brought out of service),
future requests from the client will be routed to a different, surviving server within the cluster. This failover event
should occur in such a way that the client is unaware that anything exceptional has occured with the web applica
tion; and this means that any server-side state gathered by the original server must be available to the backup server.

The main mechanism for handling this using the Java Servliet API is the Ht t pSessi on. The session can store at-
tributes, much like a Map. Attributes are object values referenced with a string key. In the event of a failover, all
such attributes are expected to be available on the new, backup server, to which the client's requests are routed.

Different application servers implement Ht t pSessi on replication and failover in different ways; the serviet API
specification is delibrately unspecific on how this implementation should take place. Tapestry follows the conven-
tions of the most limited interpretation of the servlet specification; it assumes that attribute replication only occurs
whentheHt t pSessi on set At t ri but e() method isinvoked 1.

Attribute replication was envisioned as a way to replicate simple, immutable objects such as Stri ng or | nt eger.
Attempting to store mutable objects, such as Li st , Map or some user-defined class, can be problematic. For exam-
ple, modifying an attribute value after it has been stored into the Ht t pSessi on may cause a failover error. Effec-
tively, the backup server sees a snapshot of the object at the time that set Attri but e() was invoked; any later
change to the object's internal state is not replicated to the other serversin the cluster! This can result in strange and
unpredictable behavior following afailover.

Tapestry attempts to sort out the issues involving server-side state in such a way that they are invisible to the devel-
oper. Most applications will not need to explicitly access the Ht t pSessi on at all, but may still have significant
amounts of server-side state. The following sections go into more detail about how Tapestry approaches these is-

1 Thisisthereplication strategy employed by BEA's WebL ogic server.

Chapter 3. Managing Server-Side State

Sues.
Engine

The engine, a class which implements the interface | Engi ne, is the central object that is responsible for managing
server-side state (among its many other responsibilities). The engineisitself stored asan Ht t pSessi on attribute.

Because the internal state of the engine can change, the framework will re-store the engine into the Ht t pSessi on at
the end of most requests. This ensures that any changes to the Visit object are properly replicated.

The ssimplest way to replicate server-side state is simply not to have any. With some care, Tapestry applications can
run stateless, at least until some actual server-side state is necessary.

Visit Object
The Visit object is an application-defined object that may be obtained from the engine (via the vi si t property of
the | Engi ne or | Page). By convention, the class is usualy named Vi si t, but it can be any class whatsoever, even

Map.

The name, "Visit", was selected to emphasize that whatever data is stored in the Visit concerns just a single visit to
the web application. Tapestry is stricly concerned with providing the presentation layer of the application; it doesn't
include any kind of database access, or any other kind of long-term data storage. However, it is very easy to inter-
face a Tapestry application to any kind of backend system.

The following example demonstrates how alistener method may access the visit object.
Example 3.1. Accessing the Visit object

public void fornSubmt(IRequestCycle cycl e)
Visit visit = (Visit)getPage().getVisit();
vi si t. doSonet hi ng() ;

In most cases, listener methods, such as f or nSubni t () , are implemented directly within the page. In that case, the
first line can be abbreviated to:

Visit visit = (Visit)getVisit();

The Visit object is instantiated lazily, the first time it is needed. Method creat eVi si t () of Abstract Engi ne is
responsible for this.

In most cases, the Visit object is an ordinary JavaBean, and therefore, has a no-arguments constructor. In this case,
the complete class name @ of the Visit is specified as configuration property
org. apache. tapestry. visit-class.

Typically, the Visit classis defined in the application specification, or asac<i ni t - par anet er > in the web deploy-
ment descriptor (web.xml).

Example 3.2. Defining the Visit class

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

Chapter 3. Managing Server-Side State

<appl i cati on name="Tapestry Conponent Wbr kbench">
<property name="org. apache. tapestry.visit-class" val ue="org. apache. tapestry. wor kbench. Visit"/>

In cases where the Visit object does not have a ho-arguments contructor, or has other specia initialization require-
ments, the method cr eat eVi si t () of Abst ract Engi ne can be overridden.

Thereisacrucia difference between accessing the visit viathevi si t property of | Page and thevi sit property of
I Engi ne. In the former case, accessing the visit viathe page, the visit will be created if it does not already exist.

Accessing the visit viathe | Engi ne is different, the visit will not be created if it does not already exist.

Carefully crafted applications will take heed of this difference and try to avoid creating the visit unnecessarilly. It is
not just the creation of this one object that is to be avoided ... creating the visit will likely force the entire application
to go stateful (create an Ht t pSessi on), and applications are more efficient while stateless.

Global Object

The application Global object is very similar to the application Visit object with some key differences. The Global
object is shared by al instances of the application engine; ultimately, it is stored as a Ser vl et Cont ext attribute.
The Global object is therefore not persistent in any way. In a failover, the engine will connect to a new instance of
the Global object within the new server.

The Global object may be accessing using the gl obal property of either the page or the engine (unlike the vi si t
property, they are completely equivalent).

Care should be taken that the Global object is threadsafe; since many engines (from many sessions, in many threads)
will access it simultanenously. The default Global object is a synchronized HashMap. This can be overriden with
configuration property or g. apache. t apestry. gl obal - cl ass.

The most typical use of the Global object is to interface to J2EE resources such as EJB home and remote interfaces
or JDBC data sources. The shared Global object can cache home and remote interfaces that are efficiently shared by
all engine instances.

Persistent Page Properties

Servlets, and by extension, JavaServer Pages, are inherently stateless. That is, they will be used simultaneously by
many threads and clients. Because of this, they must not store (in instance variables) any properties or values that are
specified to any single client.

This creates a frustration for devel opers, because ordinary programming techniques must be avoided. Instead, client-
specific state and data must be stored in the Ht t pSessi on or asHt t pSer vl et Request attributes. Thisis an awk-
ward and limiting way to handle both transient state (state that is only needed during the actual processing of the re-
guest) and persistent state (state that should be available during the processing of this and subsequent requests).

Tapestry bypasses most of these issues by not sharing objects between threads and clients. For the duration of are-
quest, a page and all components within the page are reserved to the single request. There is no chance of conflicts
because only the single thread processing the request will have access to the page. At the end of the request cycle,
the page is reset back to a pristine state and returned to the shared pool, ready for reuse by the same client, or by a
different client.

In fact, even in a high-volume Tapestry application, there will rarely be more than a few instances of any particular
page in the page pool.

For this scheme to work it is important that at the end of the request cycle, the page must return to its pristine state.
The prisitine state is equivaent to a freshly created instance of the page. In other words, any properties of the page

8

url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

Chapter 3. Managing Server-Side State

that changed during the processing of the request must be returned to thier initial values.

Tapestry separates the persistent state of a page from any instance of the page. Thisis very important, because from
one request cycle to another, a different instance of the page may be used ... even when clustering is not used.
Tapestry has many copies of any pagein apool, and pulls an arbitrary instance out of the pool for each request.

In Tapestry, a page may have many properties and may have many components, each with many properties, but only
atiny number of all those properties needs to persist between request cycles. On alater request, the same or different
page instance may be used. With alittle assistance from the developer, the Tapestry framework can create the illu-
sion that the same page instance is being used in alater request.

Each persistent page property is stored individually as an Ht t pSessi on attribute. Like the Servlet API, persistent
properties work best with immutable objects such as St ri ng and Integer;. For mutable objects (including Li st and
Map), Tapestry makes a copy of the property. In the worst case, Tapestry may have to serialize and deserialize the
object to make a copy. Using several properties with simple, immutable types is therefore much less expensive than
using asingle, custom, complex, mutable object.

Persistent properties make use of a<pr operty-speci fi cati on> element in the page or component specification.
Tapestry does something special when a component contains any such elements; it dynamically generates a subclass
that provides the desired fields, methods and whatever extrainitialization or cleanup is required.

You may aso, optionally, make your class abstract, and define abstract accessor methods that will be filled in by
Tapestry in the generated subclass. This allows you to read and update properties inside your class, inside listener
methods.

Note

T Properties defined this way may be either transient or persistent. It is useful to define even transient
properties using the <pr opert y- speci fi cati on> element because doing so ensures that the prop-
erty will be properly reset at the end of the request (before the page is returned to the pool for later
reuse).

Example 3.3. Persistent Page Property: Java Class

public abstract class MyPage ext ends BasePage
abstract public int getltensPerPage();

abstract public void setltensPerPage(int itenmsPerPage);

Example 3.4. Persistent Page Property: Page Specification

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE page-specificati on PUBLIC
"-// Apache Software Foundation//Tapestry Specification 3.0//EN
"http://jakarta. apache. org/tapestry/dtd/ Tapestry_3 0. dtd">
<page- speci fication cl ass="M/Page" >
<property-specification name="itensPer Page" persistent="yes" type="int" initial-val ue="10"/>

</ page- speci fi cati on>

url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 3. Managing Server-Side State

Again, making the class abstract, and defining abstract accessors is optional. It is only useful when a method within
the class will need to read or update the property. It is also valid to just implement one of the two accessors. The en-
hanced subclass will always include both aread and a write accessor.

This exact same technique can be used with components as well as pages.

A last note about initialization. After Tapestry invokes the fi ni shLoad() method, it processes the initial value
provided in the specification. If thei ni ti al - val ue attribute is ommitted or blank, no change takes place. Tapestry
then takes a snapshot of the property value, which it retains and uses at the end of each request cycle to reset the
property back to its"pristine" state.

This means that you may perform initialization for the property insidef i ni shLoad() (instead of providing a i ni -
tial - val ue). However, don't attempt to update the property fromi ni ti al i ze() ... the order of operations when
the page detaches is not defined and is subject to change.

Implementing Persistent Page Properties Manually
Warning

There is very little reason to implement persistent page properties manually. Using the property-

<speci fi cati on> element is much easier, and nearly as efficient. It is highly unlikely that the extra
developer effort used to implement persistent page properties manually will pay off in any improve-
ment in application throughput.

The preferred way to implement persistent page properties without using the <pr operty- speci fi cati on> ele-
ment is to implement the method i ni ti al i ze() on your page. This method is invoked once when the page is first
created; it isinvoked again at the end of each request cycle. An empty implementation of this method is provided by
Abstract Page.

The first example demonstrates how to properly implement a transient property. It is simply a norma JavaBean
property implementation, with alittle extrato reset the property back to its pristine value (nul 1) at the end of there-
quest.

Example 3.5. Useof i niti al i ze() method

public class M/Page extends BasePage
private String _nessage;
public String get Message()

return _nessage;

}
public void set Message(String nessage)
{
_message = nessage;
}
protected void initialize()
{
_message = nul | ;
}

10

url(../api/org/apache/tapestry/AbstractPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Chapter 3. Managing Server-Side State

If your page has additional attributes, they should also bereset insidethei ni ti al i ze() method.
Now that we've shown how to manually implement transient state, we'll show how to handle persistent state.

For a property to be persistent, all that's necessary is that the accessor method notify the framework of changes.
Tapestry will record the changes (using an | PageRecor der) and, in later request cycles, will restore the property
using using the recorded value and whichever page instance is taken out of the page pool.

This notification takes the form of an invocation of the static method f i r eCbser vedChange() in the Tapestry
class. This method is overloaded for all the scalar types, and for Obj ect .

Example 3.6. Manual Persistent Page Property

public class M/Page extends BasePage
private int _itensPerPage;
public int getltensPerPage()

return _itensPerPage;

public void setltensPerPage(int itensPerPage)
_itenmsPer Page = itensPer Page;

Tapestry. fireObservedChange(this, "itensPerPage", itensPerPage);

protected void initialize()

_itenmsPerPage = 10;

This sets up a property, i t enmsPer Page, with a default value of 10. If the value is changed (perhaps by aform or a
listener method), the changed value will "stick™ with the user who changed it, for the duration of their session.

Manual Persistent Component Properties

Implementing transient and persistent properties inside components involves more work. The fireCObser ved-
Change() method is available to components as well as pages, but the initialization of the component is more com-
plicated.

Components do not have the equivalent of thei ni ti al i ze() method. Instead, they must register for an event noti-
fication to tell them when the page is being detached from the engine (prior to be stored back into the page pool).
Thisevent is generated by the page itself.

The Java interface PageDet achLi st ener isthe event listener interface for this purpose. By simply implementing
this interface, Tapestry will register the component as a listener and ensure that it receives event notifications at the
right time (this works for the other page event interface, PageRender Li st ener as well; simply implement the in-
terface and leave the rest to the framework).

Tapestry provides amethod, f i ni shLoad(), for just this purpose: late initialization.

Example 3.7. Manual Persistent Component Properties

11

url(../api/org/apache/tapestry/IPageRecorder.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/event/PageRenderListener.html)

Chapter 3. Managing Server-Side State

public class MyConponent extends BaseConponent inpl enents PageDetachLi stener
private String _nmyProperty
public void set M/Property(String nyProperty)
{ _nyProperty = nyProperty;
Tapestry. fireGoservedChange(this, "nmyProperty", nyProperty);

public String get M/Property()
return _myProperty;

}

protected void initialize()

i _nmyProperty = "a default val ue";
protected void finishLoad()

‘ initialize();

}

| **

* The met hod specified by PageDetachListener.

*
**/

public void pageDet ached(PageEvent event)

initialize();

Again, thereis no particular need to do al this; using the <pr oper t y- speci fi cati on> element isfar, far simpler.

Stateless Applications

In a Tapestry application, the framework acts as a buffer between the application code and the Servlet API ... in par-
ticular, it manages how data is stored into the Ht t pSessi on. In fact, the framework controls when the session is
first created.

This is important and powerful, because an application that runs, even just initially, without a session consumes less
resources that a stateful application. This is even more important in a clustered environment with multiple servers;
any data stored into the Ht t pSessi on will have to be replicated to other serversin the cluster, which can be expen-
sive in terms of resources. Using less resources means better throughput and more concurrent clients, always a good
thing in aweb application.

Tapestry defers creation of the Ht t pSessi on until one of two things happens. When the visit is created, or when
the first persistent page property is recorded. At this point, Tapestry will create the Ht t pSessi on and store the en-
gineintoit.

Earlier, we said that the | Engi ne instance is stored in the Ht t pSessi on, but this is not always the case. Tapestry
maintains a pool of | Engi ne instances that are used for stateless requests. An instance is checked out of the pool
and used to process a single request, then checked back into the pool for reuse in alater request, by the same or dif-
ferent client.

For the most part, your application will be unaware of when it is stateful or stateless; statefulness just happens on its
own. Ideally, at least the first, or "Home" page, should be stateless (it should be organized in such a way that the
visit is not created, and no persistent state is stored). This will help speed the initial display of the application, since

12

url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

Chapter 3. Managing Server-Side State

no processing time will be used in creating the session.

13

Chapter 4. Configuring Tapestry

Web Deployment Descriptor

All Tapestry applications make use of the Appl i cati onSer vl et classastheir servlet; it israrely necessary to cre-
ate asubclass.

Example4.1. Virtual Library Deployment Descriptor

<?xm version="1.0""?>

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, |Inc.//DTD Web Application 2.2//EN'
"http://java. sun. com j 2ee/ dt ds/ web-app_2_2. dtd" >

<web- app>

<di stributable/> O
<di spl ay- name>Tapestry Virtual Library Deno</di spl ay- name>
<servl et >

<servl et - name>vl i b</ servl et - nane> 0O
<servl et - cl ass>or g. apache. t apestry. ApplicationServl et</servlet-class> [
<i nit-paranp
<par am nane>or g. apache. t apestry. appl i cati on-speci fi cati on</ param nane> [
<par am val ue>/ net/sf/tapestry/vlib/Vlib.application</param val ue>
</init-paranm>
<l oad- on- st art up>0</ | oad- on- st art up>

</servlet>
<I-- The single mapping used for the Virtual Library application -->

<servl et - mappi ng>

<servl et - nane>vl i b</ ser vl et - nane>
<url-pattern>/app</url-pattern> O

</ servl et - mappi ng>

<sessi on- confi g>

<sessi on-ti meout >15</ sessi on-ti meout >

</ sessi on- confi g>

<wel come-file-list> _
<wel cone-fil e>i ndex. ht m </ wel cone-fil e>
</wel cone-file-list>

</ web- app>

O

[O Ood

Thisindicates to the application server that the Tapestry application may be clustered. Most application servers
ignore this element, but future servers may only distribute applications within a cluster if this element is
present.

JBossisvery literal!

JBoss 3.0.x appears to be very literal about the <di st ri but abl e> element. If it appears, you
had better be deploying into a clustered environment, otherwise HttpSession state management
simply doesn't work.

The servlet name may be used when locating the application specification (though not in this example).

The servlet classis nearly always Appl i cati onSer vl et . There's rarely a need to create a subclass; Tapestry
has many other hooks for extending the application.

The Virtual Library application stores its specification on the classpath, rather than under WEB- | NF, s0 it is
necessary to provide the compl ete path to the specification. Most applications can omit this<i ni t - par an®.
The servlet is mapped to / app within the context. The context itself has a path, determined by the application
server, but typicaly /vlib. The client web browser will see the Tapestry application as /
http://hostvlib/app

14

url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)

Chapter 4. Configuring Tapestry

Using / app as the URL is a common convention when creating Tapestry applications, but is not a require-
ment.

On initialization, the Tapestry servlet will locate its application specification; a file that identifies details about the
application, the pages and components within it, and any component libraries it uses. Tapestry provides a great deal
of flexibility on where the specification is stored; trivial Tapestry applications can operate without an application
specification.

Prior to release 3.0, application specifications had to be stored on the classpath. This is maintained for backwards

compatibility. In modern applications, the specification is stored under VEB- | NF. In fact, Tapestry performs a search
to find the specification:

1. On the classpath, as defined by the or g. apache. t apestry. appl i cati on-speci fi cati on configuration
parameter.

2. As/VEB- | NF/ nane/ nanme. appl i cati on. The name is the servlet name. Thislocation is only used in the rare
case of asingle WAR containing multiple Tapestry applications.

3. AS/VEB- | NF/ nane. appl i cati on. Again, nane isthe servlet name. Thisisthe standard scenario.

If the application specification still can not be found, then an empty, "stand in" application specification is used.

Configuration Search Path

Tapestry occasionally must obtain a value for a configuration property. These configuration properties are items that
are frequently optional, and don't fit into any particular specification. Many are related to the runtime environment,
such as which class to instantiate as the Visit object.

Tapestry is very flexible about where values for such properties may be obtained. In general, the search path for con-
figuration propertiesis:

e Asac<property>of the<appl i cati on> (in the application specification, if the application uses one).

* Asan<init-paranet er > for the serviet, in the web application deployment descriptor.

e Asanc<init-paramet er > for the servlet context, also in the web application deployment descriptor.

* AsaJVM system property.

e Hard-coded "factory" defaults (for some properties).

It is expected that some configurations are not defined at any level; those will return null.

Applications are free to leverage this lookup mechanism as well. | Engi ne defines apr opert ySour ce property (of
typel Propert ySour ce) that can be used to perform such lookups.

Applications may also want to change or augment the default search path; this is accomplished by overriding Ab-
st ract Engi ne method cr eat ePr oper t ySour ce() . For example, some configuration data could be drawn from
a database.

Thefollowing table lists al the configuration values currently used in Tapestry.

Configuration Values

15

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

Chapter 4. Configuring Tapestry

org.apache.tapestry.template-extension
Overrides the default extension used to locate templates for pages or components. The default extension is
"html", this configuration property allows overrides where appropriate. For example, an application that pro-
duces WML may want to override thisto "wml".

This configuration property does not follow the normal search path rules. The <pr oper t y> must be provided in
the <page- speci fi cati on> or <conponent - speci fi cati on>. If no value is found there, the immediate
containing <appl i cati on>or <li brary-specificati on>ischecked. If still not found, the default is used.

org.apache.tapestry.asset.dir, org.apache.tapestry.asset. URL
These two values are used to handle private assets. Private assets are assets that are stored on the classpath, and
not normally visible to client web browsers.

By specifying these two configuration values, Tapestry can export private assets to a directory that is visible to
the client web browser. The URL value should map to the directory specified by the di r value.

org.apache.tapestry.visit-class
The fully qualified class nameto instantiate as the Visit object.

If not specified, an instance of HashMap will be created.

org.apache.tapestry.default-page-class
By default, any page that omits the cl ass attribute (in its <page- speci fi cati on>) will be instantiated as
BasePage. If thisis not desired, the default may be overridden by specifying afully qualified class name.

org.apache.tapestry.engine-class
The fully qualified class name to instantiate as the application engine. This configuration value is only used
when the application specification does not exist, or fails to specify a class. By default, BaseEngi ne is used if
this configuration value is also left unspecified.

org.apache.tapestry.global-class
The fully qualified class name to instantiate as the engine gl obal property. The Global object is much like
Visit object, except that it is shared by al instances of the application engine rather than being private to any
particular session. If not specified, a synchronized instance of HashMap is used.

org.apache.tapestry.default-script-language
The name of a BSF-supported language, used when a <l i st ener - bi ndi ng> element does not specify alan-
guage. If not overridden, the default is "jython".

org.apache.tapestry.enable-reset-service
If not specified as "true", then the r eset service will be non-functional. The reset service is used to force the
running Tapestry application to discard all cached data (including templates, specifications, pooled objects and
more). This must be explicitly enabled, and should only be used in development (in production, it is too easily
exploited as adenial of service attack).

Unlike most other configuration values, this must be specified as a VM system property.

org.apache.tapestry.disable-caching
If specified (as "true"), then the framework will discard all cached data (specifications, templates, pooled ob-
jects, etc.) at the end of each request cycle.

This slows down request handling by a noticable amount, but is very useful in deviopment; it means that
changes to templates and specifications are immediately visible to the application. It also helps identify any er-
rors in managing persistent page state.

This should never be enabled in production; the performance hit is too large. Like
org. apache. t apestry. enabl e-reset - servi ce, thismust be specified asa VM system property.

16

url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)
url(http://jakarta.apache.org/bsf/)

Chapter 4. Configuring Tapestry

Application Extensions

Tapestry is designed for flexibility; this extends beyond simply configuration behavior, and encompasses actually
replacing or augmenting behavior. In some cases, it is necessary to subclass framework classes in order to alter be-
havior, but in many cases, it is possible to use an application extension.

Application extensions are JavaBeans declared in the application specification using the <ext ensi on> element.
Each extension consists of a name, a Java class to instantiate, and an optional configuration (that is, properties of the
bean may be set). The framework has a finite number of extension points. If an extension bean with the correct name
exists, it will be used at that extension point.

Each application extension must implement an interface particular to the extension point.

Application Extension Points

org.apache.tapestry.property-source (I Pr opert ySour ce)
This extension is fit into the configuration property search path, after the serviet context, but before VM sys-
tem properties. A typical use would be to access some set of configuration properties stored in a database.

org.apache.tapestry.request-decoder (I Request Decoder)
A request decoder is used to identify the actual server name, server port, scheme and request URI for the re-
guest. In some configurations, a firewall may invalidate the values provided by the actual Htt pSer vl et Re-
quest (the values reflect the internal server forwarded to by the firewall, not the actual values used by the ex-
ternal client). A request decoder knows how to determine the actual values.

org.apache.tapestry.monitor-factory (I Moni t or Fact ory)
An object that is used to create | Moni t or instances. Monitors are informed about key application events (such
as loading a page) during the processing of arequest.

The factory may create a new instance for the request, or may simply provide access to a shared instance.
If not specified, a default implementation is used (Def aul t Moni t or Fact ory).

org.apache.tapestry.specification-resolver-delegate (1 Speci fi cati onResol ver Del egat e)
An object which is used to find page and component specifications that are not located using the default search
rules. The use of thisis open-ended, but is generally useful in very advanced scenarios where specifications are
stored externally (perhapsin a database), or constructed on the fly.

org.apache.tapestry.template-source-delegate (I Tenpl at eSour ceDel egat e)
An object which is used to find page or component templates that are not located using the default search rules.
The use of thisis open-ended, but is generally useful in very advanced scenarios where templates are stored ex-
ternally (perhapsin adatabase), or constructed on the fly.

org.apache.tapestry.multipart-decoder (1 Mul ti part Decoder)
Allows an alternate object to be responsible for decoding multipart requests (context type multipart/form-data,
used for file uploads). Generdly, this is used to configure an instance of Def aul t Mul ti part Decoder with
non-default values for the maximum upload size, threshold size (number of bytes before atemporary fileis cre-
ated to store the) and repository directory (where temporary files are stored).

17

url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/request/IRequestDecoder.html)
url(../api/org/apache/tapestry/engine/IMonitorFactory.html)
url(../api/org/apache/tapestry/engine/IMonitor.html)
url(../api/org/apache/tapestry/engine/DefaultMonitorFactory.html)
url(../api/org/apache/tapestry/resolver/ISpecificationResolverDelegate.html)
url(../api/org/apache/tapestry/engine/ITemplateSourceDelegate.html)
url(../api/org/apache/tapestry/multipart/IMultipartDecoder.html)
url(../api/org/apache/tapestry/multipart/DefaultMultipartDecoder.html)

Appendix A. Tapestry Specification DTDs

This appendix describes the four types of specifications used in Tapestry.

Table A.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID
Application application <appl i cati on> -// Apache Soft- |http://jakarta.a
war e Foundati on/ |pache. org/t apest
[Tapestry Speci - ryl
fication 3.0//EN dtd/
Tapestry_3_0.dtd
Page page page- |-/ / Apache Soft- |[http://jakarta.a
<speci fication> |ware Foundation/ |pache. org/tapest
[Tapestry Speci - ryl
fication 3.0//EN dtd/
Tapestry_3_0.dtd
Component jwe conponent - |-// Apache Soft- |http://jakarta.a
<speci fication> |ware Foundation/ |pache. org/tapest
| Tapestry Speci - ryl
fication 3.0//EN dt d/
Tapestry_3_0.dtd
Library library library-|-//Apache Soft-|http://jakarta.a
<speci fication> |ware Foundation/ |pache. org/tapest
[Tapestry Speci - ryl
fication 3.0//EN dt d/
Tapestry_3_0.dtd
Script script <script> -/ 1 Apache Soft- [http://jakarta.a
war e Foundati on/ |pache. or g/t apest
| Tapestry Scri pt ryl
Specification dt d/
3.0//EN Script_3_0.dtd
The four general Tapestry specifications (<application>, <conponent-specification> page-

<speci fication>and<library-specification>)al sharethe same DTD, but use different root elements.

<appl i cati on> element

root element

The application specification defines the pages and components specific to a single Tapestry application. It also de-
fines any libraries that are used within the application.

Figure A.l. <appl i cati on> Attributes

Name Type Required ? Default Value Description

name string no User presentable
name of application.

engine-class string no Name of an imple-
mentation of

18

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

| Engi ne to instanti-
ate. Defallts to
BaseEngi ne if not
specified.

Figure A.2. <appl i cat i on> Elements

<descri ption>? <property>*,
(<page> | <component - t ype> | <servi ce> | <l i brary> | <ext ensi on>) *

<bean> element
Appearsin: <conmponent - speci fi cati on> and <page- speci fi cati on>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a nhamed Jav-
aBean that isinstantiated on demand. Beans are accessed through the OGNL expression beans. nane.

Once a bean is instantiated and initialized, it will be retained by the page or component for some period of time,
specified by the bean's lifecycle.

bean lifecycle

none
The bean is not retained, a new bean will be created on each access.

page
The bean isretained for the lifecycle of the page itself.

render
The bean is retained until the current render operation completes. This will discard the bean when a page or
form finishes rewinding.

request
The bean isretained until the end of the current request.

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a page within a
particular VM. Consecutive requests may be processed using different instances of the page, possibly in different
JVMs (if the application is operating in a clustered environment). No state particular to a single client session should
be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be configured
using the <set - pr oper t y> and <set - nessage- pr oper t y> elements.

Figure A.3. <bean> Attributes

19

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes The name of the bean,
which must be avalid
Javaidentifier.

class string yes The name of the class
to instantiate.

lifecycle none| page| r ender |no request As described above;

| request duration that bean is

retained.

Figure A.4. <bean> Elements

<descri ption>? <property>*,
(<set - property> | <set - nessage- property>)*

<bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to an OGNL expression rooted in its container.
In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

If the expr essi on attribute is omitted, then the body of the element is used. This is useful when the expression is
long, or contains problematic characters (such as a mix of single and double quotes).

Figure A.5. <bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

expression string yes The OGNL expres-

sion, relative to the
container, to be bound
to the parameter.

<conponent > element
Appearsin: <conponent - speci fi cati on>and <page- speci fi cati on>
Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression conponent s. i d.

20

Appendix A. Tapestry Specification DTDs

Figure A.6. <conponent > Attributes

Name Type Required ? Default Value Description

id string yes Identifier for the com-
ponent here and in the
component's templ ate.
Must be a valid Java

identifier.

type string no A component type to
instantiate.

copy-of string no The name of a previ-

oudly defined compo-
nent. The type and
bindings of that com-
ponent will be copied
to this component.

inherit-infor- |yes| no no no If yes, then any in-
mal-parameters formal parameters of
the containing com-
ponent will be copied
into this component.

Either t ype or copy- of must be specified.

A component type is either a simple name or a qualified name. A simple name is the name of an component either
provided by the framework, or provided by the application (if the page or component is defined in an application), or
provided by the library (if the page or component is defined in alibrary).

A qualified nameisalibrary id, a colon, and a smple name of a component provided by the named library (for ex-

ample, contri b: Pal ette). Library ids are defined by a <l i br ar y> element in the containing library or applica
tion.

Figure A.7. <conponent > Elements

<property>*,
(<bi ndi ng> | <i nheri t ed- bi ndi ng> | <l i st ener - bi ndi ng> | <st ati c- bi ndi ng> | <nessage- bi ndi ng>) *
<conponent -t ype> element

Appearsin: <appl i cati on>and <l i brary-specification>

Defines a component type that may latter be used in a <conponent > element (for pages and components also de-
fined by this application or library).

Figure A.8. <conponent - t ype> Attributes

21

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

type string yes A name to be used as
acomponent type.

specification-path string yes An absolute or rela-

tive resource path to
the component's spec-
ification (including
leading slash and file
extension). Relative
resources are evalu-
ated relative to the lo-
cation of the contain-
ing application or li-
brary specfication.

<conponent - speci fi cati on> element
root element
Defines anew component, in terms of its APl (<par amet er >s), embedded components, beans and assets.
The structure of a <conponent - speci fi cati on> is very similar to a <page- speci fi cati on> except compo-

nents have additional attributes and elements related to parameters.

Figure A.9. <conponent - speci fi cati on> Attributes

Name Type Required ? Default Value Description

class string no The Java class to in-
stantiate, which must
implement the inter-
face | Conponent . If
not specified, BaseC
onponent isused.

allow-body yes| no no yes
If yes, then any body
for this component,
from its containing
page or component's
template, is retained
and may be produced
using a Render Body
component.

If no, then any body
for this component is
discarded.

alow-infor-|yes| no no yes
mal-parameters If yes, then any in-
formal parameters
(bindings that don't
match a forma pa

22

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../ComponentReference/RenderBody.html)

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

rameter) specified
here, or in the compo-
nent's tag within its
container's template,
are retained. Typi-
caly, they are con-
verted into additional
HTML attributes.

If no, then informal
parameters are not al-
lowed in the specifi-
cation, and discarded
if in the template.

Figure A.10. <conponent - speci fi cati on> Elements

<descri ption>? <paramet er>*, <reser ved- par anet er > *, <property>*,
(<bean> | <conmponent > | <ext er nal - asset > | <cont ext - asset > | <pri vat e- asset > | <property- speci fi cati on>)*

<confi gur e> element
Appearsin: <ext ensi on>
Allows a JavaBeans property of the extension to be set from a statically defined value. The <conf i gur e> element

wraps around the static value. The value is trimmed of leading and trailing whitespace and optionally converted to a
specified type before being assigned to the property.

Figure A.11. <confi gur e> Attributes

Name Type Required ? Default Value Description
property-name string yes The name of the ex-
tension property to
configure.
type bool ean|int||ong |no String The conversion to ap-
| doubl e| String ply to the value.
value no The value to config-

ure, which will be
converted before be-
ing assigned to the
property. If not pro-
vided, the character
data wrapped by the
element is used in-
stead.

23

Appendix A. Tapestry Specification DTDs

<cont ext - asset > element

Specifies an asset located relative to the web application context root folder. Context assets may be localized.
Assets for an instantiated component (or page) may be accessed using the OGNL expression asset s. nane.
The path may be either absolute or relative. Absolute paths start with a leading slash, and are evalulated relative to

the context root. Relative paths are evaluated relative to the application root, which is typically the same as the con-
text root (the exception being a WAR that contains multiple Tapestry applications, within multiple subfolders).

Figure A.12. <cont ext - asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a
valid Javaidentifier.

path string yes The path to the asset.

<descri pti on> element
Appears in: many

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE to provide
help. The Tapestry Inspector may also display a description.

The descriptive text appears inside the <descri pti on> tags. Leading and trailing whitespace is removed and inte-
rior whitespace may be altered or removed. Descriptions should be short; external documentation can provide
greater details.

The<descri pti on> element has no attributes.

<ext ensi on> element
Appearsin: <appl i cati on>and <l i brary-specification>

Defines an extension, a JavaBean that is instantiated as needed to provide a global service to the application.

Figure A.13. <ext ensi on> Attributes

Name Type Required ? Default Value Description

name string yes A name for the exten-
sion, which can (and
should) look like a
qualified class name,
but may also include
the dash character.

class string yes The Java class to in-
stantiate. The class
must have a zero-
arguments construc-

24

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description
tor.
immediate yes| no no no If yes, the extension

is instantiated when
the gpecification is
read. If no, then the
extension is not cre-
ated until first needed.

Figure A.14. <conponent - speci fi cati on> Elements

<property>*, <configure>*

<ext er nal - asset > element

Appearsin: <conponent - speci fi cati on> and <page- speci fi cati on>

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same web server
as the application, or may be a complete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression asset s. nane.

Figure A.15. <ext er nal - asset > Attributes

Name Type Required ? Default Value Description

name string yes A name for the asset.
Asset names must be
valid Javaidentifiers.

URL string yes The URL used to ac-
cess the asset.

<i nheri t ed- bi ndi ng> element

Appearsin: <conponent >

Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Figure A.16. <i nheri t ed- bi ndi ng> Attributes

Name

Type

Required ?

Default Value

Description

name

string

yes

The name of the pa
rameter to bind.

25

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

parameter-name string yes The name of a param-
eter of the containing
component.

<l'i brary> element
Appearsin: <appl i cati on>and <l i brary-specification>

Establishes that the containing application or library uses components defined in another library, and sets the prefix
used to reference those components.

Figure A.17.<li br ary> Attributes

Name Type Required ? Default Value Description

id string yes The id associated
with the library. Com-
ponents within the li-
brary can be refer-
enced with the com-
ponent typei d: nane.

specification-path string yes The complete re-
source path for the li-
brary specification.

<l i brary-specification>element
root element

Defines the pages, components, services and libraries used by alibrary. Very similar to <appl i cat i on>, but with-
out attributes related application name or engine class.

The<library-specificati on>element has no attributes.

Figure A.18. <l i brary-speci fi cati on> Elements

<descri ption>? <property>*,
(<page> | <conmponent - t ype> | <servi ce> | <l i brary> | <ext ensi on>) *

<l i st ener - bi ndi ng> element
Appearsin: <conponent >
A listener binding is used to create application logic, in the form of a listener (for a Di r ect Li nk, Acti onLi nk,

For m etc.) in place within the specification, in a scripting language (such as Jython or JavaScript). The script itself
is the wrapped character datafor the <l i st ener - bi ndi ng> element.

26

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(http://www.jython.org)

Appendix A. Tapestry Specification DTDs

When the listener is triggered, the script is executed. Three beans, page, conponent and cycl e are pre-declared.

The page is the page activated by the request. Usualy, this is the same as the page which contains the conponent
... infact, usually page and conponent areidentical.

The conponent is the component from whose specification the binding was created (that is, not the Di r ect Li nk,
but the page or component which embedsthe Di r ect Li nk).

Thecycl e isthe active request cycle, from which service parameters may be obtained.

Figure A.19. <l i st ener - bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the lis-
tener parameter to
bind.

language string no The name of a -

BSFsupported lan-
guage that the script
is written in. The de-
fault, if not specified,
isj yt hon.

<nmessage- bi ndi ng> element
Appearsin: <conponent >
Binds a parameter of an embedded component to alocalized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Figure A.20. <nessage- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

key string yes The localized prop-
erty key to retrieve.

<page> element
Appearsin: <appl i cati on>and<l i brary-specification>

Defines a page within an application (or contributed by alibrary). Relates alogical name for the page to the path to
the page's specification file.

27

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/DirectLink.html)
url(http://jakarta.apache.org/bsf/)

Appendix A. Tapestry Specification DTDs

Figure A.21. <page> Attributes

Name Type Required ? Default Value Description

name string yes The name for the
page, which must
start with a letter, and
may contain letters,
numbers, underscores
and the dash charac-
ter.

specification-path string yes The path to the page's
specification, which
may be absolute (start
with a leading dash),
or relative to the ap-
plication or library
specification.

<page- speci fi cati on> element
root element

Defines a page within an application (or a library). The <page- speci fi cati on> is a subset of conponent -
<speci fi cat i on> with attributes and entities related to parameters removed.

Figure A.22. <page- speci fi cati on> Attributes

Name Type Required ? Default Value Description

class string no The Java class to in-
stantiate, which must
implement the inter-
face | Page. Typi-
caly, thisis BaseP-
age or a subclass of
it. BasePage is the
default if not other-
wise specified.

Figure A.23. <page- speci fi cati on> Elements

<descri ption>? <property>?*,
(<bean> | <conponent > | <ext er nal - asset > | <cont ext - asset > | <pri vat e- asset > | <property- speci fi cati on>)*

<par anet er > element

28

url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Appendix A. Tapestry Specification DTDs

Appearsin: <conponent - speci fi cati on>

Defines a formal parameter of a component. Parameters may be connected (i n, f or mor aut o) or unconnected
(cust om. If aparameter is connected, but the class does not provide the property (or does, but the accessors are ab-
stract), then the framework will create and use a subclass that contains the implementation of the necessary property.

For aut o parameters, the framework will create a synthetic property as a wrapper around the binding. Reading the
property will read the value from the binding and updating the property will update the binding value. aut o may
only be used with required parameters. aut o is less efficient than i n, but can be used even when the component is

not rendering.

Figure A.24. <par anet er > Attributes

Name

Type

Required ?

Default Value

Description

name

string

yes

The name of the pa-
rameter, which must
be avalid Java identi-
fier.

type

scalar name, or class
name

no

Required for con-
nected parameters.
Specifies the type of
the JavaBean property
that a connected pa-
rameter writes and
reads. The property
must match this exact
value, which can be a
fully specified class
name, or the name of
ascalar Javatype.

required

yes| no

no

no

If yes, then the pa
rameter must be
bound (though it is
possible that the bind-
ing's value will still
be null).

property-name

string

no

For connected param-
eters only; alows the
name of the property
to differ from the
name of the parame-
ter. If not specified,
the property name
will be the same as
the parameter name.

direction

i n|] form aut o] cus
tom

no

custom

Identifies the seman-
tics of how the pa
rameter is used by the
component. cust om
the default, means the
component explicitly
controls reading and
writing values

29

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description
through the binding.

in means the prop-
erty is set from the
parameter before the
component renders,
and is reset back to
default value after the
component renders.

f or m means that the
property is set from
the parameter when
the component ren-
ders (as with in).
When the form is sub-
mitted, the value is
read from the prop-
erty and used to set
the binding value af-
ter the component
rewinds.

auto creates a syn-
thetic property that
works with the bind-
ing to read and up-
date. auto parame-
ters must be required,
but can be used even
when the component
is not rendering.

default-value OGNL expression no Specifies the default
value for the parame-
ter, if the parameter is
not bound.

<privat e- asset > element

Specifies located from the classpath. These exist to support reusable components packages (as part of a | i brary-
<speci fi cati on>) packaged in a JAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression asset s. nane.

The resource path may either be complete and absolute, and start with a leading slash, or be relative. Relative paths
are evaluated relative to the location of the containing specification.

Figure A.25. <pri vat e- asset > Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be a

30

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description
valid Javaidentifier.
resource-path string yes The absolute or rela-
tive path to the asset
on the classpath.

<pr operty> element
Appearsin: many
The <pr opert y> element is used to store meta-data about some other element (it is contained within). Tapestry ig-

nores this meta-data Any number of name/value pairs may be stored. The value is provided with the val ue at-
tribute, or the character data for the <pr oper t y> element.

Figure A.26. <pr oper t y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the prop-
erty.

value string no The vaue for the

property. If omitted,
the vaue is taken
from the character
data (the text the tag
wraps around). If
specified, the charac-
ter dataisignored.

<property-specification>element
Appearsin: <conponent - speci fi cati on>, <page- speci fi cati on>
Defines a transient or persistent property to be added to the page or component. Tapestry will create a subclass of
the page or component class (at runtime) and add the necessary fields and accessor methods, as well as end-
of-request cleanup.
It is acceptible for a page (or component) to be abstract, and have abstract accessor methods matching the names
that Tapestry will generate for the subclass. This can be useful when setting properties of the page (or component)
from alistener method.

A connected parameter specified in a<par anet er > element may also cause an enhanced subclass to be created.

An initial value may be specified as either the i ni ti al - val ue attribute, or as the body of the property-
<speci fi cati on> element itself.

Figure A.27. <pr oper ty- speci fi cati on> Attributes

31

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes The name of the prop-
erty to create.

type string no java.lang.Object The type of the prop-

erty. If abstract acces-
sors exist, they must
exactly match this
type. The type may be
either afully qualified
class name, or the
name of one of the
basic scalar types.

persistent yes| no no no If true, the generated
property will be per-
sistent, firing change
notifications when it
is updated.

initial-value string no An optiona OGNL
expression used to
initialize the property.
The expression is
evaluated only when
the page is first con-
structed.

<r eser ved- par anet er > element
Appearsin: <conmponent - speci fi cati on>

Used in components that allow informal parameters to limit the possible informal parameters (so that there aren't
conflictswith HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved parameter named
"src" (or any variation), and be excluded.

Figure A.28. <r eser ved- par anmet er > Attributes

Name Type Required ? Default Value Description

name string yes The name of the re-
served parameter.

<servi ce> element
Appearsin: <appl i cati on>and <l i brary-specification>

Definesan | Engi neSer vi ce provided by the application or by alibrary.

32

url(../api/org/apache/tapestry/IEngineService.html)

Appendix A. Tapestry Specification DTDs

The framework provides several services (home, direct, action, external, etc.). Applications may override these ser-
vices by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the name) to
avoid name collisions.

Figure A.29. <ser vi ce> Attributes

Name Type Required ? Default Value Description

name string yes The name of the ser-
vice.

class string yes The complete class

name to instantiate.
The class must have a
zero-arguments con-
structor and imple-
ment the interface
| Engi neServi ce

<set - message- propert y> element
Appearsin: <bean>

Allows a property of ahelper bean to be set to alocalized string value of its containing page or component.

Figure A.30. <set - message- pr opert y> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

key string yes A string property key
of the containing page
or component.

<set - propert y> element
Appearsin: <bean>

Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing component or
page).

The value to be assigned to the bean property can be specified using the expr essi on attribute, or as the content of
the <set - pr opert y> element itself.

Figure A.31. <set - pr opert y> Attributes

33

url(../api/org/apache/tapestry/IEngineService.html)

Appendix A. Tapestry Specification DTDs

Name Type Required ? Default Value Description

name string yes The name of the
helper bean property
to set.

expression string no The OGNL expres-
sion used to set the
property.

<st ati ¢- bi ndi ng> element

Appearsin: <conponent >

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is specified as
the val ue attribute, or as the wrapped contents of the <st at i c- bi ndi ng> tag. Leading and trailing whitespace is

removed.

In an instantiated component, bindings can be accessed with the OGNL expression bi ndi ngs. nane.

Figure A.32. <st ati c- bi ndi ng> Attributes

Name Type Required ? Default Value Description

name string yes The name of the pa-
rameter to bind.

value string no The string value to be

used. If omitted, the
wrapped character
data is used instead
(which is more con-
vienient if the valueis
large, or contains
problematic punctua-
tion).

Appendix B. Tapestry Script Specification
DTD

Tapestry Script Specifications are frequently used with the Scri pt component, to create dynamic JavaScript func-
tions, typically for use as event handlers for client-side logic.

Theroot element is<scri pt >.

A script specifcation is a kind of specialized template that takes some number of input symbols and combines and
mani pulates them to form output symbols, as well as body and initialization. Symbols may be simple strings, but are
also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${ OGNL expr essi on} . The ex-
pression is evaluated relative to a Map of symbols.

<body> element
Appearsin: <scri pt >

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically declared.
This body will be passed to the Body component for inclusion in the page.

Figure B.1. <body> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

<f or each> element
Appearsin: many

An element that renders its body repeatedly, much like a For each component. An expression supplies a collection
or array of objects, and its body is rendered for each element in the collection.

Figure B.2. <f or each> Attributes

Name Type Required ? Default Value Description

key string yes The symbol to be up-
dated with each suc-
cessive value.

expression string yes The OGNL expres-

sion which provides
the source of €e
ments.

index string no If specified, then the
named symbol is up-
dated with each suc-
cessive index.

35

url(../ComponentReference/Script.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)

Appendix B. Tapestry Script Specification DTD

Figure B.3. <f or each> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

<i f > element
Appears in: many

Conditionally rendersits body, if asupplied OGNL expressionistrue.

FigureB.4. <i f > Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-
sion to be evaluated.
FigureB.5. <i f > Elements
(text |<foreach>|<if>]|<if-not>|<unique>)*
<i f - not > element

Appearsin: many

Conditionally renders its body, if a supplied OGNL expression isfalse.

FigureB.6. <i f - not > Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-

sion to be evaluated.

FigureB.7. <i f - not > Elements

(text |<foreach>|<if>|<if-not>|<unique>)*

36

Appendix B. Tapestry Script Specification DTD

<i ncl ude-scri pt > element
Appearsin: <scri pt >

Used to include a static JavaScript library. A library will only be included once, regardless of how many different
scripts reference it. Such libraries are located on the classpath.

FigureB.8. <i ncl ude- scri pt > Attributes

Name Type Required ? Default Value Description
resource-path string yes The location of the
JavaScript library.

<initialization>element
Appearsin: <scri pt >

Defines initialization needed by the remainder of the script. Such initiaization is placed inside a method invoked
from the HTML <body> element's onl oad event handler ... that is, whatever is placed inside this element will not
be executed until the entire page is loaded.

FigureB.9.<i ni tial i zati on> Elements

(text |<foreach>|<if>|<if-not>]|<unique>)*

<i nput - synbol > element
Appearsin: <scri pt >

Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. Asthe script exe-
cutes, it uses the input symbols to create new output symbols, redefine input symbols (not a recommended practice)
and define the body and initialization.

This element alows the script to make input symbols required and to restrict their type. Invalid input symbols
(missing when required, or not of the correct type) will result in runtime exceptions.

FigureB.10. <i nput - synmbol > Attributes

Name Type Required ? Default Value Description

key string yes The input symbol to
be checked.

class string no If specified, thisisthe

complete, qualified
class name for the
symbol. The provided
symbol must be
assignable to this

37

Appendix B. Tapestry Script Specification DTD

Name

Type

Required ?

Default Value

Description

class (be a subclass,
or implement the
specified class if the
specified class is ac-
tually an interface).

required

yes |

no

no

no

If yes, then a non-
null value must be
specified for the sym-
bol.

<| et > element

Appearsin: <scri pt >

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with leading and trail-
ing whitespace removed).

FigureB.11. <I et > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

unique boolean yes| no no If yes, then the string

is ensured to be
unique (by possibly
adding a suffix) be-
fore being assigned to
the symbol.

FigureB.12. <l et > Elements

(text |<foreach>|<if>]|<if-not>|<unique>)*

<scri pt > element

Root element

Theroot element of a Tapestry script specification.

FigureB.13. <scri pt > Elements

<i ncl ude- scri pt>*, <i nput - synbol > *,

38

Appendix B. Tapestry Script Specification DTD

(<l et>|<set >) *,
<body>?,<initialization>?

<set > element
Appearsin: <scri pt >

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using an OGNL ex-
pression.

FigureB.14. <set > Attributes

Name Type Required ? Default Value Description

key string yes The key of the sym-
bol to define.

expression string yes The OGNL expres-
sion to evaluate.

<uni que> element
Appearsin: many

Creates a block whose contents are contributed only once, no matter how many times the block is evaluated during
the rendering of a single page.

Figure B.15. <uni que> Elements

(text |<foreach>|<if>]|<if-not>]|<uni que>)*

39

