Tapestry Contributor's Guide
Howard Lewis Ship

Tapestry Contributor's Guide
Howard Lewis Ship
Copyright © 2002, 2003 The Apache Software Foundation

Table of Contents

O 1 1 T [Tox 1 o o 1
2.8V S A LSS . . ettt ettt e et e e eans 2
B BUIIAING TAPESITY ...ttt et e e e et e et e e et e eean e eeaes 5
QLI 01 TS U o] {0 = ot £ 5
T TH o O = = £ 6
[ool g g1 = 0] S (o T 6
(O [0y S (U] o PP 7
4. Devel OPMENT SEBNAAITSc.veueiieri et et e ettt e ettt e e e et e e eere e eees 8
USEOF SIOBSYMDIOL ...ttt st e e e e e eeee e 8
TYPECOMIMENE ...ttt e e e e e e e e e et e e e et e e e an 8
JAVADIOC ...ttt et 8
7= Y= U001 o] 10T 1] o [9
NEMINGCONVENLIONS ...ttt e ettt e et e et e e et e e e eabe e e e eabe e e eeetanaeeens 10
5. Tapestry REI@ase NUMDENNGoiiiiiiiiiii e 12
6. DeVElOPMENT PrOCEAUIESc.u ettt et e e et e eea e aeees 13
Deprecatingmethodsand ClasseS........ccuvveiiiii e 13
00 T 1= TSP 13
(Dol 041= o1 = [o H PP 16
CompoNeNt DOCUMENTBLIONceevtieeeeii ettt ettt e e e e e e e e eaaans 16
CheCKiNPIOCEAUIES ... it eaes 17
CreatiNg EXAMPIESceiei e et 19
L0 oTo = T a0 [@X0] o)/ 1] 1 £ 19

List of Figures

2.1. Eclipse: JavaClasspath PreferenCeSovvvuiiiii e e
2.2. Eclipse: New CV S RePOSITONY LOCAHONuueiiieeiieeei e s ee e ee e e e e e e e e e e e e eeenas
2.3. EClipse: CheCKk OUL PIOJECEc.vu ittt e e e e

4.1. Type Comment

4.2. Eclipse: JavaCode Formatting PreferenCeso.ve e
6.1. Component Documentation TEMPIALEcveuiiiiiiii i e
6.2. EClipSe: TEAM PIEfEIENCES . .ovuiiii i eii et e e e e e e e e et e e eaneeees

List of Examples

6.1. Example checkin comment

Vi

Chapter 1. Introduction

This document is a guide to developers who want to go beyond merely developing applications using
Tapestry, and want to extend and improve Tapestry itself.

Tapestry has benefitted over the first two years of its development from having a focused vision and,
predominantly, a single developer. At the time of this writing, May 2002, the Tapestry community is
truly coming alive, with new developers contributing fixes, components and documentation.

The goal isto maintain the stability of Tapestry even asit shifts from a one-man-show to a true commu-
nity effort. Meanwhile it is vitally important to not to sacrifice quality in either code or documentation if
Tapestry isto stay on track.

Contributing to Tapestry requires a commitment to produce excellent code, examples and documenta-
tion. In fact, proper documentation in JavaDoc and as updates to the tutorials and manuals represents the
dominant amount of effort when contributing to Tapestry.

Chapter 2. CVS Access

Using Eclipse, obtaining the source code takes only a few steps. Tapestry compiles using some libraries

from JBoss 3.0.6 and Jetty 4.x which must be downloaded first.

Eclipse must be configured with the location of JBoss, this is done from the preferences panel. A new

entry for JBOSS_DI R should be added.

Figure 2.1. Eclipse: Java Classpath Preferences

[
1= Preferences

+-Instalf/Update
= Java
[+ Appearance

- Classpath Variab
- Code Formatter
- Code Generation

Classpath Variables

A classpath variable can be added to a project's class path. It can be
used to define the location of a JAR fie that isn't part of the workspace.
The reserved dass path variables JRE_LIB, JRE_SRC, JRE_SRCROQT are

set internally depending on the JRE setting.
Defined classpath variables:

= gc;r;upéler = ECLIPSE_HOME - C:\edlipse New. .
+ Editor = HIBERNATE_DIR - C:\Work\hibernate-1.2
Installed JREs ~21B0SS_DIR - C:\Work\jboss-3.0.6 Edit..
- Javadoc & JDK_DIR - C:\j2sdk1.4.1_01
ont @ JETTY_DIR - C:\Work\Jetty4.2.8 E—
, {8k JRE_LIB (reserved) - C:\j2sdk1.4.1_01\jre\lb\rt.jar -
- New P_mJECt {i#h JRE_SRC (reserved) - C:\j2sdk1.4.1_01\src.zip
~Organze Import | |55 1R SRCROOT (reserved) - (empty)
- Refactoring & JYTHON_DIR - C:\Work\Jython21
- Task Tags @ _ORG_ECLIPSE_IDT_SOURCE - C:\edipse\plugins\org
Plug-In Developmer |z _ORG_ECLIPSE_PDE_SOURCE - C:\edlipse\plugins\org
SolarEclpse 3 _ORG_ECLIPSE_PLATFORM_SOURCE - C:\edlpse\plug
+ Team @& _ORG_ECLIPSE_PLATFORM_WIN32_SOURCE - C:\ed
- XML
< > L4 >
Import... Export... 0K Cancel

Activate the CV S Repositories view and use the context menu to create a new CV S Repository location.

Thisraisesapanel for defining connection information. Fill in your own Jakarta name and password:

Figure 2.2. Eclipse: New CV S Repository L ocation

url(http://www.jboss.org)
url(http://sf.net/projects/jetty/)

CVSAccess

4= Add CVS Repository

Add a new CVs Repository

Add a new CVS Repository to the CVS Repositories view

~ Location

Host: I cvs.apache.org

Repository path: I fhome/cvs

~Authentication

User: I hiship

Password: | FEEERER

~Connection

* Use Default Port

" Use Port: |

Connection type: Extssh b |

¥ Valdate Connection on Finish

Finish

Cancel

Next, open the new CVS Repository location. Expand the "HEAD" node, then scroll down to the
"jakarta-tapestry" module. Right click and select "Check Out As Project”.

Figure 2.3. Eclipse: Check Out Project

CVSAccess

b1 CVS Repositories

@@ jakarta-taglbs.bu
#-(& jakarta-taglbs-sandbox
B R
@ conf New
g Eunt Check Out As Project
DF Check Out As...
TEE ek Out
%G exar eck Out Into...
g ?rxt— Tag as Version...
an . .
[; mac Tag with Existing...
"'Ei" img- Compare With...
':i" JEE Compare
g JII'Emt 4~ Add to Branch List...
-G |
o
+ @ pack 4 Configure Branches and Versions...
Ei" SUPE ¢b Refresh View
#-@ web
B .dasspath 1.31
B .cvsignore 1.4

Eclipse will checkout the latest versions of all the Tapestry code and compile it.

Y ou can access the Tapestry repository using command line CV'S or other tools, as well. Details for us-
ing command line CVS are available at the Jakarta.

url(http://jakarta.apache.org)

Chapter 3. Building Tapestry

Tapestry is built using Ant 1.5. In addition, Tapestry includes the necessary control files to allow devel-

opment using the excellent open-source IDE, Eclipse.

To perform a full build from the command line, you must have JDK 1.3 or better installed, as well as

JBoss 3.0.6.

You must create the file conf i g/ bui | d. properti es (under the Tapestry root directory). Thisfile
defines a property, j boss. di r that identifies the full pathname to the JBoss installation and the Jetty

installation. A samplefileis provided.

Tip

Be sureto use forward slashes for the path name, even under Windows. Using backslashes,
the escape character in property files, will cause the build to fail, since Ant will be using

incorrect paths to the libraries obtained from the JBoss distribution.

Tapestry Subprojects

The Tapestry source tree contains multiple sub-projects, each in its own subdirectory, with its own Ant
build file and own source code tree. A root level build file (described in the next section) performs

builds over all sub-projects.

Tapestry Sub-Projects

f ramewor k
Contains the core framework, buildst apest ry-3. 0. j ar.

contrib
Buildst apestry-contri b-3.0.jar.

junit
Builds and runs JUnit tests.

exanpl es/ Wr kbench
Buildswor kbench. war .

exanpl es/ VI i bBeans
Buildsvl i bbeans. j ar, the EJBs used by the Virtual Library demonstration.

exanpl es/VIib
Buildsvl i b. war , the presentation layer of the Virtual Library demonstration.

exanpl es/ VI i bEAR
Buildsvl i b. ear fromvl i bbeans. jar andvli b. war.

doc/ src/ Devel oper sCui de

Builds the Tapestry Developer's Guide documentation. This guide is out of date, as is being re-

placed.
doc/ src/ User sGui de

Builds the Tapestry Users' Guide (the replacement for the Developer's Guide). This document is

url(http://ant.apache.org/)
url(http://www.eclipse.org)
url(http://www.jboss.org)
url(http://sf.net/projects/jetty/)

Building Tapestry

still incomplete. See, you just can't win.

doc/ src/ Cont ri but orsGui de
Builds this very documentation.

doc/ sr ¢/ Conponent Ref er ence
Builds the component reference documentation.

Build Targets

The following Ant build targets are available from the Tapestry root directory:

Root Targets

clean
Cleans each sub-project and deletes derived files (such as the Tapestry framework JAR and exam-

ples).

clean-all
Aswith cl ean, but also deletes al documentation.

documentation
Builds all documentation (see notes below).

install
Performs afull build, by re-invokingi nst al | in each sub-project.

javadoc
Creates Tapestry APl documentation.

junit
Runs all JUnit tests.

clover
Runs al JUnit tests and builds a code coverage report (using the Clover tool).

Documentation Setup

Tapestry documentation, including this manual, is aso generated using Ant. Documentation sourceisin
DocBook XML format, and uses XSL transformation to generate readable HTML. Tapestry uses Saxon
to generate HTML documentation, and FOP to generate PDF documentation.

» Download and unpack the Saxon distribution, release 6.5.2 exactly (later versions do not work).

» Obtain the latest copies of the two DocBook distributions and place the files in the ext - di st di-
rectory. Detailsareinthefiledoc/ sr ¢/ conmon/ Readne. ht m .

* Copy saxon. j ar intothe Ant!l i b directory.

» Update your ANT_OPTS environment variable to add the following two system properties:

url(http://www.junit.org)
url(http://www.junit.org)
url(http://docbook.sourceforge.net/)
url(http://sf.net/projects/saxon/)
url(http://xml.apache.org/fop/)
url(http://sf.net/projects/saxon/)

Building Tapestry

Djavax.xml.parsers.DocumentBuilderFactory=org.apache.crimson.jaxp.DocumentBuil derFactor
ylmpl

o -Djavax.xml.parsers.SA X ParserFactory=org.apache.crimson.jaxp.SA X ParserFactoryl mpl

» Download FOP 0.20.4 and unpack into a permanent directory.

e Update confi g/ buil d. properties andadd af op. di r entry, identifying the directory into
which you unpacked FOP. Be sure to use an absolute path name, and only forward slashes.

» Get acopy of JIMI (animaging package from Sun, needed by FOP to process PNG image files), and
unpack it to temporary directory.

e CopyJi m ProC asses. zi pintothe FOP/ | i b directory.

Clover Setup

Clover is a properietary tool that gathers code coverage information and generates reports from it. They
have kindly donated alicense for Clover to the Tapestry project.

To configure for clover:

* Get acopy of the Clover distribution. Cortex eBusiness has donated a copy of Clover to support
Tapestry. The distribution is available from Howard M. Lewis Ship.

» Extract the Clover distribution to a non-temporary directory.

* Modify confi g/ buil d. properties and add an entry for cl over. di r. As usual, provide
the absolute pathname to the Clover directory, using only forward slashes.

» Copyclover.jar totheAnt/1i b directory.

The Clover report executes from the j uni t directory, using the Ant target cl over. It builds the
clover-enhanced version of the framework classes, and executes the JUnit test suite twice (with al log-
ging enabled and then with all logging disabled), then generates the HTML report into the web/
doc/ cl over directory.

url(http://xml.apache.org/fop/)
url(http://java.sun.com/products/jimi/)
url(http://www.thecortex.net/clover)
url(http://www.thecortex.net/clover/)
url(http://www.thecortex.net/clover/)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)
url(mailto:hlship@apache.org)

Chapter 4. Development Standards

This chapter covers a number of standards, both in code and in procedure, expected by Tapestry contrib-
utors.

Use of Id Symbol

Every file checked into the CV S repository should have the $1d$ symbol inside a comment, near the top
of thefile. The $I d$ token is expanded by CV Sinto auseful header, identifying the revision of thefile,
date last changed, and name of last user to change thefile.

For example, the Id for this document is $l1d: ContributorsGuide.xm,v 1.23
2003/ 11/ 29 08:14: 11 mindbridge Exp $.

Type Comment

Each Javafile must have a complete and useful type comment. Type comments must come after all i m
port statements, and before the start of the class.

Figure4.1. Type Comment

*

A useful description of the class or interface, especially covering
how it is used, and what other classes or interfaces it interacts wth.

@ut hor Your Nane
@ersion ld
@i nce Version

* % F F X F F X

~

The Ver si on should be replaced with the numeric version number of the Tapestry release the type will
first appear in. This is the minor release number; for example, a change introduced in release
2. 3- bet a- 3 would beidentified as 2. 3.

JavaDoc

All methods should be commented, with the following exceptions:

» Simple accessor methods with no side-effects.

e Methodsthat are fully described by an interface and don't add any additional behaviors.

Parameters and return values should be identified. @ hr ows should identify when any checked excep-
tions are thrown; additional @ hr ows entries should describe any runtime exceptions that may also be

thrown.

Methods should always include a @i nce entry, unless the method was added as part of a new Java
class or interface, in which case the @i nce for the containing type is sufficient. Use the same version

Development Standards

number as type comments when adding individual methods.

Try not to skimp on the comment (it is often best to write the comment before writing any code).
Tapestry has some of the best documentation of any open source project and that should be maintained.
Remember to try and answer the question why?, which is always much more interesting and useful than
how? or what?.

It is appropriate to create JavaDoc comments for variables, even private variables (to at least provide an
@i nce value).

Collections (from package j ava. ut i |) should be documented to identify the type of object stored,
and for Map the type of key. Example: Li st of {@ink |Render}, or Map of {@ink
| Bi ndi ng} keyed on String nane.

When a method returns a collection type, the documentation should indicate if it is safe for the caller to
modify the collection or not. In general, it is best to always return an immutable copy of a collection, but
for efficiency thisis not always reasonable.

Also document any cases where a parameter is allowed to be null, or areturn value may be null.

And don't forget to make liberal use of JavaDoc links (@ i nk) which makes the documentation far eas-
ier to use.

Java Code Formatting

Ah, areligous issue. The most important things are to be consistent (an editor that indents code for you
is helpful) and to conform to the existing style when editting someone else's code.

Tapestry isformatted using spaces (not tabs), and an indent of four.
All the code currently in the repository has been formatted using the Eclipse IDE. My persona prefer-

ence is to include a newline before opening braces. In addition, a maximum line-length of 100 characters
has been used. These preferences are easy to setup in Eclipse:

Figure4.2. Eclipse: Java Code For matting Preferences

Development Standards

Code Formatter

Options for the Java Code Formatter:
New Lines | Line Sglittingl Style l
¥ Insert a new line before an opening brace
¥ Insert new lines in control statements
[Clear all blank lines

¥ Insert new line between 'else if
¥ Insert a new line inside an empty block

s

if (2ize < currentSize)

try

gize = (long) inStream.awvailable():

¥

catch (ICException e)

¥
H
el=e

if (2ize == currentSize) 2

Naming Conventions

Standard Java guidelines are expected to be followed. Class names are capitalized (example:
MyC ass). Methods start with alower-case character (example: ny Met hod).

Static final variables used as constants are in upper-case (example: MY_CONSTANT).

Private member variables (both instance and static) are named with a leading underscore (example:
_myVari abl e). Public member variables are to be avoided.

Namingin transition

:F I've resisted the leading underscore syntax for a long time; the rationale behind it is to
make it possible, at a glance, to visually seperate instance variables from local variables
and parameters. Previoudly, I've always maintained that the problem was methods that
were too large; lately I've changed my mind ... the underscore naming helps when debug-
ging and helps avoid a number of naming collisions.

At the time of this writing, 2.1-beta-1, very little of the code used the new naming. Over
time, mixed in with other bug fixes, renaming will occur (Eclipse helps with this greatly).
New code will be written to conform.

10

url(http://www.eclipse.org)

Development Standards

Interfaces in Tapestry are prefixed with the letter 'I' (example: | Request Cycl e). Implementations
(often in a different package) strip off the 'I' (example: Request Cycl e). Interfaces related to Jav-
aBean events do not start with an'l' (example: PageDet achlLi st ener).

Base classes, classes which are concrete and functional, but often extended, are prefixed with 'Base
(example: BaseConponent). Abstract classes are prefixed with 'Abstract’ (example: Ab-
st ract Engi ne). Classes which are functional and only rarely subclassed are often prefixed with 'De-
fault' (example: Def aul t Scri pt Sour ce).

The base package for the framework JAR (t apestry-3. 0.j ar) isor g. apache. t apestry. The
base package for the contrib JAR (tapestry-contrib-3.0.jar) is
org. apache.tapestry.contrib.

11

Chapter 5. Tapestry Release
Numbering

Tapestry release numbering is relatively simple, as long as you don't look back in time (the less man-
agable numbering system used through release 2.0.5 is described shortly).

Tapestry releases consist of amajor version, aminor version and aincremental version. The pattern na-
jor.mnor-increnental -i ndex isused, forexample: 2. 1, 2. 2- al pha-3 or 2. 3- bet a- 1.

The major version represents large-scale changes in the framework ... short of translating Tapestry to an-
other language (say, Python or Ruby), thisis not likely to happen again. Tapestry is currently in major
release 2.

The minor version represents a milestone release, encompassing the introduction of new functionality
and bug fixesin astable manner. 2. 1 or 2. 2 would be examples of milestone releases.

An incremental release represents a transition from one milestone release to the next. Incremental re-
leases are al pha, bet a or r ¢ (release candidate). Typicaly, after a milestone release there will be a
series of alpha, then beta, then rc releases, leading up to the next milestone release. A possible sequence
is2.1,2.2-al pha-1,2. 2-beta-1,2. 2-rc-1, 2. 2.

Typically, there will be severa incremental releases of the same type, humbered from 1 up. Alpha re-
leases contain significant functionality changes, beta releases represent bug fixes to those changes
(stabilizing the changes), and rc (release chandidate) releases are expected to be stable versions of the
next minor release (though any problems can spur further release candidates).

Through Tapestry release 2.0.5, numbering was a bit different. Under the modern scheme, 2.0.1 would
be named 2. 1- al pha- 1, 2.0.2 would be 2. 1- al pha- 2, and 2.0.5 would be 2. 1- bet a- 1. Mod-
ern release numbering beginswith 2. 1- bet a- 2 (the release immediately following 2.0.5).

12

Chapter 6. Development Procedures

This chapter defines procedures for development of Tapestry. This includes many things not directly re-
lated to coding, such as documentation and interacting with the CV S repository.

Deprecating methods and classes

Tapestry is being used by a increasingly large community of developers and it is necessary that they
have some stability in their development.

To that end, classes and methods must follow a developer-friendly lifecycle. If a method or class must
be deleted, it should be marked as deprecated in one minor release, and can be removed in the following
minor release.

For example, a method may be marked as deprecated in release 2.2-alpha-1. This change isn't consid-
ered "real" until release 2.2. The method can be removed any time after that, say in release 2.3-alpha-3,
and the removal becomes "rea"” in release 2.3.

Don't simply mark a method as deprecated, give the end-developer the information needed adapt their
code. Use the following template as part of the Javadoc comment:

@leprecated To be renoved in Version.
Use { @i nk Sonmed ass#soneMet hod(...)} instead.

It is also important for the changer to make the transition as simple as possible for the end-developer.
Base classes and default implementations should be changed to make use of the new API in such as way
that, at most, arecompile of the end-developer's classesis required.

Sometimes, changes require a lack of backwards compatibility. If a method has to change and the old
signature can't be maintained, then simply change it ... but be sure to document the change in the
Tapestry release notes (web/ new. ht m).

JuUnit Tests

Tapestry has an excellent JUnit test suite, with code coverage figures over 80% at the time of this writ-
ing (2.4-alpha-4). It is required that changes to the framework be accompanied by additional JUnit tests
(typically, mock tests; see below) to validate the changes. In addition, there is an ongoing effort to fill in
the gaps in the existing suite; the suite should reach over 90% code coverage.

In order to compile and run the JUnit test suite you need to download junit.jar and
j dom b8. j ar, and place them in the ext - di st directory. The official sites to download the li-
braries are listed in the README filein that directory.

Some of the JUnit tests now require Jython. You must download and install Jython 2.1, then configure
jython.dir inconfig/build. properti es topointtotheinstal directory. Asusual, use an ab-
solute path and forward slashes only. To run the JUnit test suite within Eclipse, you must set the
JYTHON_DI R classpath variable.

JUnit test source code is placed into the j uni t / sr ¢ source tree. The package name for JUnit tests is
org. apache. tapestry.junit.

Less than half of Tapestry is tested using traditional JUnit tests. The majority of JUnit testing occurs us-
ing a system of mock unit tests. Mock testing involves replacing the key classes of the Servliet AP

13

url(http://www.jython.org)

Development Procedures

Ht t pSer vl et Request, Ht t pSessi on, etc.) with out own implementations, with extensions that
allow for checks and validations. Instead of processing a series of requests over HTTP, the requests are
driven by an XML script file, which includes output checks.

Generally, each bit of functionality can be tested using its own mini-application. Create the application
asj uni t/ cont ext X. Thisis much easier now, using Tapestry 3.0 features such as dynamic lookup
of specifications and implicit components.

The Mock Unit Test Suite is driven by scripts (whose structure is described below). The suite searches
the directory j uni t / mock- scri pt s for fileswith the ".xml" extension. Each of these is expected to
be a test script. The order in which scripts are executed is arbitrary; scripts (and JUnit tests in general)
should never rely on any order of execution.

Test scripts are named Test Nane. xm .

Note

F The XML script is not validated, and invalid elements are generally ignored. The class
MockTest er performsthetest, and its capabilities are in fluxx, with new capabilities be-
ing added as needed.

A test script consists of an <npck- t est > element. Within it, the virtual context and servlet are de-
fined.

<nmpbck-t est >
<cont ext nanme="c6" root="context6"/>

<servl et name="app" cl ass="org. apache. tapestry. Applicati onServlet">
<i nit-parameter nanme="org.apache.tapestry. engi ne-cl ass"
val ue="or g. apache. tapestry.junit. mock. c6. C6Engi ne"/ >
</servl et>

The name for the context becomes the leading term in any generated URLS. Likewise, the servlet name
becomes the second term. The above example will generate URLSs that reference / c6/ app. Specifying
aroot for acontext identifies the root context directory (beneath the top level j uni t directory). In
this example, HTML templatesgo in cont ext 6 and specificationsgo in cont ext 6/ VEB- | NF.

Following the <ser vl et > and <cont ext > elements, a series of <r equest > elements. Each such
element simulates a request. A request specifies any query parameters passed as part of the request, and
contains a number of assertions that test either the results, generally in terms of searching for strings or
regular expressions within the HTML response.

<r equest >
<par anet er nane="servi ce" value="direct"/>
<par anet er nanme="cont ext" val ue="0/ Hore/ $Di r ect Li nk"/ >

<assert-output name="Page Title">
<! [CDATA[
<title>Persistant Page Property</title>

11>

</ assert - out put >

14

Development Procedures

Warning

Asin the above example, it is very important that HTML tags be properly escaped with the
XML CDATA construct.

Addingf ai | over ="t rue" tothe<r equest > simulates afailover. The contents of the Ht t pSes-
si on are serialized, then deserialized. This ensures that all the data stored into the Ht t pSessi on will
survive afailover to a new server within acluster.

All of the assertion elements expect a nane attribute, which is incorporated into any error message if
the assertion fails (that is, if the expected output is not present).

The <assert - out put > element checks for the presence of the contained literal output, contained
within the element. Leading and trailing whitespace is trimmed before the check is made.

<assert nanme="Session Attribute">
request . sessi on. get Attri but e("app/ Hone/ nessage”) . equal s(" Changed")
</ assert >

The<assert > element checks that the provided OGNL expression evaluates to true.

<assert-regexp nanme="Error Message">
<! [CDATA[
\s*You nust enter a value for Last Name\.\s*
1>

</ assert-regexp>

The<assert - r egexp> looksfor aregular expression in the result, instead of asimple literal string.

<assert - out put - mat ches nane="Sel ect ed Radi 0" subgroup="1">

<! [CDATA[

<i nput type="radi 0" nane="i nput Sex" checked="checked" value="(.*?)"/>
>

<mat ch>1</ mat ch>
</ assert - out put - mat ches>

The <assert - out put - mat ches> is the most complicated assertion. It contains a regular expres-
sion which is evaluated. For each match, the subgroup value is extracted, and compared to the next
<mat ch> value. Also, the count of matches (vs. the number of match elements) is checked.

<assert-out put - stream nane="Asset Content"
content-type="i mage/ gi f"
pat h="f oo/ bar/ baz.gi f"/>

The <assert - out put - st r ean> element is used to compare the entire response to a static file (this

15

Development Procedures

is normally associated with private assets). A content type must be specified, as well as arelative path to
afile to compare against. The path is relative to the junit directory. The response must match the speci-
fied content type and actua content.

<assert-excepti on nane="Exception">
File foo not found.
</ assert - excepti on>

The<assert - excepti on> eement is used to check when an request fails entirely (is unable to send
back aresponse). This only occurs when the application specification contains invalid data (such as an
incorrect class for the engine), or when the Exception page is unable to execute. The body of the element
is matched against the exception's message property.

Force afailure, then check for correctness
:F Sometimes the tests themselves have bugs. A useful technique is to purposely break the
test to ensure that it is checking for what it should check, then fix the test. For example,

adding XXX into a<assert - out put >. Run the test suite and expect a failure, then re-
move the XXX and re-run the test, which should succeed.

Documentation

Documentation is much harder than coding, but the ongoing success of Tapestry depends on maintaining
the quality of documentation. Tapestry documentation is written using DocBook XML format, using
XSL stylesheets to convert to final documentation.

Changes to the framework usually require a change in documentation to the Tapestry Devel oper's Guide.

Component Documentation
Warning

This section is out of date. In general, each component should include alink to the Compo-
nent Reference page for the component. The Component Reference page has a format and
content similar to what's listed here.

Although there is limited documentation about components in their component specification file, that
documentation is designed to be a short reminder, not the complete documentation. Full documentation
goes into the component's Javafile, as part of its type comment JavaDoc.

Component documentation consists of atable, identifying all the formal parameters of the component. In

addition, a note indicating whether informal parameters are allowed, and if the component may have a
body (that is, wrap other components) is supplied at the end.

Figure 6.1. Component Documentation Template

/**
* Type conment docunentation ...
*

16

url(http://docbook.sourceforge.net/)

Development Procedures

<p><t abl e border=1>
<tr>
<t h>Par anet er </t h>
<t h>Type</t h>
<t h>Di recti on</t h>
<t h>Requi r ed</ t h>
<t h>Def aul t </t h>
<t h>Descri pti on</th>
</[tr>

<tr>
<t d>nane</t d>
<td>{ @i nk Type}</td>
<td>in|out|in-out</td> 0O
<t d>yes| no</t d>
<td>Def ault val ue</td> 0O
<td>Ful | description</td>
</[tr>

<p>l nformal paraneters are [not] allowed. The conponent
may [not] contain a body.

* % ok 3k X O 3k F k X X X F %k X X X X X X X F X X X X *

0 Thisdescribes how the component usesits binding. i n indicates the binding is read, but never up-
dated, which is the most common case. out indicates the binding is updated, but not read; thisis
rare, but does apply to some parameters of For each, for example. i n- out is common used with
certain form parameters.

O If the parameter is required, then thisis usually specified as & nbsp; (non-breaking space).

Recently, seperate HTML component documentation has been created. This will be the standard loca
tion for Framework component documentation. Javadoc for the component should simply have alink to
the correct Component Reference page.

The component reference is simply HTML (at least, for the time being). There are many examples and a
template available, for creating new reference pages.

Checkin Procedures

Y ou should always follow these procedures when checking in code:

Run JUnit tests (ant junit) before doing a checkin.
Build the Javadoc (ant javadoc) to ensure there are no errors introduced.
Add aBugzilla bug or afeature request describing the change.

When checking code in, use the Bugzilla bug id as the checkin comment.

Example 6.1. Example checkin comment

17

url(../ComponentReference/Foreach.html)
url(../ComponentReference/index.html)
url(../ComponentReference/index.html)
url(../ComponentReference/index.html)
url(../ComponentReference/index.html)

Development Procedures

[553310] Set properties from paraneter bindings

In addition, update the Tapestry release notes, the fileweb/ new. ht i , to identify the feature request.

If you are adding new code, please make sure that the code contains:

The Apache license in acomment block at the beginning.

The $1d$ symbol as described above.

Be very careful when checking files in that they are checked in with the correct keyword substitution
type. Files should be either binary or text; text should be checked in with keyword expansion turned on
(thisisthe - kkv option).

When new files are added using Eclipse, it must decide whether they are binary or text. Eclipse always

assumes binary unless specificaly informed that afile is text. Use the Team preferences panel to set
this.

Figure6.2. Eclipse: Team Preferences

i
1= Preferences

[+-Appearance # | | File Content
- Classpath Variab

il extensions with known content:
- Code Formatter -

- Code Generation Extension | Contents |~ Add...
-~ Compiler bmp Binary
[+-Debug class Binary Remove
+-Editor classpath ASCII —
- Installed JREs cvsignore ASCII Change
- Javadoc di Binary -
- JUnit doc Binary
- New Project emsd A_SCH
- Organize Import exe Binary
- Refactoring aif Binary
- Task Tags htm ASCIT
html ASCII
[+ Plug-In Developmer o Binary
[+-SolarEclipse jar Binary
£ Team java ASCII
B CVS Jpage ASCII
jpeg Binary
~ Ignored Resourc | |jpg Binary
o » launch ASCII 3
Import... Export... oK Cancel

18

Development Procedures

Finally, if major changes are enacted, it is good to ensure that the framework continues to be compatible
with the API versions declared in the User Guide. This can be verified by performing the following ac-
tions:
Compile the framework using Java 1.2.2. (e.g. by setting JAVA_HOVE and running ant)
Run the unit tests using both Java 1.3.x and 1.4.x (e.g. by setting JAVA HOVE and running ‘ant ju-
nit"). Running the unit tests under 1.3.x would require adding the Xer ces libraries to the classpath
(eg-toli b/ ext).
Compile with Java Servlet APl 2.3 and run the unit tests using Java Servlet APl 2.2 (e.g. by compil-

ing, then pointing the ser vl et . j ar setting in the confi g/ bui | d. properti es file to the
Java Servlet API 2.2 library and running 'ant junit’)

Creating Examples

Extending the Workbench application to demonstrate new features or components is expected for any
significant changes or additions to the framework, or to the contrib library.

Updating Copyrights

All source code stored in the repository must contain the standard Apache copyright and license. A copy
of the license, as acomment block, isstored assupport/|i cense. t xt

Realize that you are assigning copyright to the Apache Software Foundation.

The contents of thisfile can be pasted in directly before the package statement of a Java sourcefile.
Alternately, a Python script is provided which can locate all Java source files within a directory tree and
ensure that the leading comment block is correct. It modifies any source files where the leading com-
ment doesn't match, but does not modify any files where the leading comment matches.

To use the script, execute the command python support/update-copyrights.py LICENSE.txt di rec-
tory

You may specify any number of directories, though the script is fast enough that just using "." (for cur-
rent directory) is easiest.

Cygwin Python
On my computer (running Windows XP and/or 2000), when using the Cygwin version of

Python, it is necessary to execute the script from the Bash shell, not the standard Windows
command line.

19

url(http://www.python.org)
url(http://sources.redhat.com/cygwin)

