
Tapestry User's Guide
Howard Lewis Ship

Tapestry User's Guide
Howard Lewis Ship
Copyright © 2003-2004 The Apache Software Foundation

Table of Contents
1. Introduction ...1

An overview of Tapestry ... 1
Pages and components ..2
Engines, services and friends .. 3
Object Graph Navigation Language ... 3

2. Page and component templates .. 5
Template locations ...5
TemplateContents ...5
Components in templates ...6

Componentbodies ..7
Component ids ..8
Specifyingparameters ...8
Formal and informal parameters .. 9

Templatedirectives ..10
Localization ..10
$remove$ jwcid ...11
$content$ jwcid ...12

3. Creating Tapestry components .. 15
Introduction ..15
ComponentSpecifications ...17
Codingcomponents ..17
ComponentParameters ...18

UsingBindings ..19
Connected Parameter Properties ..21

ComponentLibraries ..23
Referencing Library Components ..24
Library component search path ... 24
Using Private Assets ...25
LibrarySpecifications ...25
Libraries and Namespaces ...25

4. Managing server-side state ... 27
Understanding servlet state ..27
Engine ...28
Visit object ...28
Globalobject ...29
Persistent page properties ..29
Implementing persistent page properties manually .. 32
Manual persistent component properties ... 34
Statelessapplications ..35

5. Configuring Tapestry ...36
Requirements ..36
Web deployment descriptor ..36
Configuration Search Path ...38
Applicationextensions ..40
CharacterSets ...41

A. Tapestry Object Properties ... 43
B. Tapestry JAR files .. 48
C. Tapestry Specification DTDs .. 49

applicationelement ..49
beanelement ...50
bindingelement ...51
component element ..52
component-typeelement ..52

iv

component-specificationelement ..53
configureelement ...54
context-asset element ..55
descriptionelement ..55
extensionelement ...56
external-asset element ...56
inherited-bindingelement ..57
libraryelement ..57
library-specificationelement ..58
listener-bindingelement ..58
message-bindingelement ...59
pageelement ...59
page-specificationelement ...60
parameter element ..60
private-asset element ..62
propertyelement ..63
property-specificationelement ..63
reserved-parameter element ..64
serviceelement ..65
set-message-propertyelement ...65
set-propertyelement ...66
static-bindingelement ...66

D. Tapestry Script Specification DTD .. 68
bodyelement ...68
foreachelement ...68
if element ...69
if-not element ..69
include-script element ...70
initializationelement ..70
input-symbolelement ..70
let element ..71
script element ..72
set element ..72
uniqueelement ..72

Tapestry User's Guide

v

List of Figures
1.1. Tapestry request dispatch (high level) .. 2
2.1. Component templates and bodies .. 7
3.1. Core Tapestry Classes and Interfaces ... 15
3.2. Parameter Bindings ..19
3.3. Reading a Parameter ... 20
3.4. Writing a Parameter .. 20
3.5. ParameterManager and renderComponent() ... 22
C.1. application Attributes ...50
C.2. application Elements ..50
C.3. bean Attributes ..51
C.4. bean Elements ...51
C.5. binding Attributes ..51
C.6. component Attributes ...52
C.7. component Elements ..52
C.8. component-type Attributes ..53
C.9. component-specification Attributes ...53
C.10. component-specification Elements ..54
C.11. configure Attributes ..55
C.12. context-asset Attributes ...55
C.13. extension Attributes ..56
C.14. component-specification Elements ..56
C.15. external-asset Attributes ..57
C.16. inherited-binding Attributes ...57
C.17. library Attributes ..57
C.18. library-specification Elements ..58
C.19. listener-binding Attributes ...58
C.20. message-binding Attributes ..59
C.21. page Attributes ..59
C.22. page-specification Attributes ..60
C.23. page-specification Elements ...60
C.24. parameter Attributes ...61
C.25. private-asset Attributes ..62
C.26. property Attributes ...63
C.27. property-specification Attributes ...64
C.28. reserved-parameter Attributes ...64
C.29. service Attributes ...65
C.30. set-message-property Attributes ..65
C.31. set-property Attributes ..66
C.32. static-binding Attributes ..66
D.1. body Elements ..68
D.2. foreach Attributes ..68
D.3. foreach Elements ...69
D.4. if Attributes ..69
D.5. if Elements ...69
D.6. if-not Attributes ...69
D.7. if-not Elements ...70
D.8. include-script Attributes ..70
D.9. initialization Elements ..70
D.10. input-symbol Attributes ..71
D.11. let Attributes ...71
D.12. let Elements ..71
D.13. script Elements ..72
D.14. set Attributes ...72

vi

D.15. unique Elements ..72

Tapestry User's Guide

vii

List of Tables
A.1. Tapestry Object Properties .. 43
C.1. Tapestry Specifications ...49

viii

List of Examples
2.1. Example HTML template containing components ... 6
2.2. HTML template with repetative blocks (partial) ... 11
2.3. Updated HTML template (partial) ... 12
3.1. Referencing a Component Library ... 24
4.1. Accessing the Visit object .. 28
4.2. Defining the Visit class ... 29
4.3. Persistent page property: Java class .. 31
4.4. Persistent page property: page specification ... 31
4.5. Use of initialize() method .. 32
4.6. Manual persistent page property .. 33
4.7. Manual Persistent Component Properties .. 34
5.1. Web Deployment Descriptor .. 36

ix

Chapter 1. Introduction
Tapestry is a component-based web application framework, written in Java. Tapestry is more than a sim-
ple templating system; Tapestry builds on the Java Servlet API to build a platform for creating dynamic,
interactive web sites. More than just another templating language, Tapestry is a real framework for
building complex applications from simple, reusable components. Tapestry offloads much of the error-
prone work in creating web applications into the framework itself, taking over mundane tasks such as
dispatching incoming requests, constructing and interpretting URLs encoded with information, handling
localization and internationalization and much more besides.

The "mantra" of Tapestry is "objects, methods and properties". That is, rather than have developers con-
cerned about the paraphanlia of the Servlet API: requests, responses, sessions, attributes, parameters,
URLs and so on, Tapestry focuses the developer on objects (including Tapestry pages and components,
but also including the domain objects of the application), methods on those objects, and JavaBeans prop-
erties of those objects. That is, in a Tapestry application, the actions of the user (clicking links and sub-
mitting forms) results in changes to object properties combined with the invocation of user-supplied
methods (containing application logic). Tapestry takes care of the plumbing necessary to connect these
user actions with the objects.

This can take some getting used to. You don't write servlets in Tapestry, you write listener methods.
You don't build URLs to servlets either -- you use an existing component (such as DirectLink) and
configure its listener parameter to invoke your listener method. What does a listener method do? It
interacts with backend systems (often, stateless session EJBs) or does other bookkeeping related to the
request and selects a new page to provide a response to the user ... basically, the core code at the center
of a servlet. In Tapestry, you write much less code because all the boring, mechanical plumbing
(creating URLs, dispatching incoming requests, managing server-side state, and so forth) is the responsi-
bility of the framework.

This is not to say the Servlet API is inaccessible; it is simply not relevant to a typical Tapestry user.

This document describes many of the internals of Tapestry. It is not a tutorial, that is available as a sepa-
rate document. Instead, this is a guide to some of the internals of Tapestry, and is intended for experi-
enced developers who wish to leverage Tapestry fully.

Tapestry is currently in release 3.0, and has come a long way in the last couple of years. Tapestry's focus
is still on generating dynamic HTML pages, although there's plenty of support for XHTML, WML and
other types of markup as well.

Nearly all of Tapestry's API is described in terms of interfaces, with default implementations supplied.
By substituting new objects with the correct interfaces, the behavior of the framework can be changed
significantly. A common example is to override where page and component specifications are stored
(perhaps in a database).

Finally, Tapestry boasts extremely complete JavaDoc API documentation. This document exists to sup-
plement that documentation, to fill in gaps that may not be obvious. The JavaDoc is often the best refer-
ence.

An overview of Tapestry
Perhaps the hardest part of understanding Tapestry is the fact that it is component-centric not operation-
centric. Most web technologies (Struts, servlets, PHP, etc.) are operation-centric. You create servlets (or
Actions, or what have you) that are invoked when a user clicks a link or submits a form. You are re-
sponsible for selecting an appropriate URL, and the name and type of any query parameters, so that you
can pass along the information you need in the URL.

You are also responsible for connecting your output pages (whether they are JSPs, Velocity templates,

1

url(../ComponentReference/DirectLink.html)
url(http://jakarta.apache.org/struts/)
url(http://jakarta.apache.org/velocity/)

1 Listener methods in Tapestry are very similar in intent to delegates in C#. In both cases, a method of a particular object instance
is represented as an object. Calling this a "listener" or a "listener method" is a bit of a naming snafu; it should be called a "dele-
gate" and a "delegate method" but the existing naming is too deeply entrenched to change any time soon.

or some other form of templating technology) to those operations. This requires you to construct those
URLs and get them into the href attribute of your <a> tag, or into the action attribute of your
<form> tag.

Everything is different inside Tapestry. Tapestry applications consist of pages; pages are constructed
from smaller components. Components may themselves be constructed from other components. Every
page has a unique name, and every component within a page has its own unique id ... this is a component
object model. Effectively, every component has an address that can easily be incorporated into a URL.

In practical terms, your don't write a servlet for the add-item-to-shopping-cart operation. In
fact, you don't even write an add-item-to-shopping-cart component. What you do is take an
existing component, such as DirectLink, and configure it. When the component renders, it will cre-
ate a callback URL. When you click that link, the callback URL (which includes the name of the page
and the id of the component within the page) will invoke a method on the component ... and that method
invokes your application-specific listener method. 1 You supply just the listener method ... not an entire
servlet. Tapestry takes care that your listener method is invoked at the right time, under the right condi-
tions. You don't have to think about how to build that URL, what data goes in the URL, or how to hook
it up to your application-specific code--that's all handled by the framework.

Figure 1.1. Tapestry request dispatch (high level)

Tapestry uses a component object model to dispatch incoming requests to the correct page and compo-
nent.

Pages and components
Tapestry divides an application into a set of pages. Each page is assembled from Tapestry components.
Components themselves may be assembled from other components ... there's no artificial depth limit.

Tapestry pages are themselves components, but are components with some special responsibilities.

Introduction

2

url(../ComponentReference/DirectLink.html)

All Tapestry components can be containers of other components. Tapestry pages, and most user-defined
components, have a template, a special HTML file that defines the static and dynamic portions of the
component, with markers to indicate where embedded components are active. Components do not have
to have a template, most of the components provided with Tapestry generate their portion of response in
code, not using a template.

Components may have one or more named parameters which may be set (or, more correctly, "bound")
by the page or component which contains them. Unlike Java method parameters, Tapestry component
parameters may be bidirectional; a component may read a parameter to obtain a value, or write a param-
eter to set a value.

Most components are concerned only with generating HTML. A certain subset of components deal with
the flip-side of requests; handling of incoming requests. Link classes, such as PageLink, Di-
rectLink and ActionLink, create clickable links in the rendered page and are involved in dispatch-
ing to user-supplied code when such a link is triggered by clicking it.

Other components, Form, and the form control components (TextField, PropertySelection,
Checkbox, etc.), facilitate HTML forms. When such components render, they read properties from ap-
plication objects so as to provide default values. When the forms are submitted, the components within
the form read HTTP query parameters, convert the values to appropriate types and then update proper-
ties of application objects.

Engines, services and friends
Tapestry has evolved its own jargon over time.

The Engine is a central object, it occupies the same semantic space in Tapestry that the HttpSession
does in the Servlet API. The Engine is ultimately responsible for storing the persistent state of the appli-
cation (properties that exist from one request to the next), and this is accomplished by storing the Engine
into the HttpSession. This document will largely discuss the default implementation, with notes
about how the default implementation may be extended or overriden, where appropriate.

Engine services are the bridge between servlets and URLs and the rest of Tapestry. Engine services are
responsible for encoding URLs, providing query parameters that identify, to the framework, the exact
operation that should occur when the generated URL is triggered (by the end user clicking a link or sub-
mitting a form). Services are also responsible for dispatching those incoming requests. This encapsula-
tion of URL encoding and decoding inside a single object is key to how Tapestry components can flexi-
bily operate without concern for how they are contained and on which page ... the services take into ac-
count page and location when formulating URLs.

The Visit object is an application-defined object that acts as a focal point for all server-side state (not as-
sociated with any single page). Individual applications define for themselves the class of the Visit ob-
ject. The Visit is stored as a property of the Engine, and so is ultimately stored persistently in the
HttpSession

The Global object is also application-specific. It stores information global to the entire application, inde-
pendent of any particular user or session. A common use for the Global object is to centralize logic that
performs JNDI lookups of session EJBs.

Object Graph Navigation Language
Tapestry is tightly integrated with OGNL, the Object Graph Navigation Language. OGNL is a Java ex-
pression language, which is used to peek into objects and read or update their properties. OGNL is simi-
lar to, and must more powerful than, the expression language built into the JSP 2.0 standard tag library.
OGNL not only support property access, it can include mathematical expressions and method invoca-
tions. It can reference static fields of public classes. It can create new objects, including lists and maps.

Introduction

3

url(../ComponentReference/PageLink.html)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(../ComponentReference/TextField.html)
url(../ComponentReference/PropertySelection.html)
url(../ComponentReference/Checkbox.html)
url(http://www.ognl.org)

The simplest OGNL expressions are property names, such as foo, which is equivalent to method get-
Foo() (or setFoo() if the expression is being used to update a property). The "Navigation" part
comes into play when the expression is a series of property names, such as foo.bar.baz, which is
equivalent to getFoo().getBar().getBaz() ... though care must always be taken that the inter-
mediate properties (foo and bar in this example) are not null.

OGNL is primarily used to allow two different objects (such as a page and a component contained by
that page) to share information.

Introduction

4

Chapter 2. Page and component
templates

Unlike many other web frameworks, such as Struts or WebWork, Tapestry does not "plug into" an exter-
nal templating system such as JavaServer Pages or Velocity. Instead, Tapestry integrates its own tem-
plating system.

Tapestry templates are designed to look like valid HTML files (component HTML templates will just be
snippets of HTML rather than complete pages). Tapestry "hides" its extensions into special attributes of
ordinary HTML elements.

Don't be fooled by the terminology; we say "HTML templates" because that is the prevalent use of
Tapestry ... but Tapestry is equally adept at WML or XML.

Template locations
The general rule of thumb is that a page's HTML template is simply an HTML file, stored in the context
root directory. That is, you'll have a MyPage.html HTML template, a WEB-INF/MyPage.page
page specification, and a MyPage class, in some Java package.

Tapestry always starts knowing the name of the page and the location of the page's specification when it
searches for the page's HTML template. Starting with this, it performs the following search:

• In the same location as the specification

• In the web application's context root directory (if the page is an application page, not a page from a
component library)

In addition, any HTML template in the web application context is considered a page, even if there is no
matching page specification. For simple pages that don't need to have any page-specific logic or proper-
ties, there's no need for a page specification. Such a page may still use the special Tapestry attributes
(described in the following sections).

Finally, with some minor configuration it is possible to change the extension used for templates. For ex-
ample, if you are developing a WML application, you may wish to name your files with the extension
.wml.

Template Contents
Tapestry templates contain a mix of the following elements:

• Static HTML markup

• Tapestry components

• Localized messages

• Special template directives

Usually, about 90% of a template is ordinary HTML markup. Hidden inside that markup are particular

5

url(http://jakarta.apache.org/struts/)
url(http://opensymphony.com/webwork/)
url(http://jakarta.apache.org/velocity/)

tags that are placeholders for Tapestry components; these tags are recognized by the presence of the
jwcid attribute. "JWC" is short for "Java Web Component", and was chosen as the "magic" attribute so
as not to conflict with any real HTML attribute.

Tapestry's parser is quite flexible, accepting all kinds of invalid HTML markup. That is, attributes don't
have to be quoted. Start and end tags don't have to balance. Case is ignored when matching start and end
tags. Basically, the kind of ugly HTML you'll find "in the field" is accepted.

The goal is to allow you to preview your HTML templates using a WYSIWYG HTML editor (or even
an ordinary web browser). The editor will ignore the undefined HTML attributes (such as jwcid).

A larger goal is to support real project teams: The special markup for Tapestry is unobtrusive, even in-
visible. This allows an HTML designer to work on a template without breaking the dynamic portions of
it. This is completely unlike JSPs, where the changes to support dynamic output are extremelyobtrusive
and result in a file that is meaningless to an HTML editor.

Components in templates
Components can be placed anywhere inside a template, simply by adding the jwcid attribute to any ex-
isting tag. For example:

Example 2.1. Example HTML template containing components

<html>
<head>
<title>Example HTML Template</title>

</head>
<body>
 ❶

Hello,
Joe User ❷

</body>

</html>

❶ This is a reference to a declared component; the type and parameters of the component are in the
page's specification.

❷ This is a implicit component; the type of the component is Insert. The value parameter is bound
to the OGNL expression user.name.

The point of all this is that the HTML template should preview properly in a WYSIWYG HTML editor.
Unlike Velocity or JSPs, there are no strange directives to get in the way of a preview (or necessitate a
special editting tool), Tapestry hides what's needed inside existing tags; at worst, it adds a few non-
standard attributes (such as jwcid) to tags. This rarely causes a problem with most HTML editors.

Templates may contain components using two different styles. Declared components are little more than
a placeholder; the type of the component is defined elsewhere, in the page (or component) specification.

Alternately, an implicit component can be defined in place, by preceding the component type with an
"@" symbol. Tapestry includes over forty components with the framework, additional components may
be created as part of your application, or may be provided inside a component library.

Page and component templates

6

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(http://www.ognl.org)
url(http://jakarta.apache.org/velocity/)

2 More correct would be to say "its container's template" as a component may be contained within another component. For sim-
plicities sake, we'll describe this as if it was always a simple two-level heirarchy even though practical Tapestry applications can
be many levels deep.

In the above example, a was used for both components. Tapestry doesn't care what tag is used
for a component, as long as the start and end tags for components balance (it doesn't even care if the
case of the start tag matches the case of the end tag). The example could just as easily use <div> or
<fred>, the rendered page sent back to the client web browser will be the same.

Component bodies
In Tapestry, each component is responsible for rendering itself and its body. A component's body is the
portion of its page's template 2 that its tags encloses. The Tapestry HTML template parser is responsible
for dividing up the template into chunks: blocks of static HTML, component start tags (recognized by
the jwcid attribute) and matching component end tags. It is quite forgiving about case, quotes (which
may be single quotes, double quotes, or even omitted), and missing close tags (except for components,
which must be balanced).

Figure 2.1. Component templates and bodies

The template is broken into small chunks that are each slotted into a particular component's body.

In most cases, a component will make use of its body; it simply controls if, when and how often its body
is rendered (when rendering the HTML response sent to the client). Other components, such as
Insert, have no use for their bodies, which they discard. Each component declares in its own specifi-
cation (the allow-body attribute of the <component-specification>) whether is allows or
discards its body.

In the previous example, the Insert component had a body, the text "Joe User". This supports WYSI-

Page and component templates

7

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)

WYG preview; the text will be displayed when previewing. Since the Insert component discards its
body, this text will not be used at runtime, instead the OGNL expression user.name will be evaluated
and the result inserted into the response.

No components in discarded blocks

If you put a component inside the body of an Insert (or any other component that dis-
cards its body), then Tapestry will throw an exception. You aren't allowed to create a com-
ponent simply to discard it.

Component ids
Every component in Tapestry has its own id. In the above example, the first component has the id "bor-
der". The second component is anonymous; the framework provides a unique id for the component since
one was not supplied in the HTML template. The framework provided id is built from the component's
type; this component would have an id of $Insert; other Insert components would have ids
$Insert$0, $Insert$1, etc.

A component's id must only be unique within its immediate container. Pages are top-level containers,
but components can also contain other components.

Implicit components can also have a specific id, by placing the id in front of the "@" symbol:

Joe User

The component is still implicit; nothing about the component would go in the specification, but the id of
the component would be "insert".

Providing explicit ids for your components is rarely required, but often beneficial. It is especially useful
for form control components,

Each component may only appear once in the template. You simply can't use the same component repat-
edly ... but you can duplicate a component fairly easily; make the component a declared component,
then use the copy-of attribute of the <component> element to create clones of the component with
new ids.

Specifying parameters
Component parameters may always be specified in the page or component specification, using the
<binding>, <static-binding> and <message-binding> elements. Prior to Tapestry 3.0,
that was the only way ... but with 3.0, it is possible to specify parameters directly within the HTML tem-
plate.

Using either style of component (declared or implicit), parameters of the component may be bound by
adding attributes to the tag. Most attributes bind parameters to a static (unchanging) value, equivalent to
using the <static-binding> element in the specification. Static bindings are just the literal text, the
attribute value from the HTML template.

Prefixing an attribute value with ognl: indicates that the value is really an OGNL expression, equiva-
lent to using the <binding> element in the specification.

Finally, prefixing an attribute value with message: indicates that the value is really a key used to get a
localized message, equivalent to the <message-binding> element in the specification. Every page,
and every component, is allowed to have its own set of messages (stored in a set of .properties
files), and the message: prefix allows access to the localized messages stored in the files.

Page and component templates

8

url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(../ComponentReference/Insert.html)
url(http://www.ognl.org)

Seperation of Concerns

Before Tapestry 3.0, there was a more clear separation of concerns. The template could
only have declared components (not implicit), and any informal attributes in the template
were always static values. The type of the component and all its formal parameters were
always expressed in the specification. The template was very much focused on presenta-
tion, and the specification was very much focused on business logic. There were always
minor exceptions to the rules, but in general, seperation of concerns was very good.

With Tapestry 3.0, you can do more in the HTML template, and the specification file is
much less important ... but the seperation of concerns is much more blurred together. It is
very much acceptible to mix and match these approaches, even within a single page. In
general, when learning Tapestry, or when prototyping, it is completely appopriate to do as
much as possible in the HTML template. For large and complex applications, there are
benefits to moving as much of the dynamic logic as possible out of the template and into
the specification.

Formal and informal parameters
Components may accept two types of parameters: formal and informal. Formal parameters are those de-
fined in the component's specification, using the <parameter> element. Informal parameters are ad-
ditional parameters, beyond those known when the component was created.

The majority of components that accept informal parameters simply emit the informal parameters as ad-
ditional attributes. Why is that useful? Because it allows you to specify common HTML attributes such
as class or id, or JavaScript event handlers, without requiring that each component define each possi-
ble HTML attribute (the list of which expands all the time).

If you are used to developing with JSPs and JSP tags, this will be quite a difference. JSP tags have the
equivalent of formal parameters (they are called "tag attributes"), but nothing like informal parameters.
Often a relatively simply JSP tag must be bloated with dozens of extra attributes, to support arbitrary
HTML attributes.

Informal and formal parameters can be specified in either the specification or in the template. Informal
parameters are not limited to literal strings, you may use the ognl: and message: prefixes with them
as well.

Not all components allow informal parameters; this is controlled by the allow-infor-
mal-parameters attribute of the <component-specification> element. Many components
do not map directly to an HTML element, those are the ones that do not allow informal parameters. If a
component forbids informal parameters, then any informal parameters in the specification or the tem-
plate will result in errors, with one exception: static strings in the HTML template are simply ignored
when informal parameters are forbidden; they are presumed to be there only to support WYSIWYG pre-
view.

Another conflict can occur when the HTML template specified an attribute that the component needs to
render itself. For example, the DirectLink component generates a <a> tag, and needs to control the
href attribute. However, for preview purposes, it often will be written into the HTML template as:

 . . .

This creates a conflict: will the template href be used, or the dynamically generated value produced by

Page and component templates

9

url(../ComponentReference/DirectLink.html)

the DirectLink component, or both? The answer is: the component wins. The href attribute in the
template is ignored.

Each component declares a list of reserved names using the <reserved-parameter> element;
these are names which are not allowed as informal parameters, because the component generates the
named attribute itself, and doesn't want the value it writes to be overriden by an informal parameter.
Case is ignored when comparing attribute names to reserved names.

Template directives
For the most part, a Tapestry page or component template consists of just static HTML intermixed with
tags representing components (containing the jwcid attribute). The overarching goal is to make the
Tapestry extensions completely invisible.

Tapestry supports a limited number of additional directives that are not about component placement, but
instead address other concerns about integrating the efforts of HTML developers with the Java develop-
ers responsible for the running application.

Localization
Tapestry includes a number of localization features. An important part of which is to allow each page or
component to have its own catalog of localized messages (modeled after the Java ResourceBundle
class).

The page (or component) message catalog is a collection of .properties files that are stored with
the page or component specification. They follow the same naming conventions as for ResourceBun-
dles, so component MyComponent (whose specification file is MyComponent.jwc) might have a
default message file of MyComponent.properties, and a French translation as MyCompo-
nent_fr.properties.

No global message catalog

On oft-requested feature for Tapestry is to have a global message catalog, and a way to ac-
cess that catalog from the individual pages and components. This would allow common
messages to be written (and translated) just once. This is a feature that may be added to
Tapestry 3.1.

As we've seen, it is possible to access the messages for a page or component using the message: pre-
fix on a component parameter (or use the <message-binding> element in a page or component
specification).

What about the static text in the template itself? How does that get translated? One possibility would be
to make use of the Insert component for each piece of text to be displayed, for example:

Hello

This snippet will get the hello message from the page's message catalog and insert it into the response.
The text inside the tag is useful for WYSIWYG preview, but will be discarded at runtime in
favor of a message string from the catalog, such as "Hello", "Hola" or "Bonjour" (depending on the se-
lected locale).

Because, in an internationalized application, this scenario will occur with great frequency, Tapestry in-
cludes a special directive to perform the equivalent function:

Page and component templates

10

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/Insert.html)

Hello

This is not an Insert component, but behaves in a similar way. The tag used must be . You
do not use the message: prefix on the message key (hello). You can't use OGNL expressions.

Normally, the does not render, just the message. However, if you specify any additional at-
tributes in the tag (such as, commonly, id or class to specify a CSS style), then the
 will render around the message> For example, the template:

Invalid Access

might render as:

You do not have the necessary access.

In this example, the placeholder text "Invalid Access" was replaced with a much longer message ac-
quired from the message catalog.

In rare cases, your message may have pre-formatted HTML inside it. Normally, output is filtered, so that
any reserved HTML characters in a message string are expanded to HTML entities. For example, a <
will be expanded to <. If this is not desired, add raw="yes" to the . This defeats the fil-
tering, and text in the message is passed through as-is.

$remove$ jwcid

HTML templates in Tapestry serve two purposes. On the one hand, they are used to dynamically render
pages that end up in client web browsers. On the other hand, they allow HTML developers to use
WYSIWYG editors to modify the pages without running the full application.

We've already seen two ways in which Tapestry accomidates WYSIWYG preview. Informal component
parameters may be quietly dropped if they conflict with reserved names defined by the component.
Components that discard their body may enclose static text used for WYSIWYG prefix.

In some cases, we need even more direct control over the content of the template. Consider, for exam-
ple, the following HTML template:

Example 2.2. HTML template with repetative blocks (partial)

<table>
<tr>
<th>First Name</th>
<th>Last Name</th>

</tr>
<tr jwcid="loop">
<td>John</td>
<td>Doe</td>

</tr>
<tr>
<td>Frank</td>
<td>Smith</td>

</tr>
<tr>
<td>Jane</td>
<td>Jones</td>

Page and component templates

11

url(../ComponentReference/Insert.html)

</tr>
</table>

This is part of the HTML template that writes out the names of a list of people, perhaps from some kind
of database. When this page renders, the loop component (presumably a Foreach, such details being
in the page's specification) will render its body zero or more times. So we might see rows for "Frank
Miller", "Alan Moore" and so forth (depending on the content of the database). However, every listing
will also include "Frank Smith" and "Jane Jones" ... because the HTML developer left those two rows in,
to ensure that the layout of the table was correct with more than one row.

Tapestry allows a special jwcid, $remove$, for this case. A tag so marked is not a component, but is
instead eliminated from the template. It is used, as in this case, to mark sections of the template that are
just there for WYSIWYG preview.

Normally, $remove$ would not be a valid component id, because it contains a dollar sign.

With this in mind, the template can be rewritten:

Example 2.3. Updated HTML template (partial)

<table>
<tr>
<th>First Name</th>
<th>Last Name</th>

</tr>
<tr jwcid="loop">
<td>John</td>
<td>Doe</td>

</tr>
<tr jwcid="$remove$">
<td>Frank</td>
<td>Smith</td>

</tr>
<tr jwcid="$remove$">
<td>Jane</td>
<td>Jones</td>

</tr>
</table>

With the $remove$ blocks in place, the output is as expected, one row for each row read from the
database, and "Frank Smith" and "Jane Jones" nowhere to be seen.

No components in removed blocks

It's not allowed to put components inside a removed block. This is effectively the same
rule that prevents components from being put inside discarded component bodies. Tapestry
will throw an exception if a template violates this rule.

$content$ jwcid

In Tapestry, components can have their own templates. Because of how components integrate their own

Page and component templates

12

url(../ComponentReference/Foreach.html)

templates with their bodies (the portion from their container's template), you can do a lot ofn iteresting
things. It is very common for a Tapestry application to have a Border component: a component that pro-
duces the <html>, <head>, and <body> tags (along with additional tags to reference stylesheets),
plus some form of navigational control (typically, a nested table and a collection of links and images).

Once again, maintaining the ability to use WYSIWYG preview is a problem. Consider the following:

<html>
<head>
<title>Home page</title>
<link rel="stylesheet" href="style.css" type="text/css">
</head>

<body>

<!-- Page specific content: -->

<form jwcid=". . .">
. . .

</form>

</body>

It is quite common for Tapestry applications to have a Border component, a component that is used by
pages to provide the <html>, <head>, and <body> tags, plus common navigational features (menus,
copyrights, and so forth). In this example, it is presumed that the border component is a reference to
just such as component.

When this page renders, the page template will provide the <html>, <head> and <body> tags. Then
when the border component renders, it will again render those tags (possibly with different attributes,
and mixed in to much other stuff).

If we put a $remove$ on the <html> tag in the page template, the entire page will be removed, caus-
ing runtime exceptions. Instead, we want to identify that the portion of the template inside the <body>
tag (on the page template) is the only part that counts). The $content$ component id is used for this
purpose:

<html>
<head>
<title>Home page</title>
<link rel="stylesheet" href="style.css" type="text/css">
</head>

<body jwcid="$content$">

<!-- Page specific content: -->

<form jwcid=". . .">
. . .

</form>

</body>

The <body> tag, the text preceding its open tag, the </body> tag, and the text following it are all re-

Page and component templates

13

moved. It's as if the template consisted only of the tag for the border component.

Page and component templates

14

Chapter 3. Creating Tapestry
components
Introduction

Tapestry is a component based web application framework; components, objects which implement the
IComponent interface, are the fundamental building blocks of Tapestry. Additional objects, such as
the the engine, IMarkupWriter and the request cycle are infrastructure. The following figure identi-
fies the core Tapestry classes and interfaces.

Figure 3.1. Core Tapestry Classes and Interfaces

15

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)

Tapestry components can be simple or complex. They can be specific to a single application or com-
pletely generic. They can be part of an application, or they can be packaged into a component library.

All the techniques used with pages work with components as well ... pages are a specialized kind of
Tapestry component. This includes specified properties (including persistent properties) and listener
methods.

Components fit into the overall page rendering process because they implement the IRender interface.
Components that inherit from BaseComponent will use an HTML template. Components that inherit

Creating Tapestry components

16

url(../api/org/apache/tapestry/IRender.html)
url(../api/org/apache/tapestry/BaseComponent.html)

3 This is a very rare option that will only occur when a single WAR file contains multiple Tapestry applications.

from AbstractComponent will render output in Java code, by implementing method renderCom-
ponent().

The components provided with the framework are not special in any way: they don't have access to any
special APIs or perform any special down-casts. Anything a framework component can do, can be done
by your own components.

Component Specifications
Every component has a component specification, a file ending in .jwc whose root element is com-
<ponent-specification>.

Each component's specification defines the basic characteristics of the component:

• The Java class for the component (which defaults to BaseComponent)

• Whether the component uses its body, or discards it (the allow-body attribute, which defaults to
yes)

• The name, type and other information for each formal parameter.

• Whether the component allows informal parameters or discards them (the allow-infor-
mal-parameters attribute, which defaults to yes)

• The names of any reserved parameters which may not be used as informal parameters.

Beyond those additions, a component specification is otherwise the same as a page-
<specification>.

When a component is referenced in an HTML template (using the @Type syntax), or in a specification
(as the type attribute of a <component> element), Tapestry must locate and parse the component's
specification (this is only done once, with the result cached for later).

Tapestry searches for components in the following places:

• As specified in a <component-type> element (with the application specification)

• In the same folder (typically, WEB-INF) as the application specification

• In the WEB-INF/servlet-name folder (servlet-name is the name of the Tapestry Appli-
cationServlet for the application) 3

• In the WEB-INF folder

• In the root context directory

Generally, the correct place is in the WEB-INF folder. Components packaged into libraries have a dif-
ferent (and simpler) search.

Coding components
When creating a new component by subclassing AbstractComponent, you must write the ren-
derComponent() method. This method is invoked when the components container (typically, but not

Creating Tapestry components

17

url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/AbstractComponent.html)

always, a page) invokes its own renderBody() method.

protected void renderComponent(IMarkupWriter writer, IRequestCycle cycle)
{
. . .

}

The IMarkupWriter object is used to produce output. It contains a number of print() methods
that output text (the method is overloaded for different types). It also contains printRaw() methods --
the difference being that print() uses a filter to convert certain characters into HTML entities.

IMarkupWriter also includes methods to simplify creating markup style output: that is, elements
with attributes.

For example, to create a <a> link:

writer.begin("a");
writer.attribute("url", url);
writer.attribute("class", styleClass);

renderBody(writer, cycle);

writer.end(); // close the <a>

The begin() method renders an open tag (the <a>, in this case). The end() method renders the cor-
responding a. As you can see, writing attributes into the tag is very simple.

The call to renderBody() is used to render this component's body. A component doesn't have to ren-
der its body; the standard Image component doesn't render its body (and its component specification in-
dicates that it discards its body). The Conditional component decides whether or not to render its
body, and the Foreach component may render its body multiple times.

A component that allows informal parameters can render those as well:

writer.beginEmpty("img");
writer.attribute("src", imageURL);
renderInformalParameters(writer, cycle);

This example will add any informal parameters for the component as additional attributes within the
 element. These informal parameters can be specified in the page's HTML template, or within the
<component> tag of the page's specification. Note the use of the beginEmpty() method, for creat-
ing a start tag that is not balanced with an end tag (or a call to the end() method).

Component Parameters
A Tapestry page consists of a number of components. These components communicate with, and coordi-
nate with, the page (and each other) via parameters.

A component parameter has a unique name and a type (a Java class, interface, or primitive type name).
The <parameter> component specification element is used to define formal component parameters.

In a traditional desktop application, components have properties. A controller may set the properties of a
component, but that's it: properties are write-and-forget.

The Tapestry model is a little more complex. A component's parameters are bound to properties of the

Creating Tapestry components

18

url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../api/org/apache/tapestry/IMarkupWriter.html)
url(../ComponentReference/Image.html)
url(../ComponentReference/Conditional.html)
url(../ComponentReference/Foreach.html)

enclosing page. The component is allowed to read its parameter, to access the page property the parame-
ter is bound to. A component may also update its parameter, to force a change to the bound page prop-
erty.

The vast majority of components simply read their parameters. Updating parameters is more rare; the
most common components that update their parameters are form control components such as
TextField or Checkbox.

Because bindings are in the form of OGNL expressions, the property bound to a component parameter
may not directly be a property of the page ... using a property sequence allows great flexibility.

Figure 3.2. Parameter Bindings

Using OGNL, the TextField component's value parameter is bound to the LineItem's quan-
tity property, using the OGNL expression lineItem.quantity, and the Insert component's
value parameter is bound to the Product's name property using the OGNL expression
lineItem.product.name.

Not all parameter bindings are writable. So far, the examples have been for parameters bound using the
<binding> specification element (or the equivalent use of the ognl: prefix in an HTML template).
Invariant bindings are also possible--these are bindings directly to fixed values that never change and
can't be updated. The <static-binding> element is invariant; it's HTML template equivalent is a
attribute with no prefix. Likewise, the <message-binding> element, and the message: prefix on
an attribute, are invariant.

Using Bindings
To understand how Tapestry parameters work, you must understand how the binding objects work (even

Creating Tapestry components

19

url(../ComponentReference/TextField.html)
url(../ComponentReference/Checkbox.html)
url(http://www.ognl.org)
url(http://www.ognl.org)
url(../ComponentReference/TextField.html)
url(../ComponentReference/Insert.html)

though, as we'll see, the binding objects are typically hidden). When a component needs access to a
bound parameter value, it will invoke the method getObject() on IBinding

Figure 3.3. Reading a Parameter

The getObject() method on IBinding will (if the binding is dynamic) evaluate the OGNL expres-
sion (provided in the <binding> specification element) to access a property of the page. The result is
that cast or otherwise coerced to a type useful to the component.

Updating a parameter is the same way, except that the method is setObject(). Most of the imple-
mentations of IBinding (those for literal strings and localize messages), will throw an exception im-
mediately, since they are invariant.

Figure 3.4. Writing a Parameter

Creating Tapestry components

20

url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)

4 The name, "direction", made sense initially, but is now a bit confusing. It probably should have been called "processing" or "con-
nection-type".

The setObject() method will use OGNL to update a page property.

These flows are complicated by the fact that parameters may be optional; so not only do you need to ac-
quire the correct binding object (method getBinding() defined in IComponent), but your code
must be prepared for that object to be null (if the parameter is optional).

Connected Parameter Properties
Accessing and manipulating the IBinding objects is tedious, so Tapestry has an alternate approach.
Parameters may be represented as connected parameter properties that hide the existence of the binding
objects entirely. If you component needs to know the value bound to a parameter, it can read the con-
nected parameter property. If it wants to update the property bound to the parameter, the component will
update the connected parameter. This is a much more natural approach, but requires a little bit of setup.

As with specified properties, Tapestry will fabricate an enhanced subclass with the necessary instance
variables, accessor methods, and cleanup code.

Connected parameters are controlled by the direction attribute of the <parameter> element. 4
There are four values: in, form, auto and custom. The default is custom, which does not create a
connected parameter property at all.

Direction: in

The majority of component parameters are read-only, and are only actually used within the component's
renderComponent() method ... the method that actually produces HTML output. For such compo-
nents, direction in is the standard, efficient choice.

The connected parameter for each component is set just before renderComponent() is invoked. The
parameter is reset to its initial value just after renderComponent() is invoked.

Each component has a ParameterManager, whose responsibility is to set and reset connected pa-
rameter properties.

Creating Tapestry components

21

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IBinding.html)
url()

Figure 3.5. ParameterManager and renderComponent()

The ParameterManager will read the values bound to each parameter, and update the connected pa-
rameter property before the component's renderComponent() method is invoked. The Parame-
terManager cleans up after renderComponent() is invoked.

Creating Tapestry components

22

url()
url()

For invariant bindings (literal strings and such), the ParameterManager will only set the connected pa-
rameter property once, and does not reset the property after renderComponent().

Warning

If your component has any listener methods that need to access a parameter value, then
you can't use direction in (or direction form). Listener methods are invoked outside of
the page rendering process, when value stored in the connected parameter property is not
set. You must use direction auto or custom in such cases.

Direction: form

Components, such as TextField or Checkbox, that produce form control elements are the most
likely candidates for updating their parameters. The read a parameter (usually named value) when they
render. When the form is submitted, the same components read a query parameter and update their
value parameter.

The form direction simplifies this. For the most part, form is the same as in. The diffference is, when
the form is submitted, after the component's renderComponent() method has been invoked, the
connected parameter property is read and used to update the binding (that is, invoke the binding object's
setObject() method).

Direction: auto

The previous direction values, in and form, have limitations. The value may only be accessed from
within the component's renderComponent() method. That's often insufficient, especially when the
component has a listener method that needs access to a parameter.

Direction auto doesn't use the ParameterManager. Instead, the connected parameter property is
synthetic. Reading the property immediately turns around and invokes IBinding's getObject()
method. Updating the property invokes the IBinding's setObject() function.

This can be a bit less efficient than direction in, as the OGNL expression may be evaluated multiple
times. In Tapestry 3.0, the parameter must also be required. Future releases of Tapestry will relax these
limitations.

Removing parameter directions

Parameter directions are a bit of a sore spot: you must make too many decisions about how
to use them, especially in terms of render-time-only vs. listener method. Direction auto is
too limited and possibly too inefficient. Tapestry 3.1 should address these limitations by
improving direction auto. Instead of specifying a direction, you'll specify how long the
component can cache the value obtained from the binding object (no caching, or only
while the component is rendering, or until the page finishes rendering).

Direction: custom

The custom direction, which is the default, does not create a connected parameter property. Your code
is still responsible for accessing the IBinding object (via the getBinding() method of ICompo-
nent) and for invoking methods on the binding object.

Component Libraries
Tapestry has a very advanced concept of a component library. A component library contains both

Creating Tapestry components

23

url(../ComponentReference/TextField.html)
url(../ComponentReference/Checkbox.html)
url()
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IBinding.html)
url(http://www.ognl.org)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/IComponent.html)

Tapestry components and Tapestry pages (not to mention engine services).

Referencing Library Components
Before a component library may be used, it must be listed in the application specification. Often, an ap-
plication specification is only needed so that it may list the libraries used by the application. Libraries
are identified using the <library> element.

The <library> element provides an id for the library, which is used to reference components (and
pages) within the library. It also provides a path to the library's specification. This is a complete path for
a .library file on the classpath. For example:

Example 3.1. Referencing a Component Library

<application name="Example Application">

<library id="contrib" specification-path="/org/apache/tapestry/contrib/Contrib.library"/>

</application>

In this example, Contrib.library defines a set of components, and those component can be ac-
cessed using contrib: as a prefix. In an HTML template, this might appear as:

This example defines a component with id palette. The component will be an instance of the Palette
component, supplied within the contrib component library. If an application uses multiple libraries,
they will each have their own prefix. Unlike JSPs and JSP tag libraries, the prefix is set once, in the ap-
plication specification, and is used consistently in all HTML templates and specifications within the ap-
plication.

The same syntax may be used in page and component specifications:

<component id="palette" type="contrib:Palette">
. . .

</component>

Library component search path
Previously, we described the search path for components and pages within the application. The rules are
somewhat different for components and pages within a library.

Tapestry searches for library component specifications in the following places:

• As specified in a <component-type> element (with the library specification)

• In the same package folder as the library specification

The search for page specifications is identical: as defined in the library specification, or in the same

Creating Tapestry components

24

package folder.

Using Private Assets
Often, a component must be packaged up with images, stylesheets or other resources (collectively
termed "assets") that are needed at runtime. A reference to such an asset can be created using the pri-
<vate-asset> element of the page or component specification. For example:

<private-asset name="logo" resource-path="images/logo_200.png"/>

<component id="image" type="Image">
<binding name="image" expression="assets.logo"/>

</component>

All assets (private, context or external) are converted into instances of IAsset and treated identically
by components (such as Image). As in this example, relative paths are allowed: they are interpreted rel-
ative to the specification (page or component) they appear in.

The Tapestry framework will ensure that an asset will be converted to a valid URL that may be refer-
enced from a client web browser ... even though the actual service is inside a JAR or otherwise on the
classpath, not normally referenceable from the client browser.

The default behavior is to serve up the localized resource using the asset service. In effect, the frame-
work will read the contents of the asset and pipe that binary content down to the client web browser.

An alternate behavior is to have the framework copy the asset to a fixed directory. This directory should
be mapped to a know web folder; that is, have a URL that can be referenced from a client web browser.
In this way, the web server can more efficiently serve up the asset, as a static resource (that just happens
to be copied into place in a just-in-time manner).

This behavior is controlled by a pair of configuration properties:
org.apache.tapestry.asset.dir and org.apache.tapestry.asset.URL.

Library Specifications
A library specification is a file with a .library extension. Library specifications use a root element of
<library-specification>, which supports a subset of the attributes allowed within an ap-
<plication> element (but allowing the same nested elements). Often, the library specification is an
empty placeholder, used to an establish a search location for page and component specifications:

<!DOCTYPE library-specification PUBLIC
"-//Apache Software Foundation//Tapestry Specification 3.0//EN"
"http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<library-specification/>

It is allowed that components in one library be constructed using components provided by another li-
brary. The referencing library's specification may contain <library> elements that identify some
other library.

Libraries and Namespaces
Tapestry organizes components and pages (but not engine services) into namespaces. Namespaces are

Creating Tapestry components

25

url(../api/org/apache/tapestry/IAsset.html)
url(../ComponentReference/Image.html)

closely related to, but not exactly the same as, the library prefix established using the <library> ele-
ment in an application or library specification.

Every Tapestry application consists of a default namespace, the application namespace. This is the
namespace used when referencing a page or component without a prefix. When a page or component
can't be resolved within the application namespace, the framework namespaceis searched. Only if the
component (or page) is not part of the framework namespace does an error result.

In fact, it is possible to override both pages and components provided by the framework. This is fre-
quently used to change the look and feel of the default StateSession or Exception page. In theory, it is
even possible to override fundamental components such as Insert or Foreach!

Every component provides a namespace property that defines the namespace (an instance of IN-
amespace) that the component belongs to.

You rarely need to be concerned with namespaces, however. The rare exception is when a page from a
library wishes to make use of the PageLink or ExternalLink components to create a link to an-
other page within the same namespace. This is accomplished (in the source page's HTML template) as:

 ...

Creating Tapestry components

26

url(../ComponentReference/Insert.html)
url(../ComponentReference/Foreach.html)
url(../api/org/apache/tapestry/INamespace.html)
url(../ComponentReference/PageLink.html)
url(../ComponentReference/ExternalLink.html)

5 This is the replication strategy employed by BEA's WebLogic server.

Chapter 4. Managing server-side state
Server-side state is any information that exists on the server, and persists between requests. This can be
anything from a single flag all the way up to a large database result set. In a typical application, server-
side state is the identity of the user (once the user logs in) and, perhaps, a few important domain objects
(or, at the very least, primary keys for those objects).

In an ordinary servlet application, managing server-side state is entirely the application's responsibility.
The Servlet API provides just the HttpSession, which acts like a Map, relating keys to arbitrary ob-
jects. It is the application's responsibility to obtain values from the session, and to update values into the
session when they change.

Tapestry takes a different tack; it defines server-side state in terms of the Engine, the Visit object, and
persistent page properties.

Understanding servlet state
Managing server-side state is one of the most complicated and error-prone aspects of web application
design, and one of the areas where Tapestry provides the most benefit. Generally speaking, Tapestry ap-
plications which are functional within a single server will be functional within a cluster with no addi-
tional effort. This doesn't mean planning for clustering, and testing of clustering, is not necessary; it just
means that, when using Tapestry, it is possible to narrow the design and testing focus.

The point of server-side state is to ensure that information about the user acquired during the session is
available later in the same session. The canonical example is an application that requires some form of
login to access some or all of its content; the identify of the user must be collected at some point (in a lo-
gin page) and be generally available to other pages.

The other aspect of server-side state concerns failover. Failover is an aspect of highly-available comput-
ing where the processing of the application is spread across many servers. A group of servers used in
this way is referred to as a cluster. Generally speaking (and this may vary significantly between vendor's
implementations) requests from a particular client will be routed to the same server within the cluster.

In the event that the particular server in question fails (crashes unexpectedly, or otherwise brought out of
service), future requests from the client will be routed to a different, surviving server within the cluster.
This failover event should occur in such a way that the client is unaware that anything exceptional has
occured with the web application; and this means that any server-side state gathered by the original
server must be available to the backup server.

The main mechanism for handling this using the Java Servlet API is the HttpSession. The session
can store attributes, much like a Map. Attributes are object values referenced with a string key. In the
event of a failover, all such attributes are expected to be available on the new, backup server, to which
the client's requests are routed.

Different application servers implement HttpSession replication and failover in different ways; the
servlet API specification is delibrately non-specific on how this implementation should take place.
Tapestry follows the conventions of the most limited interpretation of the servlet specification; it as-
sumes that attribute replication only occurs when the HttpSession setAttribute() method is
invoked 5.

Attribute replication was envisioned as a way to replicate simple, immutable objects such as String or
Integer. Attempting to store mutable objects, such as List, Map or some user-defined class, can be
problematic. For example, modifying an attribute value after it has been stored into the HttpSession
may cause a failover error. Effectively, the backup server sees a snapshot of the object at the time that
setAttribute() was invoked; any later change to the object's internal state is not replicated to the

27

6 Another good name would have been "session", but that name is heavily overloaded throughout Java and J2EE.

other servers in the cluster! This can result in strange and unpredictable behavior following a failover.

Tapestry attempts to sort out the issues involving server-side state in such a way that they are invisible to
the developer. Most applications will not need to explicitly access the HttpSession at all, but may
still have significant amounts of server-side state. The following sections go into more detail about how
Tapestry approaches these issues.

Engine
The engine, a class which implements the interface IEngine, is the central object that is responsible
for managing server-side state (among its many other responsibilities). The engine is itself stored as an
HttpSession attribute.

Because the internal state of the engine can change, the framework will re-store the engine into the
HttpSession at the end of most requests. This ensures that any changes to the Visit object are prop-
erly replicated.

The simplest way to replicate server-side state is simply not to have any. With some care, Tapestry ap-
plications can run stateless, at least until some actual server-side state is necessary.

Visit object
The Visit object is an application-defined object that may be obtained from the engine (via the visit
property of the IEngine or IPage). By convention, the class is usually named Visit, but it can be
any class whatsoever, even Map.

The name, "Visit", was selected to emphasize that whatever data is stored in the Visit concerns just a
single visit to the web application. 6

Tapestry doesn't mandate anything about the Visit object's class. The type of the visit property is Ob-
ject. In Java code, accessing the Visit object involves a cast from Object to an application-specific
class. The following example demonstrates how a listener method may access the visit object.

Example 4.1. Accessing the Visit object

public void formSubmit(IRequestCycle cycle)
{

MyVisit visit = (MyVisit)getPage().getVisit();

visit.doSomething();
}

In most cases, listener methods, such as formSubmit(), are implemented directly within the page. In
that case, the first line can be abbreviated to:

MyVisit visit = (MyVisit)getVisit();

The Visit object is instantiated lazily, the first time it is needed. Method createVisit() of Ab-
stractEngine is responsible for this.

In most cases, the Visit object is an ordinary JavaBean, and therefore, has a no-arguments constructor. In

Managing server-side state

28

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

this case, the complete class name of the Visit is specified as configuration property
org.apache.tapestry.visit-class.

Typically, the Visit class is defined in the application specification, or as a <init-parameter> in
the web deployment descriptor (web.xml).

Example 4.2. Defining the Visit class

<application name="My Application">
<property name="org.apache.tapestry.visit-class" value="mypackage.MyVisit"/>

...

In cases where the Visit object does not have a no-arguments contructor, or has other special initializa-
tion requirements, the method createVisit() of AbstractEngine can be overridden.

There is a crucial difference between accessing the visit via the visit property of IPage and the
visit property of IEngine. In the former case, accessing the visit via the page, the visit will be cre-
ated if it does not already exist.

Accessing the visit property of the IEngine is different, the visit will not be created if it does not
already exist.

Carefully crafted applications will take heed of this difference and try to avoid creating the visit unnec-
essarilly. It is not just the creation of this one object that is to be avoided ... creating the visit will likely
force the entire application to go stateful (create an HttpSession), and applications are more efficient
while stateless.

Global object
The Global object is very similar to the Visit object with some key differences. The Global object is
shared by all instances of the application engine; ultimately, it is stored as a ServletContext at-
tribute. The Global object is therefore not persistent in any way. The Global object is specific to an indi-
vidual server within a cluster; each server will have its own instance of the Global object. In a failover,
the engine will connect to a new instance of the Global object within the new server.

The Global object may be accessed using the global property of either the page or the engine (unlike
the visit property, they are completely equivalent).

Care should be taken that the Global object is threadsafe; since many engines (from many sessions, in
many threads) will access it simultanenously. The default Global object is a synchronized HashMap.
This can be overriden with configuration property org.apache.tapestry.global-class.

The most typical use of the Global object is to interface to J2EE resources such as EJB home and remote
interfaces or JDBC data sources. The shared Global object can cache home and remote interfaces that
are efficiently shared by all engine instances.

Persistent page properties
Servlets, and by extension, JavaServer Pages, are inherently stateless. That is, they will be used simulta-
neously by many threads and clients. Because of this, they must not store (in instance variables) any

Managing server-side state

29

url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

properties or values that are specified to any single client.

This creates a frustration for developers, because ordinary programming techniques must be avoided. In-
stead, client-specific state and data must be stored in the HttpSession or as HttpServletRe-
quest attributes. This is an awkward and limiting way to handle both transient state (state that is only
needed during the actual processing of the request) and persistent state (state that should be available
during the processing of this and subsequent requests).

Tapestry bypasses most of these issues by not sharing objects between threads and clients. Tapestry uses
an object pool to store constructed page instances. As a page is needed, it is removed from the page
pool. If there are no available pages in the pool, a fresh page instance is constructed.

For the duration of a request, a page and all components within the page are reserved to the single re-
quest. There is no chance of conflicts because only the single thread processing the request will have ac-
cess to the page. At the end of the request cycle, the page is reset back to a pristine state and returned to
the shared pool, ready for reuse by the same client, or by a different client.

In fact, even in a high-volume Tapestry application, there will rarely be more than a few instances of any
particular page in the page pool.

For this scheme to work it is important that at the end of the request cycle, the page must return to its
pristine state. The prisitine state is equivalent to a freshly created instance of the page. In other words,
any properties of the page that changed during the processing of the request must be returned to their ini-
tial values.

The page is then returned to the page pool, where it will wait to be used in a future request. That request
may be for the same end user, or for another user entirely.

Importance of resetting properties

Imagine a page containing a form in which a user enters their address and credit card infor-
mation. When the form is submitted, properties of the page will be updated with the values
supplied by the user. Those values must be cleared out before the page is stored into the
page pool ... if not, then the next user who accesses the page will see the previous user's ad-
dress and credit card information as default values for the form fields!

Tapestry separates the persistent state of a page from any instance of the page. This is very important,
because from one request cycle to another, a different instance of the page may be used ... even when
clustering is not used. Tapestry has many copies of any page in a pool, and pulls an arbitrary instance
out of the pool for each request.

In Tapestry, a page may have many properties and may have many components, each with many proper-
ties, but only a tiny number of all those properties needs to persist between request cycles. On a later re-
quest, the same or different page instance may be used. With a little assistance from the developer, the
Tapestry framework can create the illusion that the same page instance is being used in a later request,
even though the request may use a different page instance (from the page pool) ... or (in a clustering en-
vironment) may be handled by a completely different server.

Each persistent page property is stored individually as an HttpSession attribute. A call to the static
method Tapestry.fireObservedChange() must be added to the setter method for the property
(as we'll see shortly, Tapestry can write this method for you, which is the best approach). When the
property is changed, its value is stored as a session attribute. Like the Servlet API, persistent properties
work best with immutable objects such as String and Integer;. For mutable objects (including List
and Map), you must be careful not to change the internal state of a persistent property value after invok-
ing the setter method.

Persistent properties make use of a <property-specification> element in the page or compo-
nent specification. Tapestry does something special when a component contains any such elements; it

Managing server-side state

30

dynamically fabricates a subclass that provides the desired fields, methods and whatever extra initializa-
tion or cleanup is required.

You may also, optionally, make your class abstract, and define abstract accessor methods that will be
filled in by Tapestry in the fabricated subclass. This allows you to read and update properties inside your
class, inside listener methods.

Define only what you need

You only need to define abstract accessor methods if you are going to invoke those accesor
methods in your code, such as in a listener method. Tapestry will create an enhanced sub-
class that contains the new field, a getter method and a setter method, plus any necessary
initialization methods. If you are only going to access the property using OGNL expres-
sions, then there's no need to define either accessor method.

Transient or persistent?

Properties defined this way may be either transient or persistent. It is useful to define even
transient properties using the <property-specification> element because doing
so ensures that the property will be properly reset at the end of the request (before the page
is returned to the pool for later reuse).

Example 4.3. Persistent page property: Java class

package mypackage;

import org.apache.tapestry.html.BasePage;

public abstract class MyPage extends BasePage
{

abstract public int getItemsPerPage();

abstract public void setItemsPerPage(int itemsPerPage);
}

Example 4.4. Persistent page property: page specification

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
"-//Apache Software Foundation//Tapestry Specification 3.0//EN"
"http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="mypackage.MyPage">

<property-specification
name="itemsPerPage"
persistent="yes"
type="int" initial-value="10"/>

</page-specification>

Managing server-side state

31

url(../api/org/apache/tapestry/html/BasePage.html)

Again, making the class abstract, and defining abstract accessors is optional. It is only useful when a
method within the class will need to read or update the property. It is also valid to just implement one of
the two accessors. The enhanced subclass will always include both a getter and a setter.

This exact same technique can be used with components as well as pages.

A last note about initialization. After Tapestry invokes the finishLoad() method, it processes the
initial value provided in the specification. If the initial-value attribute is ommitted or blank, no
change takes place. Tapestry then takes a snapshot of the property value, which it retains and uses at the
end of each request cycle to reset the property back to its "pristine" state.

Warning

The previous paragraph may not be accurate; I believe Mindbridge may have changed this
behavior recently.

This means that you may perform initialization for the property inside finishLoad() (instead of pro-
viding an initial-value). However, don't attempt to update the property from initialize() ...
the order of operations when the page detaches is not defined and is subject to change.

Implementing persistent page properties man-
ually

Warning

There is very little reason to implement persistent page properties manually. Using the
<property-specification> element is much easier.

The preferred way to implement persistent page properties without using the property-
<specification> element is to implement the method initialize() on your page. This
method is invoked once when the page is first created; it is invoked again at the end of each request cy-
cle. An empty implementation of this method is provided by AbstractPage.

The first example demonstrates how to properly implement a transient property. It is simply a normal
JavaBean property implementation, with a little extra to reset the property back to its pristine value
(null) at the end of the request.

Example 4.5. Use of initialize() method

package mypackage;

import org.apache.tapestry.html.BasePage;

public class MyPage extends BasePage
{

private String _message;

public String getMessage()
{

return _message;

Managing server-side state

32

url(../api/org/apache/tapestry/AbstractPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

}

public void setMessage(String message)
{

_message = message;
}

protected void initialize()
{

_message = null;
}

}

If your page has additional attributes, they should also be reset inside the initialize() method.

Now that we've shown how to manually implement transient state, we'll show how to handle persistent
state.

For a property to be persistent, all that's necessary is that the accessor method notify the framework of
changes. Tapestry will record the changes (using an IPageRecorder) and, in later request cycles,
will restore the property using using the recorded value and whichever page instance is taken out of the
page pool.

This notification takes the form of an invocation of the static method fireObservedChange() in
the Tapestry class. This method is overloaded for all the scalar types, and for Object.

Example 4.6. Manual persistent page property

package mypackage;

import org.apache.tapestry.Tapestry;
import org.apache.tapestry.html.BasePage;

public class MyPage extends BasePage
{

private int _itemsPerPage;

public int getItemsPerPage()
{

return _itemsPerPage;
}

public void setItemsPerPage(int itemsPerPage)
{

_itemsPerPage = itemsPerPage;

Tapestry.fireObservedChange(this, "itemsPerPage", itemsPerPage);
}

protected void initialize()
{

_itemsPerPage = 10;
}

}

This sets up a property, itemsPerPage, with a default value of 10. If the value is changed (perhaps

Managing server-side state

33

url(../api/org/apache/tapestry/IPageRecorder.html)
url()
url(../api/org/apache/tapestry/html/BasePage.html)

by a form or a listener method), the changed value will "stick" with the user who changed it, for the du-
ration of their session.

Manual persistent component properties
Warning

There is very little reason to implement persistent component properties manually. Using
the <property-specification> element is much easier.

Tapestry uses the same mechanism for persistent component properties as it does for persisting page
properties (remember that pages are, in fact, specialized components). Implementing transient and per-
sistent properties inside components involves more work than with pages as the initialization of the
component is more complicated.

Components do not have the equivalent of the initialize() method. Instead, they must register for
an event notification to tell them when the page is being detached from the engine (prior to be stored
back into the page pool). This event is generated by the page itself.

The Java interface PageDetachListener is the event listener interface for this purpose. By simply
implementing this interface, Tapestry will register the component as a listener and ensure that it receives
event notifications at the right time (this works for the other page event interfaces, such as PageRen-
derListener as well; simply implement the interface and leave the rest to the framework).

Tapestry provides a method, finishLoad(), for just this purpose: late initialization.

Example 4.7. Manual Persistent Component Properties

package mypackage;

import org.apache.tapestry.Tapestry;
import org.apache.tapestry.BaseComponent;
import org.apache.tapestry.event.PageDetachListener;
import org.apache.tapestry.event.PageEvent;

public class MyComponent extends BaseComponent implements PageDetachListener
{

private String _myProperty;

public void setMyProperty(String myProperty)
{

_myProperty = myProperty;

Tapestry.fireObservedChange(this, "myProperty", myProperty);
}

public String getMyProperty()
{

return _myProperty;
}

protected void initialize()
{

_myProperty = "a default value";
}

protected void finishLoad()

Managing server-side state

34

url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/event/PageRenderListener.html)
url(../api/org/apache/tapestry/BaseComponent.html)
url(../api/org/apache/tapestry/event/PageDetachListener.html)

{
initialize();

}

/**
* The method specified by PageDetachListener.
*
*/

public void pageDetached(PageEvent event)
{

initialize();
}

}

Again, there is no particular need to do all this; using the <property-specification> element is
far, far simpler.

Stateless applications
In a Tapestry application, the framework acts as a buffer between the application code and the Servlet
API ... in particular, it manages how data is stored into the HttpSession. In fact, the framework con-
trols when the session is first created.

This is important and powerful, because an application that runs, even just initially, without a session
consumes far less resources that a stateful application. This is even more important in a clustered envi-
ronment with multiple servers; any data stored into the HttpSession will have to be replicated to
other servers in the cluster, which can be expensive in terms of resources (CPU time, network band-
width, and so forth). Using less resources means better throughput and more concurrent clients, always a
good thing in a web application.

Tapestry defers creation of the HttpSession until one of two things happens: When the Visit object
is created, or when the first persistent page property is recorded. At this point, Tapestry will create the
HttpSession and store the engine into it.

Earlier, we said that the IEngine instance is stored in the HttpSession, but this is not always the
case. Tapestry maintains an object pool of IEngine instances that are used for stateless requests. An
instance is checked out of the pool and used to process a single request, then checked back into the pool
for reuse in a later request, by the same or different client.

For the most part, your application will be unaware of when it is stateful or stateless; statefulness just
happens on its own. Ideally, at least the first, or "Home" page, should be stateless (it should be organized
in such a way that the visit is not created, and no persistent state is stored). This will help speed the ini-
tial display of the application, since no processing time will be used in creating the session.

Managing server-side state

35

url(../api/org/apache/tapestry/event/PageDetachListener.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)

Chapter 5. Configuring Tapestry
Requirements

Tapestry is designed to operate on a variety of different JVMs and versions of the Java Servlet API. Be-
low you can find the list of supported and tested configurations:

Supported Java Versions

Java 1.2.2
Operates correctly. Requires the Xerces parser to be in the classpath (usually provided by the servlet
container).

Java 1.3.x
Operates correctly. Requires the Xerces parser to be in the classpath (usually provided by the servlet
container).

Java 1.4.x (recommended)
Operates correctly.

Supported Java Servlet API Versions

Java Servlet API 2.2
Operates correctly with minor exceptions related to character encoding of the requests due to the
limitations of the Servlet API version.

Java Servlet API 2.3 (recommended)
Operates correctly.

Web deployment descriptor
All Tapestry applications make use of the ApplicationServlet class as their servlet; it is rarely
necessary to create a subclass.

Example 5.1. Web Deployment Descriptor

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<distributable/> ❶
<display-name>My Application</display-name>
<servlet>
<servlet-name>myapp</servlet-name> ❷
<servlet-class>org.apache.tapestry.ApplicationServlet</servlet-class> ❸
<load-on-startup>0</load-on-startup> ❹

</servlet>

36

url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)

<servlet-mapping>
<servlet-name>myapp</servlet-name>
<url-pattern>/app</url-pattern> ❺

</servlet-mapping>

<filter> ❻
<filter-name>redirect</filter-name>
<filter-class>org.apache.tapestry.RedirectFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>redirect</filter-name>
<url-pattern>/</url-pattern>

</filter-mapping>

<session-config>
<session-timeout>15</session-timeout>

</session-config>

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>
</web-app>

❶ This indicates to the application server that the Tapestry application may be clustered. Most appli-
cation servers ignore this element, but future servers may only distribute applications within a clus-
ter if this element is present.

JBoss is very literal!
JBoss 3.0.x appears to be very literal about the <distributable> element. If it
appears, you had better be deploying into a clustered environment, otherwise
HttpSession state management simply doesn't work.

❷ The servlet name may be used when locating the application specification (though not in this ex-
ample).

❸ The servlet class is nearly always ApplicationServlet. There's rarely a need to create a sub-
class; Tapestry has many other hooks for extending the application.

❹ It is generally a good idea to specify <load-on-startup>, this causes the servlet container to
instantitate and initialize the the application servlet, which in turn, reads the Tapestry application
specification. Many common development errors will be spotted immediately, rather than when the
first application request arrives.

❺ The servlet is mapped to /app within the context. The context itself has a path, determined by the
application server and based on the name of the WAR file. The client web browser will see the
Tapestry application as http://host/war-name/app.

Using /app as the URL is a common convention when creating Tapestry applications, but is not a
requirement. The framework will adapt to whatever mapping you select.

❻ This filter sends a client redirect to the user when they access the web application context. The fil-
ter sends a client redirect to the user's browser, directing them to the application servlet. In this
way, the "public" URL for an application can be http://myserver/mycontext/ when, in
fact, the real address is http://myserver/mycontext/app.

On initialization, the Tapestry servlet will locate its application specification; a file that identifies details
about the application, the pages and components within it, and any component libraries it uses. Tapestry
provides a great deal of flexibility on where the specification is stored; trivial Tapestry applications can
operate without an application specification.

The specification is normally stored under WEB-INF. In fact, Tapestry performs a search to find the

Configuring Tapestry

37

url(../api/org/apache/tapestry/RedirectFilter.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)
url(../api/org/apache/tapestry/ApplicationServlet.html)

specification:

1. On the classpath, as defined by the
org.apache.tapestry.application-specification configuration parameter.

2. As /WEB-INF/name/name.application. The name is the servlet name. This location is
only used in the rare case of a single WAR containing multiple Tapestry applications.

3. As /WEB-INF/name.application. Again, name is the servlet name. This is the standard lo-
cation.

If the application specification still can not be found, then an empty, "stand in" application specification
is used. This is perfectly acceptible ... an application specification is typically needed only when an ap-
plication makes use of component libraries, or requires some other kind of customization only possible
with an application specification.

Configuration Search Path
Tapestry occasionally must obtain a value for a configuration property. These configuration properties
are items that are frequently optional, and don't fit into any particular specification. Many are related to
the runtime environment, such as which class to instantiate as the Visit object.

Tapestry is very flexible about where values for such properties may be obtained. In general, the search
path for configuration properties is:

• As a <property> of the <application> (in the application specification, if the application
uses one).

• As an <init-parameter> for the servlet, in the web application deployment descriptor.

• As an <init-parameter> for the servlet context, also in the web application deployment de-
scriptor.

• As a JVM system property.

• Hard-coded "factory" defaults (for some properties).

It is expected that some configurations are not defined at any level; those will return null.

Applications are free to leverage this lookup mechanism as well. IEngine defines a proper-
tySource property (of type IPropertySource) that can be used to perform such lookups.

Applications may also want to change or augment the default search path; this is accomplished by over-
riding AbstractEngine method createPropertySource(). For example, some configuration
data could be drawn from a database.

The following are all the configuration values currently used in Tapestry:

Configuration Values

org.apache.tapestry.template-extension
Overrides the default extension used to locate templates for pages or components. The default ex-
tension is "html", this configuration property allows overrides where appropriate. For example, an

Configuring Tapestry

38

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)

application that produces WML may want to override this to "wml".

This configuration property does not follow the normal search path rules. The <property> must
be provided in the <page-specification> or <component-specification>. If no
value is found there, the immediate containing <application> or library-spec-
<ification> is checked. If still not found, the default is used.

org.apache.tapestry.asset.dir, org.apache.tapestry.asset.URL
These two values are used to handle private assets. Private assets are assets that are stored on the
classpath, and not normally visible to client web browsers.

By specifying these two configuration values, Tapestry can export private assets to a directory that
is visible to the client web browser. The URL value should map to the directory specified by the
dir value.

org.apache.tapestry.visit-class
The fully qualified class name to instantiate as the Visit object.

If not specified, an instance of HashMap will be created.

org.apache.tapestry.default-page-class
By default, any page that omits the class attribute (in its <page-specification>) will be
instantiated as BasePage. If this is not desired, the default may be overridden by specifying a fully
qualified class name.

org.apache.tapestry.engine-class
The fully qualified class name to instantiate as the application engine. This configuration value is
only used when the application specification does not exist, or fails to specify a class. By default,
BaseEngine is used if this configuration value is also left unspecified.

org.apache.tapestry.enhance.disable-abstract-method-validation
Used to work around a bug in IBM's JDK 1.3.1. This JDK reports all methods of an abstract class as
abstract, even if they are concrete. This causes spurious errors about unimplemented abstract meth-
ods. Specifying true for this property disables checks for unimplemented abstract methods.

org.apache.tapestry.global-class
The fully qualified class name to instantiate as the engine global property. The Global object is
much like Visit object, except that it is shared by all instances of the application engine rather than
being private to any particular session. If not specified, a synchronized instance of HashMap is
used.

org.apache.tapestry.default-script-language
The name of a BSF-supported language, used when a <listener-binding> element does not
specify a language. If not overridden, the default is "jython".

org.apache.tapestry.enable-reset-service
If not specified as "true", then the reset service will be non-functional. The reset service is used
to force the running Tapestry application to discard all cached data (including templates, specifica-
tions, pooled objects and more). This must be explicitly enabled, and should only be used in devel-
opment (in production, it is too easily exploited as a denial of service attack).

Unlike most other configuration values, this must be specified as a JVM system property.

org.apache.tapestry.disable-caching
If specified (as "true"), then the framework will discard all cached data (specifications, templates,
pooled objects, etc.) at the end of each request cycle.

This slows down request handling by a noticable amount, but is very useful in development; it
means that changes to templates and specifications are immediately visible to the application. It also
helps identify any errors in managing persistent page state.

Configuring Tapestry

39

url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)
url(http://jakarta.apache.org/bsf/)

This should never be enabled in production; the performance hit is too large. Unlike most other con-
figuration values, this must be specified as a JVM system property.

org.apache.tapestry.output-encoding
Defines the character set used by the application to encode its HTTP responses. This is also the
character set that the application assumes that the browser uses when submitting data unless it is not
specified differently in the HTTP request.

The default for this configuration property is UTF-8. Normally there is no need to modify this value
since UTF-8 allows almost all characters to be correctly encoded and displayed.

org.apache.tapestry.template-encoding
Defines the character set used by the application templates. The default value is ISO-8859-1.

Please see the Character Sets section for more information.

Application extensions
Tapestry is designed for flexibility; this extends beyond simply configuring the framework, and encom-
passes actually replacing or augmenting the implementation of the framework. If Tapestry doesn't do
what you want it to, there are multiple paths for extending, changing and overriding its normal behavior.
In some cases, it is necessary to subclass framework classes in order to alter behavior, but in many
cases, it is possible to use an application extension.

Application extensions are JavaBeans declared in the application specification using the
<extension> element. Each extension consists of a name, a Java class to instantiate, and an optional
configuration (that is, properties of the bean may be set). The framework has a finite number of exten-
sion points. If an extension bean with the correct name exists, it will be used at that extension point.

Your application may have its own set of extensions not related to Tapestry framework extension points.
For example, you might have an application extension referenced from multiple pages to perform com-
mon operations such as JNDI lookups.

You may access application extensions via the engine's specification property. For example:

IEngine engine = getEngine();
IApplicationSpecification specification = engine.getSpecification();

myExtension myExtension = (MyExtension) specification.getExtension("myExtension");

Each application extension used with an framework extension point must implement an interface partic-
ular to the extension point.

Application Extension Points

org.apache.tapestry.property-source (IPropertySource)
This extension is fit into the configuration property search path, after the servlet context, but before
JVM system properties. A typical use would be to access some set of configuration properties
stored in a database.

org.apache.tapestry.request-decoder (IRequestDecoder)
A request decoder is used to identify the actual server name, server port, scheme and request URI

Configuring Tapestry

40

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/spec/IApplicationSpecification.html)
url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/request/IRequestDecoder.html)

for the request. In some configurations, a firewall may invalidate the values provided by the actual
HttpServletRequest (the values reflect the internal server forwarded to by the firewall, not
the actual values used by the external client). A request decoder knows how to determine the actual
values.

org.apache.tapestry.monitor-factory (IMonitorFactory)
An object that is used to create IMonitor instances. Monitors are informed about key application
events (such as loading a page) during the processing of a request.

The factory may create a new instance for the request, or may simply provide access to a shared in-
stance.

If not specified, a default implementation is used (DefaultMonitorFactory).

org.apache.tapestry.specification-resolver-delegate ISpecificationRe-
(solverDelegate)

An object which is used to find page and component specifications that are not located using the de-
fault search rules. The use of this is open-ended, but is generally useful in very advanced scenarios
where specifications are stored externally (perhaps in a database), or constructed on the fly.

org.apache.tapestry.template-source-delegate (ITemplateSourceDelegate)
An object which is used to find page or component templates that are not located using the default
search rules. The use of this is open-ended, but is generally useful in very advanced scenarios where
templates are stored externally (perhaps in a database), or constructed on the fly.

org.apache.tapestry.multipart-decoder (IMultipartDecoder)
Allows an alternate object to be responsible for decoding multipart requests (context type multipart/
form-data, used for file uploads). Generally, this is used to configure an instance of DefaultMul-
tipartDecoder with non-default values for the maximum upload size, threshold size (number
of bytes before a temporary file is created to store the) and repository directory (where temporary
files are stored).

org.apache.tapestry.ognl-type-converter
Specifies an implementation of ognl.TypeConverter to be used for expression bindings. See
OGNL's Type Converter documentation for further information on implementing a custom type
converter.

Character Sets
Tapestry is designed to make the web application localization easy and offers the ability to define differ-
ent localized templates for the same component. For example, Home.html would be the default tem-
plate of the Home page, however Home_fr.html would be used in all French locales, while
Home_zh_CN.html would be used in China and Home_zh_TW.html would be used in Taiwan.

Web developers and designers in different countries tend to use different character sets for the templates
they produce. English, German, French templates are typically produced in ISO-8859-1, Russian tem-
plates often use KOI8-R, and Chinese texts are normally written in Big5. Tapestry allows the application
to configure the character set used in its templates and makes it possible to use different character sets
for templates associated with different components and different locales.

The character set of a template is defined using the
org.apache.tapestry.template-encoding configuration property. The search path of this
property is slightly different then the standard one and allows specific components to use other character
sets:

• As a <property> of the <page-specification> or the

Configuring Tapestry

41

url(../api/org/apache/tapestry/engine/IMonitorFactory.html)
url(../api/org/apache/tapestry/engine/IMonitor.html)
url(../api/org/apache/tapestry/engine/DefaultMonitorFactory.html)
url(../api/org/apache/tapestry/resolver/ISpecificationResolverDelegate.html)
url(../api/org/apache/tapestry/engine/ITemplateSourceDelegate.html)
url(../api/org/apache/tapestry/multipart/IMultipartDecoder.html)
url(../api/org/apache/tapestry/multipart/DefaultMultipartDecoder.html)
url(http://www.ognl.org/2.6.3/Documentation/html/typeConversion.html)
url(http://www.ognl.org/2.6.3/Documentation/html/typeConversion.html)
url(http://www.ognl.org/2.6.3/Documentation/html/typeConversion.html)

> (in the page or component specification).

This configuration will apply only to the page or component where it is defined.

• As a <property> of the <library-specification> (in the library specification, if the
components are included in a library).

This configuration will apply to all pages and components in the library.

• As a <property> of the <application> (in the application specification, if the application
uses one).

• As an <init-parameter> for the servlet, in the web application deployment descriptor.

• As an <init-parameter> for the servlet context, also in the web application deployment de-
scriptor.

• As a JVM system property.

• The hard-coded default "ISO-8859-1".

Tapestry also makes it possible to define the character set used by the templates specific to a particular
locale by appending the locale to the property name above. As an example, the
org.apache.tapestry.template-encoding_ru configuration property would define the
character set used by the Russian templates, such as Home_ru.html. This allows templates for differ-
ent locales to use different character sets, even though they are in the same application. For example, it
is possible for all Russian templates in the application to use the KOI8-R character set and all Chinese
templates to use Big5 at the same time.

The character sets used by the templates do not reflect in any way on the character set Tapestry uses to
encode its response to the browser. The character sets are used when reading the template to translate it
appropriately into Unicode. The output character set is defined by the
org.apache.tapestry.output-encoding configuration property.

Configuring Tapestry

42

Appendix A. Tapestry Object
Properties

When using Tapestry, an important aspect of your work is to leverage the properties exposed by the var-
ious objects within Tapestry. A page has properties (inherited from base classes such as Abstract-
Component and BasePage) and contains components and other objects with more properties. Pages
are connected to an engine, which exports its own set of properties. This appendix is a quick guide to the
most common objects and their properties.

Table A.1. Tapestry Object Properties

Property name Defining class Property type Description

activePageNames BaseEngine Collection of
String

Names of all pages for
which a page recorder
has been created.

assets IComponent Map of IAsset Localized assets as de-
fined in the component's
specification.

beans IComponent IBeanProvider Used to access beans de-
fined using the <bean>
specification element.

bindingNames IComponent Collection of
String

The names of all formal
and informal parameter
bindings for the compo-
nent.

bindings IComponent Map of IBinding All bindings (for both
formal and informal pa-
rameters) for this com-
ponent, keyed on the pa-
rameter name.

body AbstractCompo-
nent

IRender[] The body of the compo-
nent: the text (as IRen-
der) and components
(which inherit from
IRender) that the com-
ponent directly encloses
within its container's
template.

bodyCount AbstractCompo-
nent

int The active number of el-
ements in the body
property array.

componentClassEn-
hancer

IEngine IComponent-
ClassEnhancer

Object responsible for
dynamic creation of en-
hanced subclasses of
Tapestry pages and com-
ponents.

components IComponent Map of IComponent All components con-
tained by this compo-
nent, keyed on the com-
ponent id.

43

url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IAsset.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IBeanProvider.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IBinding.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/IRender.html)
url(../api/org/apache/tapestry/IRender.html)
url(../api/org/apache/tapestry/IRender.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IComponentClassEnhancer.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IComponent.html)

Property name Defining class Property type Description

contextPath IEngine String The path, if any, for the
web application context.

changeObserver IPage ChangeObserver An object that recieves
notifications about
changes to persistent
page properties.

componentMessages-
Source

IEngine IComponentMes-
sagesSource

An object that allows
components to find their
set of localized mes-
sages.

container IComponent IComponent The page or component
which contains this com-
ponent. Pages will return
null.

dataSqueezer IEngine DataSqueezer Object used to encode
and decode arbitrary val-
ues into a URL while
maintaining their type.

dirty AbstractEngine boolean True if the engine has
been (potentially) modi-
fied, and should be
stored into the
HttpSession.

disabled IFormComponent boolean If true, the component
should be disabled (and
not respond to query pa-
rameters passed up in
the request).

displayName IFormComponent String Localized string to be
displayed as a label for
the form control. Most
implementations leave
this undefined (as null).

engine IPage IEngine The engine to which the
page is currently at-
tached.

extendedId IComponent String An "extended" version
of the idPath property
that includes the name of
the page containing the
component as well.

form IFormComponent IForm The form which encloses
the form control compo-
nent.

global IEngine, IPage Object The Global object for
the application.

hasVisit AbstractEngine boolean Returns true if the Visit
object has been created,
false initially.

id IComponent String The id of the component,
which is unique within
its container. In many

Tapestry Object Properties

44

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/event/ChangeObserver.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IComponentMessagesSource.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/util/io/DataSqueezer.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/form/IFormComponent.html)
url(../api/org/apache/tapestry/form/IFormComponent.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/form/IFormComponent.html)
url(../api/org/apache/tapestry/IForm.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/IComponent.html)

Property name Defining class Property type Description

cases, the framework
may have assigned an
automatically generated
id. Pages do not have an
id and return null.

idPath IComponent String A sequence of id's used
to locate a component
within a page. A compo-
nent bar within a com-
ponent foo within a
page will have an id-
Path of foo.bar.
Pages return null.

listeners AbstractCompo-
nent, Ab-
stractEngine

ListenerMap Used to map listener
methods as objects that
implement the IAc-
tionListener inter-
face.

locale IEngine Locale The locale for the cur-
rent client; this is used
when loading pages
from the page pool, or
when instantiating new
page instances.

locale IPage Locale The locale to which the
page and all components
within the page is local-
ized.

location many ILocation The location that should
be used with any error
messages generated
about the object. This is
ultimately the file, line
(and even column) of the
template or specification
file responsible for
defining the object (be it
a component, a page, or
some other kind of ob-
ject).

messages IComponent IMessages Localized messages for
the component.

name IFormComponent String The name, or element id,
assigned to the form
control by the IForm.
This is set as the compo-
nent renders (but the
property can then be
read after the component
renders).

namespace IComponent INamespace The namespace contain-
ing the component.
Components are always
within some namespace,

Tapestry Object Properties

45

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/AbstractComponent.html)
url(../api/org/apache/tapestry/engine/AbstractEngine.html)
url(../api/org/apache/tapestry/listener/ListenerMap.html)
url(../api/org/apache/tapestry/IActionListener.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/ILocation.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IMessages.html)
url(../api/org/apache/tapestry/form/IFormComponent.html)
url(../api/org/apache/tapestry/IForm.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/INamespace.html)

Property name Defining class Property type Description

whether it is the default
(application) namespace,
the framework names-
pace, or a namespace for
a component library.

outputEncoding AbstractPage String Output encoding for the
page.

page IComponent IPage The page which ulti-
mately contains the com-
ponent.

propertySource IEngine IPropertySource Source for configuration
properties.

pageName IPage String The fully qualified page
name (possibly includ-
ing a namespace prefix).

pageSource IEngine IPageSource The object used to ob-
tain page instances.

pool IEngine Pool Stores objects that are
expensive to create.

requestCycle IPage IRequestCycle The request cycle to
which the page is cur-
rently attached.

resetServiceEnabled IEngine boolean If true, the reset service
is enabled. The reset ser-
vice is disabled by de-
fault.

resourceResolver IEngine IResourceRe-
solver

Object responsible for
locating classes and
classpath resources.

scriptSource IEngine IScriptSource Object that parses and
caches script specifica-
tions.

servletPath IEngine String The URL path used to
reference the application
servlet (including the
context path, if any).

specification IComponent IComponentSpeci-
fication

The specification which
defines this component.
Often used to access
meta data defined in the
component's specifica-
tion using the prop-
<erty> element.

specification IEngine IApplication-
Specification

The specification for the
application.

specificationSource IEngine ISpecification-
Source

Object responsible for
reading and caching
page and component
specifications.

stateful IEngine boolean If true, then an
HttpSession has

Tapestry Object Properties

46

url(../api/org/apache/tapestry/AbstractPage.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IPropertySource.html)
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IPageSource.html)
url(../api/org/apache/tapestry/IEngine.html)
url()
url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/IRequestCycle.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IResourceResolver.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/IScriptSource.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/spec/IComponentSpecification.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/spec/IApplicationSpecification.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/ISpecificationSource.html)
url(../api/org/apache/tapestry/IEngine.html)

Property name Defining class Property type Description

been created for the
client to store server-side
state. Initially false.

templateSource IEngine ITemplateSource Object responsible for
reading and caching
page and component
templates.

visit IEngine Object Returns the Visit object
for the current client, or
null if the Visit object
has not yet been created.

visit IPage Object Returns the Visit object
for the current client,
creating it if necessary.

Tapestry Object Properties

47

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/ITemplateSource.html)
url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/IPage.html)

Appendix B. Tapestry JAR files
The Tapestry distribution includes the Tapestry JARs, plus all the dependencies (other libraries that
Tapestry makes use of). The JAR files are in the lib folder (or in folders beneath it).

tapestry-3.0.jar
The main Tapestry framework. This is needed at compile time and runtime. The framework release
number is integrated into the file name.

tapestry-contrib-3.0.jar
Contains additional components and tools that are not integral to the framework itself, such as the
Palette. Needed at runtime if any such components are used in an application. The framework
release number is integrated into the file name.

runtime/*.jar
Frameworks that are usually needed at runtime (but not at framework build time) and are not always
supplied by the servlet container. This currently is just the Log4J framework.

ext/*.jar
Frameworks needed when compiling the framework and at runtime. This is several other Jakarta
frameworks (including BSF and BCEL), plus the OGNL and Javassist frameworks.

j2ee/*.jar
Contains the J2EE and Servlet APIs. These are needed when building the framework, but are typi-
cally provided at runtime by the servlet container or application server.

48

url(../ComponentReference/contrib.Palette.html)
url(http://jakarta.apache.org/log4j/)
url(http://jakarta.apache.org)
url(http://jakarta.apache.org/bsf/)
url(http://jakarta.apache.org/bcel/)
url(http://www.ognl.org)
url(http://jboss.org/developers/projects/javassist.html)

Appendix C. Tapestry Specification
DTDs

This appendix describes the four types of specifications used in Tapestry.

Table C.1. Tapestry Specifications

Type File Extension Root Element Public ID System ID

Application application <application> -//Apache
Software

Foundation/
/Tapestry
Specification
3.0//EN

http://jakart
a.apache.org/

tapestry/
dtd/

Tapestry_3_0.
dtd

Page page page-
specifica-

<tion>

-//Apache
Software

Foundation/
/Tapestry
Specification
3.0//EN

http://jakart
a.apache.org/

tapestry/
dtd/

Tapestry_3_0.
dtd

Component jwc component-
specifica-

<tion>

-//Apache
Software

Foundation/
/Tapestry
Specification
3.0//EN

http://jakart
a.apache.org/

tapestry/
dtd/

Tapestry_3_0.
dtd

Library library library-
specifica-

<tion>

-//Apache
Software

Foundation/
/Tapestry
Specification
3.0//EN

http://jakart
a.apache.org/

tapestry/
dtd/

Tapestry_3_0.
dtd

Script script <script> -//Apache
Software

Foundation/
/Tapestry
Script Speci-
fication
3.0//EN

http://jakart
a.apache.org/

tapestry/
dtd/

Script_3_0.dt
d

The four general Tapestry specifications (<application>, <component-specification>
<page-specification> and <library-specification>) all share the same DTD, but use
different root elements.

<application> element
root element

The application specification defines the pages and components specific to a single Tapestry application.
It also defines any libraries that are used within the application.

49

Figure C.1. <application> Attributes

Name Type Required ? Default Value Description

name string no User presentable
name of applica-
tion.

engine-class string no Name of an imple-
mentation of
IEngine to in-
stantiate. Defaults
to BaseEngine if
not specified.

Figure C.2. <application> Elements

<description> ?, <property> *,
(<page> | <component-type> | <service> | <library> | <extension>) *

<bean> element
Appears in: <component-specification> and <page-specification>

A <bean> is used to add behaviors to a page or component via aggregation. Each <bean> defines a
named JavaBean that is instantiated on demand. Beans are accessed through the OGNL expression
beans.name.

Once a bean is instantiated and initialized, it will be retained by the page or component for some period
of time, specified by the bean's lifecycle.

bean lifecycle

none
The bean is not retained, a new bean will be created on each access.

page
The bean is retained for the lifecycle of the page itself.

render
The bean is retained until the current render operation completes. This will discard the bean when a
page or form finishes rewinding.

request
The bean is retained until the end of the current request.

Caution should be taken when using lifeycle page. A bean is associated with a particular instance of a

Tapestry Specification DTDs

50

url(../api/org/apache/tapestry/IEngine.html)
url(../api/org/apache/tapestry/engine/BaseEngine.html)

page within a particular JVM. Consecutive requests may be processed using different instances of the
page, possibly in different JVMs (if the application is operating in a clustered environment). No state
particular to a single client session should be stored in a page.

Beans must be public classes with a default (no arguments) constructor. Properties of the bean may be
configured using the <set-property> and <set-message-property> elements.

Figure C.3. <bean> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
bean, which must
be a valid Java
identifier.

class string yes The name of the
class to instantiate.

lifecycle none|page|ren
der|request

no request As described
above; duration that
bean is retained.

Figure C.4. <bean> Elements

<description> ?, <property> *,
(<set-property> | <set-message-property>) *

<binding> element
Appears in: <component>

Binds a parameter of an embedded component to an OGNL expression rooted in its container.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

If the expression attribute is omitted, then the body of the element is used. This is useful when the
expression is long, or contains problematic characters (such as a mix of single and double quotes).

Figure C.5. <binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
parameter to bind.

expression string yes The OGNL expres-
sion, relative to the
container, to be
bound to the pa-
rameter.

Tapestry Specification DTDs

51

<component> element
Appears in: <component-specification> and <page-specification>

Defines an embedded component within a container (a page or another component).

In an instantiated component, embedded components can be accessed with the OGNL expression com-
ponents.id.

Figure C.6. <component> Attributes

Name Type Required ? Default Value Description

id string yes Identifier for the
component here
and in the compo-
nent's template.
Must be a valid
Java identifier.

type string no A component type
to instantiate.

copy-of string no The name of a pre-
viously defined
component. The
type and bindings
of that component
will be copied to
this component.

inherit-infor-
mal-parameters

yes|no no no If yes, then any in-
formal parameters
of the containing
component will be
copied into this
component.

Either type or copy-of must be specified.

A component type is either a simple name or a qualified name. A simple name is the name of an compo-
nent either provided by the framework, or provided by the application (if the page or component is de-
fined in an application), or provided by the library (if the page or component is defined in a library).

A qualified name is a library id, a colon, and a simple name of a component provided by the named li-
brary (for example, contrib:Palette). Library ids are defined by a <library> element in the
containing library or application.

Figure C.7. <component> Elements

<property> *,
(<binding> | <inherited-binding> | <listener-binding> | <static-binding> | <message-binding>) *

Tapestry Specification DTDs

52

<component-type> element
Appears in: <application> and <library-specification>

Defines a component type that may latter be used in a <component> element (for pages and compo-
nents also defined by this application or library).

Figure C.8. <component-type> Attributes

Name Type Required ? Default Value Description

type string yes A name to be used
as a component
type.

specification-path string yes An absolute or rela-
tive resource path
to the component's
specification
(including leading
slash and file ex-
tension). Relative
resources are evalu-
ated relative to the
location of the con-
taining application
or library specfica-
tion.

<component-specification> element
root element

Defines a new component, in terms of its API (<parameter>s), embedded components, beans and as-
sets.

The structure of a <component-specification> is very similar to a
<page-specification> except components have additional attributes and elements related to pa-
rameters.

Figure C.9. <component-specification> Attributes

Name Type Required ? Default Value Description

class string no The Java class to
instantiate, which
must implement the
interface ICompo-
nent. If not speci-
fied, BaseCom-
ponent is used.

Tapestry Specification DTDs

53

url(../api/org/apache/tapestry/IComponent.html)
url(../api/org/apache/tapestry/BaseComponent.html)

Name Type Required ? Default Value Description

allow-body yes|no no yes
If yes, then any
body for this com-
ponent, from its
containing page or
component's tem-
plate, is retained
and may be pro-
duced using a
RenderBody
component.

If no, then any
body for this com-
ponent is discarded.

allow-infor-
mal-parameters

yes|no no yes
If yes, then any in-
formal parameters
(bindings that don't
match a formal pa-
rameter) specified
here, or in the com-
ponent's tag within
its container's tem-
plate, are retained.
Typically, they are
converted into ad-
ditional HTML at-
tributes.

If no, then infor-
mal parameters are
not allowed in the
specification, and
discarded if in the
template.

Figure C.10. <component-specification> Elements

<description> ?, <parameter> *, <reserved-parameter> *, <property> *,
(<bean> | <component> | <external-asset> | <context-asset> | <private-asset> | <property-specification>)*

<configure> element
Appears in: <extension>

Allows a JavaBeans property of the extension to be set from a statically defined value. The config-
<ure> element wraps around the static value. The value is trimmed of leading and trailing whitespace
and optionally converted to a specified type before being assigned to the property.

Tapestry Specification DTDs

54

url(../ComponentReference/RenderBody.html)

Figure C.11. <configure> Attributes

Name Type Required ? Default Value Description

property-name string yes The name of the
extension property
to configure.

type boolean|int|l
ong|double|St
ring

no String The conversion to
apply to the value.

value no The value to con-
figure, which will
be converted before
being assigned to
the property. If not
provided, the char-
acter data wrapped
by the element is
used instead.

<context-asset> element
Specifies an asset located relative to the web application context root folder. Context assets may be lo-
calized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets.name.

The path may be either absolute or relative. Absolute paths start with a leading slash, and are evalulated
relative to the context root. Relative paths are evaluated relative to the application root, which is typi-
cally the same as the context root (the exception being a WAR that contains multiple Tapestry applica-
tions, within multiple subfolders).

Figure C.12. <context-asset> Attributes

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be
a valid Java identi-
fier.

path string yes The path to the as-
set.

<description> element
Appears in: many

Tapestry Specification DTDs

55

A description may be attached to a many different elements. Descriptions are used by an intelligent IDE
to provide help. The Tapestry Inspector may also display a description.

The descriptive text appears inside the <description> tags. Leading and trailing whitespace is re-
moved and interior whitespace may be altered or removed. Descriptions should be short; external docu-
mentation can provide greater details.

The <description> element has no attributes.

<extension> element
Appears in: <application> and <library-specification>

Defines an extension, a JavaBean that is instantiated as needed to provide a global service to the applica-
tion.

Figure C.13. <extension> Attributes

Name Type Required ? Default Value Description

name string yes A name for the ex-
tension, which can
(and should) look
like a qualified
class name, but
may also include
the dash character.

class string yes The Java class to
instantiate. The
class must have a
zero-arguments
constructor.

immediate yes|no no no If yes, the exten-
sion is instantiated
when the specifica-
tion is read. If no,
then the extension
is not created until
first needed.

Figure C.14. <component-specification> Elements

<property> *, <configure> *

<external-asset> element
Appears in: <component-specification> and <page-specification>

Tapestry Specification DTDs

56

Defines an asset at an arbitrary URL. The URL may begin with a slash to indicate an asset on the same
web server as the application, or may be a complete URL to an arbitrary location on the Internet.

External assets may be accessed at runtime with the OGNL expression assets.name.

Figure C.15. <external-asset> Attributes

Name Type Required ? Default Value Description

name string yes A name for the as-
set. Asset names
must be valid Java
identifiers.

URL string yes The URL used to
access the asset.

<inherited-binding> element
Appears in: <component>

Binds a parameter of an embedded component to a parameter of its container.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure C.16. <inherited-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
parameter to bind.

parameter-name string yes The name of a pa-
rameter of the con-
taining component.

<library> element
Appears in: <application> and <library-specification>

Establishes that the containing application or library uses components defined in another library, and
sets the prefix used to reference those components.

Figure C.17. <library> Attributes

Name Type Required ? Default Value Description

id string yes The id associated
with the library.

Tapestry Specification DTDs

57

Name Type Required ? Default Value Description

Components within
the library can be
referenced with the
component type
id:name.

specification-path string yes The complete re-
source path for the
library specifica-
tion.

<library-specification> element
root element

Defines the pages, components, services and libraries used by a library. Very similar to applica-
<tion>, but without attributes related application name or engine class.

The <library-specification> element has no attributes.

Figure C.18. <library-specification> Elements

<description> ?, <property> *,
(<page> | <component-type> | <service> | <library> | <extension>) *

<listener-binding> element
Appears in: <component>

A listener binding is used to create application logic, in the form of a listener (for a DirectLink, Ac-
tionLink, Form, etc.) in place within the specification, in a scripting language (such as Jython or
JavaScript). The script itself is the wrapped character data for the <listener-binding> element.

When the listener is triggered, the script is executed. Three beans, page, component and cycle are
pre-declared.

The page is the page activated by the request. Usually, this is the same as the page which contains the
component ... in fact, usually page and compoment are identical.

The component is the component from whose specification the binding was created (that is, not the
DirectLink, but the page or component which embeds the DirectLink).

The cycle is the active request cycle, from which service parameters may be obtained.

Figure C.19. <listener-binding> Attributes

Tapestry Specification DTDs

58

url(../ComponentReference/DirectLink.html)
url(../ComponentReference/ActionLink.html)
url(../ComponentReference/Form.html)
url(http://www.jython.org)
url(../ComponentReference/DirectLink.html)
url(../ComponentReference/DirectLink.html)

Name Type Required ? Default Value Description

name string yes The name of the
listener parameter
to bind.

language string no The name of a
BSF-supported lan-
guage that the
script is written in.
The default, if not
specified, is
jython.

<message-binding> element
Appears in: <component>

Binds a parameter of an embedded component to a localized string of its containing page or component.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure C.20. <message-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
parameter to bind.

key string yes The localized prop-
erty key to retrieve.

<page> element
Appears in: <application> and <library-specification>

Defines a page within an application (or contributed by a library). Relates a logical name for the page to
the path to the page's specification file.

Figure C.21. <page> Attributes

Name Type Required ? Default Value Description

name string yes The name for the
page, which must
start with a letter,
and may contain
letters, numbers,
underscores and the
dash character.

specification-path string yes The path to the

Tapestry Specification DTDs

59

url(http://jakarta.apache.org/bsf/)

Name Type Required ? Default Value Description

page's specifica-
tion, which may be
absolute (start with
a leading slash), or
relative to the ap-
plication or library
specification.

<page-specification> element
root element

Defines a page within an application (or a library). The <page-specification> is a subset of
<component-specification> with attributes and entities related to parameters removed.

Figure C.22. <page-specification> Attributes

Name Type Required ? Default Value Description

class string no The Java class to
instantiate, which
must implement the
interface IPage.
Typically, this is
BasePage or a
subclass of it.
BasePage is the
default if not other-
wise specified.

Figure C.23. <page-specification> Elements

<description> ?, <property> *,
(<bean> | <component> | <external-asset> | <context-asset> | <private-asset> | <property-specification>)*

<parameter> element
Appears in: <component-specification>

Defines a formal parameter of a component. Parameters may be connected (in, form or auto) or un-
connected (custom). If a parameter is connected, but the class does not provide the property (or does,
but the accessors are abstract), then the framework will create and use a subclass that contains the imple-
mentation of the necessary property.

For auto parameters, the framework will create a synthetic property as a wrapper around the binding.

Tapestry Specification DTDs

60

url(../api/org/apache/tapestry/IPage.html)
url(../api/org/apache/tapestry/html/BasePage.html)
url(../api/org/apache/tapestry/html/BasePage.html)

Reading the property will read the value from the binding and updating the property will update the
binding value. auto may only be used with required parameters. auto is less efficient than in, but can
be used even when the component is not rendering.

Figure C.24. <parameter> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
parameter, which
must be a valid
Java identifier.

type scalar name, or
class name

no Required for con-
nected parameters.
Specifies the type
of the JavaBean
property that a con-
nected parameter
writes and reads.
The property must
match this exact
value, which can be
a fully specified
class name, or the
name of a scalar
Java type.

required yes|no no no If yes, then the pa-
rameter must be
bound (though it is
possible that the
binding's value will
still be null).

property-name string no For connected pa-
rameters only; al-
lows the name of
the property to dif-
fer from the name
of the parameter. If
not specified, the
property name will
be the same as the
parameter name.

direction in|form|auto|
custom

no custom
Identifies the se-
mantics of how the
parameter is used
by the component.
custom, the de-
fault, means the
component explic-
itly controls read-
ing and writing val-
ues through the
binding.

in means the prop-

Tapestry Specification DTDs

61

Name Type Required ? Default Value Description

erty is set from the
parameter before
the component ren-
ders, and is reset
back to default
value after the
component renders.

form means that
the property is set
from the parameter
when the compo-
nent renders (as
with in). When the
form is submitted,
the value is read
from the property
and used to set the
binding value after
the component
rewinds.

auto creates a
synthetic property
that works with the
binding to read and
update. auto pa-
rameters must be
required, but can be
used even when the
component is not
rendering.

default-value OGNL expression no Specifies the de-
fault value for the
parameter, if the
parameter is not
bound.

<private-asset> element
Specifies located from the classpath. These exist to support reusable components packages (as part of a
<library-specification>) packaged in a JAR. Private assets will be localized.

Assets for an instantiated component (or page) may be accessed using the OGNL expression
assets.name.

The resource path may either be complete and absolute, and start with a leading slash, or be relative.
Relative paths are evaluated relative to the location of the containing specification.

Figure C.25. <private-asset> Attributes

Tapestry Specification DTDs

62

Name Type Required ? Default Value Description

name string yes The name of the as-
set, which must be
a valid Java identi-
fier.

resource-path string yes The absolute or rel-
ative path to the as-
set on the classpath.

<property> element
Appears in: many

The <property> element is used to store meta-data about some other element (it is contained within).
Tapestry ignores this meta-data Any number of name/value pairs may be stored. The value is provided
with the value attribute, or the character data for the <property> element.

Figure C.26. <property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
property.

value string no The value for the
property. If omit-
ted, the value is
taken from the
character data (the
text the tag wraps
around). If speci-
fied, the character
data is ignored.

<property-specification> element
Appears in: <component-specification>, <page-specification>

Defines a transient or persistent property to be added to the page or component. Tapestry will create a
subclass of the page or component class (at runtime) and add the necessary fields and accessor methods,
as well as end-of-request cleanup.

It is acceptible for a page (or component) to be abstract, and have abstract accessor methods matching
the names that Tapestry will generate for the subclass. This can be useful when setting properties of the
page (or component) from a listener method.

A connected parameter specified in a <parameter> element may also cause an enhanced subclass to
be created.

An initial value may be specified as either the initial-value attribute, or as the body of the

Tapestry Specification DTDs

63

property-specification> element itself.

Figure C.27. <property-specification> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
property to create.

type string no java.lang.Object The type of the
property. If abstract
accessors exist,
they must exactly
match this type.
The type may be ei-
ther a fully quali-
fied class name, or
the name of one of
the basic scalar
types (int, boolean,
etc.). It may be suf-
fixed with [] to in-
dicate an array of
the indicated type.

persistent yes|no no no If true, the gener-
ated property will
be persistent, firing
change notifica-
tions when it is up-
dated.

initial-value string no An optional OGNL
expression used to
initialize the prop-
erty. The expres-
sion is evaluated
only when the page
is first constructed.

<reserved-parameter> element
Appears in: <component-specification>

Used in components that allow informal parameters to limit the possible informal parameters (so that
there aren't conflicts with HTML attributes generated by the component).

All formal parameters are automatically reserved.

Comparisons are caseless, so an informal parameter of "SRC", "sRc", etc., will match a reserved param-
eter named "src" (or any variation), and be excluded.

Figure C.28. <reserved-parameter> Attributes

Tapestry Specification DTDs

64

Name Type Required ? Default Value Description

name string yes The name of the re-
served parameter.

<service> element
Appears in: <application> and <library-specification>

Defines an IEngineService provided by the application or by a library.

The framework provides several services (home, direct, action, external, etc.). Applications may over-
ride these services by defining different services with the same names.

Libraries that provide services should use a qualified name (that is, put a package prefix in front of the
name) to avoid name collisions.

Figure C.29. <service> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
service.

class string yes The complete class
name to instantiate.
The class must
have a zero-
arguments con-
structor and imple-
ment the interface

IEngineSer-
vice

<set-message-property> element
Appears in: <bean>

Allows a property of a helper bean to be set to a localized string value of its containing page or compo-
nent.

Figure C.30. <set-message-property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean prop-
erty to set.

key string yes A string property
key of the contain-

Tapestry Specification DTDs

65

url(../api/org/apache/tapestry/IEngineService.html)
url(../api/org/apache/tapestry/IEngineService.html)

Name Type Required ? Default Value Description

ing page or compo-
nent.

<set-property> element
Appears in: <bean>

Allows a property of a helper bean to be set to an OGNL expression (evaluated on the containing com-
ponent or page).

The value to be assigned to the bean property can be specified using the expression attribute, or as
the content of the <set-property> element itself.

Figure C.31. <set-property> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
helper bean prop-
erty to set.

expression string no The OGNL expres-
sion used to set the
property.

<static-binding> element
Appears in: <component>

Binds a parameter of an embedded component to a static value. The value, which is stored as a string, is
specified as the value attribute, or as the wrapped contents of the <static-binding> tag. Leading
and trailing whitespace is removed.

In an instantiated component, bindings can be accessed with the OGNL expression bindings.name.

Figure C.32. <static-binding> Attributes

Name Type Required ? Default Value Description

name string yes The name of the
parameter to bind.

value string no The string value to
be used. If omitted,
the wrapped char-
acter data is used
instead (which is
more convienient if
the value is large,
or contains prob-

Tapestry Specification DTDs

66

Name Type Required ? Default Value Description

lematic punctua-
tion).

Tapestry Specification DTDs

67

Appendix D. Tapestry Script
Specification DTD

Tapestry Script Specifications are frequently used with the Script component, to create dynamic
JavaScript functions, typically for use as event handlers for client-side logic.

The root element is <script>.

A script specifcation is a kind of specialized template that takes some number of input symbols and
combines and manipulates them to form output symbols, as well as body and initialization. Symbols
may be simple strings, but are also frequently objects or components.

Script specifications use an Ant-like syntax to insert dynamic values into text blocks. ${OGNL ex-
pression}. The expression is evaluated relative to a Map of symbols.

<body> element
Appears in: <script>

Specifies the main body of the JavaScript; this is where JavaScript variables and methods are typically
declared. This body will be passed to the Body component for inclusion in the page.

Figure D.1. <body> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<foreach> element
Appears in: many

An element that renders its body repeatedly, much like a Foreach component. An expression supplies
a collection or array of objects, and its body is rendered for each element in the collection.

Figure D.2. <foreach> Attributes

Name Type Required ? Default Value Description

key string yes The symbol to be
updated with each
successive value.

expression string yes The OGNL expres-
sion which pro-
vides the source of
elements.

index string no If specified, then
the named symbol
is updated with

68

url(../ComponentReference/Script.html)
url(../ComponentReference/Body.html)
url(../ComponentReference/Foreach.html)

Name Type Required ? Default Value Description

each successive in-
dex.

Figure D.3. <foreach> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<if> element
Appears in: many

Conditionally renders its body, if a supplied OGNL expression is true.

Figure D.4. <if> Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-
sion to be evalu-
ated.

Figure D.5. <if> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<if-not> element
Appears in: many

Conditionally renders its body, if a supplied OGNL expression is false.

Figure D.6. <if-not> Attributes

Name Type Required ? Default Value Description

expression string yes The OGNL expres-
sion to be evalu-
ated.

Tapestry Script Specification DTD

69

Figure D.7. <if-not> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<include-script> element
Appears in: <script>

Used to include a static JavaScript library. A library will only be included once, regardless of how many
different scripts reference it. Such libraries are located on the classpath.

Figure D.8. <include-script> Attributes

Name Type Required ? Default Value Description

resource-path string yes The location of the
JavaScript library.

<initialization> element
Appears in: <script>

Defines initialization needed by the remainder of the script. Such initialization is placed inside a method
invoked from the HTML <body> element's onload event handler ... that is, whatever is placed inside
this element will not be executed until the entire page is loaded.

Figure D.9. <initialization> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

<input-symbol> element
Appears in: <script>

Defines an input symbol for the script. Input symbols can be thought of as parameters to the script. As
the script executes, it uses the input symbols to create new output symbols, redefine input symbols (not a
recommended practice) and define the body and initialization.

This element allows the script to make input symbols required and to restrict their type. Invalid input
symbols (missing when required, or not of the correct type) will result in runtime exceptions.

Tapestry Script Specification DTD

70

Figure D.10. <input-symbol> Attributes

Name Type Required ? Default Value Description

key string yes The input symbol
to be checked.

class string no If specified, this is
the complete, quali-
fied class name for
the symbol. The
provided symbol
must be assignable
to this class (be a
subclass, or imple-
ment the specified
class if the speci-
fied class is actu-
ally an interface).

required yes | no no no If yes, then a non-
null value must be
specified for the
symbol.

<let> element
Appears in: <script>

Used to define (or redefine) a symbol. The symbol's value is taken from the body of element (with lead-
ing and trailing whitespace removed).

Figure D.11. <let> Attributes

Name Type Required ? Default Value Description

key string yes The key of the
symbol to define.

unique boolean yes|no no If yes, then the
string is ensured to
be unique (by pos-
sibly adding a suf-
fix) before being
assigned to the
symbol.

Figure D.12. <let> Elements

Tapestry Script Specification DTD

71

(text | <foreach> | <if> | <if-not> | <unique>) *

<script> element
Root element

The root element of a Tapestry script specification.

Figure D.13. <script> Elements

<include-script> *, <input-symbol> *,
(<let> | <set>) *,
<body> ?, <initialization> ?

<set> element
Appears in: <script>

A different way to define a new symbol, or redefine an existing one. The new symbol is defined using
an OGNL expression.

Figure D.14. <set> Attributes

Name Type Required ? Default Value Description

key string yes The key of the
symbol to define.

expression string yes The OGNL expres-
sion to evaluate.

<unique> element
Appears in: many

Creates a block whose contents are contributed only once, no matter how many times the block is evalu-
ated during the rendering of a single page.

Figure D.15. <unique> Elements

(text | <foreach> | <if> | <if-not> | <unique>) *

Tapestry Script Specification DTD

72

