
UIMA References
Written and maintained by the Apache

UIMA™ Development Community

Version 2.6.0

Copyright © 2006, 2014 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date June, 2014

http://www.apache.org/licenses/LICENSE-2.0

UIMA References iii

Table of Contents
1. Javadocs ... 1

1.1. Using named Eclipse User Libraries ... 2
2. Component Descriptor Reference .. 3

2.1. Notation .. 3
2.2. Imports .. 4
2.3. Type System Descriptors ... 5

2.3.1. Imports ... 5
2.3.2. Types .. 5
2.3.3. Features .. 6
2.3.4. String Subtypes .. 7

2.4. Analysis Engine Descriptors .. 7
2.4.1. Primitive Analysis Engine Descriptors .. 8
2.4.2. Aggregate Analysis Engine Descriptors ... 18
2.4.3. Configuration Parameters .. 22

2.5. Flow Controller Descriptors ... 29
2.6. Collection Processing Component Descriptors .. 30

2.6.1. Collection Reader Descriptors .. 30
2.6.2. CAS Initializer Descriptors (deprecated) .. 31
2.6.3. CAS Consumer Descriptors ... 32

2.7. Service Client Descriptors .. 33
2.8. Custom Resource Specifiers ... 34

3. CPE Descriptor Reference .. 37
3.1. CPE Overview .. 37
3.2. Notation ... 38
3.3. Imports .. 39
3.4. CPE Descriptor Overview .. 39
3.5. Collection Reader ... 40

3.5.1. Error handling for Collection Readers ... 41
3.6. CAS Processors .. 41

3.6.1. Specifying an Individual CAS Processor ... 42
3.7. CPE Operational Parameters ... 49
3.8. Resource Manager Configuration .. 53
3.9. Example CPE Descriptor ... 54

4. CAS Reference ... 55
4.1. Javadocs .. 55
4.2. CAS Overview ... 55

4.2.1. The Type System ... 55
4.2.2. Creating/Accessing/Changing data .. 56
4.2.3. Creating and using indexes .. 56

4.3. Built-in CAS Types ... 57
4.4. Accessing the type system ... 59

4.4.1. TypeSystemPrinter example ... 60
4.4.2. Using CAS APIs: Feature Structures ... 61

4.5. Creating feature structures .. 63
4.6. Accessing or modifying Features .. 64
4.7. Indexes and Iterators ... 64

4.7.1. Built-in Indexes .. 65
4.7.2. Adding Feature Structures to the Indexes ... 65
4.7.3. Iterators ... 65
4.7.4. Special iterators for Annotation types .. 65
4.7.5. Constraints and Filtered iterators .. 66

UIMA References

iv UIMA References UIMA Version 2.6.0

4.8. CAS API's Javadocs .. 67
4.8.1. APIs in the CAS package .. 68

4.9. Type Merging ... 69
5. JCas Reference .. 71

5.1. Name Spaces .. 72
5.2. Use of XML Description ... 72
5.3. Mapping built-in CAS types to Java types .. 72
5.4. Augmenting the generated Java Code .. 72

5.4.1. Persistence of additional data ... 73
5.4.2. Keeping hand-coded augmentations when regenerating 73
5.4.3. Additional Constructors ... 74
5.4.4. Modifying generated items .. 74

5.5. Merging Types ... 75
5.5.1. Aggregate AEs and CPEs as sources of types ... 75
5.5.2. JCasGen support for type merging .. 75
5.5.3. Type Merging impacts on Composability .. 75
5.5.4. Adding Features to DocumentAnnotation .. 76

5.6. Using JCas within an Annotator ... 76
5.6.1. Creating new instances .. 77
5.6.2. Getters and Setters .. 77
5.6.3. Obtaining references to Indexes ... 77
5.6.4. Updating Indexes ... 78
5.6.5. Using Iterators ... 79
5.6.6. Class Loaders in UIMA .. 79
5.6.7. Issues accessing JCas objects outside of UIMA Engine Components 80

5.7. Setting up Classpath for JCas ... 80
5.8. PEAR isolation ... 80

6. PEAR Reference ... 81
6.1. Packaging a UIMA component ... 81

6.1.1. Creating the PEAR structure .. 81
6.1.2. Populating the PEAR structure ... 82
6.1.3. Creating the installation descriptor .. 83
6.1.4. Installation Descriptor: template ... 83
6.1.5. Packaging the PEAR structure into one file ... 89

6.2. Installing a PEAR package ... 90
6.2.1. Installing a PEAR file using the PEAR APIs .. 90

6.3. PEAR package descriptor ... 91
7. XMI CAS Serialization Reference ... 93

7.1. XMI Tag .. 93
7.2. Feature Structures ... 93
7.3. Primitive Features ... 94
7.4. Reference Features .. 94
7.5. Array and List Features ... 95

7.5.1. Arrays and Lists as Multi-Valued Properties .. 95
7.5.2. Arrays and Lists as First-Class Objects ... 96
7.5.3. Null Array/List Elements ... 97

7.6. Subjects of Analysis (Sofas) and Views ... 97
7.7. Linking XMI docs to Ecore Type System .. 97
7.8. Delta CAS XMI Format .. 98

8. Compressed Binary CASes ... 99
8.1. Binary CAS Compression overview .. 99
8.2. Using Compressed Binary CASes ... 99
8.3. Simple Delta CAS serialization ... 100

UIMA References

UIMA Version 2.6.0 UIMA References v

8.4. Use Case cookbook ... 100

Javadocs 1

Chapter 1. Javadocs
The details of all the public APIs for UIMA are contained in the API Javadocs. These are located in
the docs/api directory; the top level to open in your browser is called api/index.html.

Eclipse supports the ability to attach the Javadocs to your project. The Javadoc should already
be attached to the uimaj-examples project, if you followed the setup instructions in UIMA
Overview & SDK Setup Section 3.2, “Setting up Eclipse to view Example Code”. To attach
Javadocs to your own Eclipse project, use the following instructions.

Note: As an alternative, you can add the UIMA source to the UIMA binary distribution;
if you do this you not only will have the Javadocs automatically available (you can skip
the following setup), you will have the ability to step through the UIMA framework code
while debugging. To add the source, follow the instructions as described in the setup
chapter: UIMA Overview & SDK Setup Section 3.3, “Adding the UIMA source code to
the jar files”.

To add the Javadocs, open a project which is referring to the UIMA APIs in its class path, and open
the project properties. Then pick Java Build Path. Pick the "Libraries" tab and select one of the
UIMA library entries (if you don't have, for instance, uima-core.jar in this list, it's unlikely your
code will compile). Each library entry has a small "+" sign on its left - click that to expand the view
to see the Javadoc location. If you highlight that and press edit - you can add a reference to the
Javadocs, in the following dialog:

Once you do this, Eclipse can show you Javadocs for UIMA APIs as you work. To see the Javadoc
for a UIMA API, you can hover over the API class or method, or select it and press shift-F2, or use

the menu Navigate → Open External Javadoc, or open the Javadoc view (Window → Show View

→ Other → Java → Javadoc).

In a similar manner, you can attach the source for the UIMA framework, if you download the
source distribution. The source corresponding to particular releases is available from the Apache
UIMA web site (http://uima.apache.org) on the downloads page.

api/index.html
http://uima.apache.org

Using named Eclipse User Libraries

2 Javadocs UIMA Version 2.6.0

1.1. Using named Eclipse User Libraries
You can also create a named "user library" in Eclipse containing the UIMA Jars, and attach the
Javadocs (or optionally, the sources); this named library is saved in the Eclipse workspace. Once
created, it can be added to the classpath of newly created Eclipse projects.

Use the menu option Project → Properties → Java Build Path, and then pick the Libraries tab, and
click the Add Library button. Then select User Libraries, click "Next", and pick the library you
created for the UIMA Jars.

To create this library in the workspace, use the same menu picks as above, but after you select
the User Libraries and click "Next", you can click the "New Library..." button to define your new
library. You use the "Add Jars" button and multi-select all the Jars in the lib directory of the UIMA
binary distribution. Then you add the Javadoc attachment for each Jar. The path to use is file:/ --
insert the path to your install of UIMA -- /docs/api. After you do this for the first Jar, you can copy
this string to the clipboard and paste it into the rest of the Jars.

Component Descriptor Reference 3

Chapter 2. Component Descriptor Reference
This chapter is the reference guide for the UIMA SDK's Component Descriptor XML schema. A
Component Descriptor (also sometimes called a Resource Specifier in the code) is an XML file
that either (a) completely describes a component, including all information needed to construct
the component and interact with it, or (b) specifies how to connect to and interact with an existing
component that has been published as a remote service. Component (also called Resource) is
a general term for modules produced by UIMA developers and used by UIMA applications.
The types of Components are: Analysis Engines, Collection Readers, CAS Initializers1, CAS
Consumers, and Collection Processing Engines. However, Collection Processing Engine
Descriptors are significantly different in format and are covered in a separate chapter, Chapter 3,
Collection Processing Engine Descriptor Reference.

Section 2.1, “Notation” [3] describes the notation used in this chapter.

Section 2.2, “Imports” [4] describes the UIMA SDK's import syntax, used to allow XML
descriptors to import information from other XML files, to allow sharing of information between
several XML descriptors.

Section 2.4, “Analysis Engine Descriptors” [7] describes the XML format for Analysis
Engine Descriptors. These are descriptors that completely describe Analysis Engines, including all
information needed to construct and interact with them.

Section 2.6, “Collection Processing Component Descriptors” [30] describes the XML format
for Collection Processing Component Descriptors. This includes Collection Iterator, CAS
Initializer, and CAS Consumer Descriptors.

Section 2.7, “Service Client Descriptors” [33] describes the XML format for Service Client
Descriptors, which specify how to connect to and interact with resources deployed as remote
services.

Section 2.8, “Custom Resource Specifiers” [34] describes the XML format for Custom
Resource Specifiers, which allow you to plug in your own Java class as a UIMA Resource.

2.1. Notation
This chapter uses an informal notation to specify the syntax of Component Descriptors.
The formal syntax is defined by an XML schema definition, which is contained in the file
resourceSpecifierSchema.xsd, located in the uima-core.jar file.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that element has
been omitted (to be described in another section of this chapter). An example of this would
be:

<analysisEngineMetaData>
...
</analysisEngineMetaData>

An ellipsis immediately after an element indicates that the element type may be may be
repeated arbitrarily many times. For example:

1This component is deprecated and should not be use in new development.

Imports

4 Component Descriptor Reference UIMA Version 2.6.0

<parameter>[String]</parameter>
<parameter>[String]</parameter>
...

indicates that there may be arbitrarily many parameter elements in this context.

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used at that
location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

• Which elements are optional and which are required is specified in prose, not in the syntax
definition.

2.2. Imports
The UIMA SDK defines a particular syntax for XML descriptors to import information from other
XML files. When one of the following appears in an XML descriptor:

<import location="[URL]" /> or
<import name="[Name]" />

it indicates that information from a separate XML file is being imported. Note that imports are
allowed only in certain places in the descriptor. In the remainder of this chapter, it will be indicated
at which points imports are allowed.

If an import specifies a location attribute, the value of that attribute specifies the URL at which
the XML file to import will be found. This can be a relative URL, which will be resolved relative to
the descriptor containing the import element, or an absolute URL. Relative URLs can be written
without a protocol/scheme (e.g., “file:”), and without a host machine name. In this case the relative
URL might look something like org/apache/myproj/MyTypeSystem.xml.

An absolute URL is written with one of the following prefixes, followed by a path such as org/
apache/myproj/MyTypeSystem.xml:

• file:/ ← has no network address
• file:/// ← has an empty network address
• file://some.network.address/

For more information about URLs, please read the javadoc information for the Java class “URL”.

If an import specifies a name attribute, the value of that attribute should take the form of a Java-
style dotted name (e.g. org.apache.myproj.MyTypeSystem). An .xml file with this name
will be searched for in the classpath or datapath (described below). As in Java, the dots in the
name will be converted to file path separators. So an import specifying the example name in this
paragraph will result in a search for org/apache/myproj/MyTypeSystem.xml in the classpath
or datapath.

The datapath works similarly to the classpath but can be set programmatically through the resource
manager API. Application developers can specify a datapath during initialization, using the
following code:

ResourceManager resMgr = UIMAFramework.newDefaultResourceManager();

Type System Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 5

resMgr.setDataPath(yourPathString);
AnalysisEngine ae = UIMAFramework.produceAE(desc, resMgr, null);

The default datapath for the entire JVM can be set via the uima.datapath Java system property,
but this feature should only be used for standalone applications that don't need to run in the same
JVM as other code that may need a different datapath.

Previous versions of UIMA also supported XInclude. That support didn't work in many situations,
and it is no longer supported. To include other files, please use <import>.

2.3. Type System Descriptors
A Type System Descriptor is used to define the types and features that can be represented in the
CAS. A Type System Descriptor can be imported into an Analysis Engine or Collection Processing
Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<typeSystemDescription xmlns="http://uima.apache.org/resourceSpecifier">

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <types>
 <typeDescription>
 ...
 </typeDescription>

 ...

 </types>

</typeSystemDescription>

All of the subelements are optional.

2.3.1. Imports
The imports section allows this descriptor to import types from other type system descriptors.
The import syntax is described in Section 2.2, “Imports” [4]. A type system may import
any number of other type systems and then define additional types which refer to imported types.
Circular imports are allowed.

2.3.2. Types
The types element contains zero or more typeDescription elements. Each typeDescription
has the form:

<typeDescription>

Features

6 Component Descriptor Reference UIMA Version 2.6.0

 <name>[TypeName]</name>
 <description>[String]</description>
 <supertypeName>[TypeName]</supertypeName>
 <features>
 ...
 </features>
</typeDescription>

The name element contains the name of the type. A [TypeName] is a dot-separated list of names,
where each name consists of a letter followed by any number of letters, digits, or underscores.
TypeNames are case sensitive. Letter and digit are as defined by Java; therefore, any Unicode
letter or digit may be used (subject to the character encoding defined by the descriptor file's
XML header). The name following the final dot is considered to be the “short name” of the type;
the preceding portion is the namespace (analogous to the package.class syntax used in Java).
Namespaces beginning with uima are reserved and should not be used. Examples of valid type
names are:

• test.TokenAnnotation
• org.myorg.TokenAnnotation
• com.my_company.proj123.TokenAnnotation

These would all be considered distinct types since they have different namespaces. Best practice
here is to follow the normal Java naming conventions of having namespaces be all lowercase,
with the short type names having an initial capital, but this is not mandated, so ABC.mYtyPE is an
allowed type name. While type names without namespaces (e.g. TokenAnnotation alone) are
allowed, but discouraged because naming conflicts can then result when combining annotators that
use different type systems.

The description element contains a textual description of the type. The supertypeName
element contains the name of the type from which it inherits (this can be set to the name of
another user-defined type, or it may be set to any built-in type which may be subclassed, such as
uima.tcas.Annotation for a new annotation type or uima.cas.TOP for a new type that is not
an annotation). All three of these elements are required.

2.3.3. Features
The features element of a typeDescription is required only if the type we are specifying
introduces new features. If the features element is present, it contains zero or more
featureDescription elements, each of which has the form:

<featureDescription>
 <name>[Name]</name>
 <description>[String]</description>
 <rangeTypeName>[Name]</rangeTypeName>
 <elementType>[Name]</elementType>
 <multipleReferencesAllowed>true|false</multipleReferencesAllowed>
</featureDescription>

A feature's name follows the same rules as a type short name – a letter followed by any number of
letters, digits, or underscores. Feature names are case sensitive.

The feature's rangeTypeName specifies the type of value that the feature can take. This may be the
name of any type defined in your type system, or one of the predefined types. All of the predefined
types have names that are prefixed with uima.cas or uima.tcas, for example:

uima.cas.TOP
uima.cas.String

String Subtypes

UIMA Version 2.6.0 Component Descriptor Reference 7

uima.cas.Long
uima.cas.FSArray
uima.cas.StringList
uima.tcas.Annotation.

For a complete list of predefined types, see the CAS API documentation.

The elementType of a feature is optional, and applies only when the rangeTypeName is
uima.cas.FSArray or uima.cas.FSList The elementType specifies what type of value
can be assigned as an element of the array or list. This must be the name of a non-primitive type.
If omitted, it defaults to uima.cas.TOP, meaning that any FeatureStructure can be assigned as
an element the array or list. Note: depending on the CAS Interface that you use in your code, this
constraint may or may not be enforced. Note: At run time, the elementType is available from a
runtime Feature object (using the a_feature_object.getRange().getComponentType()
method) only when specified for the uima.cas.FSArray ranges; it isn't available for
uima.cas.FSList ranges.

The multipleReferencesAllowed feature is optional, and applies only when the
rangeTypeName is an array or list type (it applies to arrays and lists of primitive as well as
non-primitive types). Setting this to false (the default) indicates that this feature has exclusive
ownership of the array or list, so changes to the array or list are localized. Setting this to true
indicates that the array or list may be shared, so changes to it may affect other objects in the CAS.
Note: there is currently no guarantee that the framework will enforce this restriction. However, this
setting may affect how the CAS is serialized.

2.3.4. String Subtypes
There is one other special type that you can declare – a subset of the String type that specifies a
restricted set of allowed values. This is useful for features that can have only certain String values,
such as parts of speech. Here is an example of how to declare such a type:

<typeDescription>
 <name>PartOfSpeech</name>
 <description>A part of speech.</description>
 <supertypeName>uima.cas.String</supertypeName>
 <allowedValues>
 <value>
 <string>NN</string>
 <description>Noun, singular or mass.</description>
 </value>
 <value>
 <string>NNS</string>
 <description>Noun, plural.</description>
 </value>
 <value>
 <string>VB</string>
 <description>Verb, base form.</description>
 </value>
 ...
 </allowedValues>
</typeDescription>

2.4. Analysis Engine Descriptors
Analysis Engine (AE) descriptors completely describe Analysis Engines. There are two basic types
of Analysis Engines – Primitive and Aggregate. A Primitive Analysis Engine is a container for

Primitive Analysis Engine Descriptors

8 Component Descriptor Reference UIMA Version 2.6.0

a single annotator, where as an Aggregate Analysis Engine is composed of a collection of other
Analysis Engines. (For more information on this and other terminology, see UIMA Overview &
SDK Setup Chapter 2, UIMA Conceptual Overview).

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types of descriptors
have some similarities and some differences. Section 2.4.1, “Primitive Analysis Engine
Descriptors” [8] discusses Primitive Analysis Engine descriptors. Section 2.4.2, “Aggregate
Analysis Engine Descriptors” [18] then describes how Aggregate Analysis Engine descriptors
are different.

2.4.1. Primitive Analysis Engine Descriptors

2.4.1.1. Basic Structure

<?xml version="1.0" encoding="UTF-8" ?>
<analysisEngineDescription
 xmlns="http://uima.apache.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <primitive>true</primitive>
 <annotatorImplementationName> [String] </annotatorImplementationName>

 <analysisEngineMetaData>
 ...
 </analysisEngineMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</analysisEngineDescription>

The document begins with a standard XML header. The recommended root tag is
<analysisEngineDescription>, although <taeDescription> is also allowed for backwards
compatibility.

Within the root element we declare that we are using the XML namespace http://
uima.apache.org/resourceSpecifier. It is required that this namespace be used; otherwise,
the descriptor will not be able to be validated for errors.

The first subelement, <frameworkImplementation>, currently must have the value
org.apache.uima.java, or org.apache.uima.cpp. In future versions, there may be other
framework implementations, or perhaps implementations produced by other vendors.

The second subelement, <primitive>, contains the Boolean value true, indicating that this
XML document describes a Primitive Analysis Engine.

The next subelement, <annotatorImplementationName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class name for
Java implementations, or the name of a .dll or .so file for C++ implementations.

The <analysisEngineMetaData> object contains descriptive information about the analysis
engine and what it does. It is described in Section 2.4.1.2, “Analysis Engine MetaData” [9].

Primitive Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 9

The <externalResourceDependencies> and <resourceManagerConfiguration>
elements declare the external resource files that the analysis engine relies upon. They are
optional and are described in Section 2.4.1.8, “External Resource Dependencies” [15] and
Section 2.4.1.9, “Resource Manager Configuration” [15].

2.4.1.2. Analysis Engine MetaData

<analysisEngineMetaData>
 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <configurationParameters> ... </configurationParameters>

 <configurationParameterSettings>
 ...
 </configurationParameterSettings>

 <typeSystemDescription> ... </typeSystemDescription>

 <typePriorities> ... </typePriorities>

 <fsIndexCollection> ... </fsIndexCollection>

 <capabilities> ... </capabilities>

 <operationalProperties> ... </operationalProperties>

</analysisEngineMetaData>

The analysisEngineMetaData element contains four simple string fields – name,
description, version, and vendor. Only the name field is required, but providing values for
the other fields is recommended. The name field is just a descriptive name meant to be read by
users; it does not need to be unique across all Analysis Engines.

Configuration parameters are described in Section 2.4.3, “Configuration Parameters” [22].

The other sub-elements – typeSystemDescription, typePriorities, fsIndexes,
capabilities and operationalProperties are described in the following sections. The only
one of these that is required is capabilities; the others are optional.

2.4.1.3. Type System Definition

<typeSystemDescription>

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <types>
 <typeDescription>

Primitive Analysis Engine Descriptors

10 Component Descriptor Reference UIMA Version 2.6.0

 ...
 </typeDescription>

 ...

 </types>

</typeSystemDescription>

A typeSystemDescription element defines a type system for an Analysis Engine. The syntax
for the element is described in Section 2.3, “Type System Descriptors” [5].

The recommended usage is to import an external type system, using the import syntax described
in Section 2.2, “Imports” [4] of this chapter. For example:

<typeSystemDescription>
 <imports>
 <import location="MySharedTypeSystem.xml">
 </imports>
</typeSystemDescription>

This allows several AEs to share a single type system definition. The file
MySharedTypeSystem.xml would then contain the full type system information, including the
name, description, vendor, version, and types.

2.4.1.4. Type Priority Definition

<typePriorities>
 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <priorityLists>
 <priorityList>
 <type>[TypeName]</type>
 <type>[TypeName]</type>
 ...
 </priorityList>

 ...

 </priorityLists>
</typePriorities>

The <typePriorities> element contains zero or more <priorityList> elements; each
<priorityList> contains zero or more types. Like a type system, a type priorities definition may
also declare a name, description, version, and vendor, and may import other type priorities. See
Section 2.2, “Imports” [4] for the import syntax.

Type priority is used when iterating over feature structures in the CAS. For example, if the CAS
contains a Sentence annotation and a Paragraph annotation with the same span of text (i.e. a

Primitive Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 11

one-sentence paragraph), which annotation should be returned first by an iterator? Probably the
Paragraph, since it is conceptually “bigger,” but the framework does not know that and must be
explicitly told that the Paragraph annotation has priority over the Sentence annotation, like this:

<typePriorities>
 <priorityList>
 <type>org.myorg.Paragraph</type>
 <type>org.myorg.Sentence</type>
 </priorityList>
</typePriorities>

All of the <priorityList> elements defined in the descriptor (and in all component descriptors
of an aggregate analysis engine descriptor) are merged to produce a single priority list.

Subtypes of types specified here are also ordered, unless overridden by another user-specified type
ordering. For example, if you specify type A comes before type B, then subtypes of A will come
before subtypes of B, unless there is an overriding specification which declares some subtype of B
comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in one priority
list, and type B declared before type A in another), the framework will throw an exception.

User defined indexes may declare if they wish to use the type priority or not; see the next section.

2.4.1.5. Index Definition

<fsIndexCollection>

 <name>[String]</name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <fsIndexes>

 <fsIndexDescription>
 ...
 </fsIndexDescription>

 <fsIndexDescription>
 ...
 </fsIndexDescription>

 </fsIndexes>

</fsIndexCollection>

The fsIndexCollection element declares Feature Structure Indexes, each of which defined
an index that holds feature structures of a given type. Information in the CAS is always accessed
through an index. There is a built-in default annotation index declared which can be used to access
instances of type uima.tcas.Annotation (or its subtypes), sorted based on their begin and
end features. For all other types, there is a default, unsorted (bag) index. If there is a need for a

Primitive Analysis Engine Descriptors

12 Component Descriptor Reference UIMA Version 2.6.0

specialized index it must be declared in this element of the descriptor. See Section 4.7, “Indexes
and Iterators” for details on FS indexes.

Like type systems and type priorities, an fsIndexCollection can declare a name,
description, vendor, and version, and may import other fsIndexCollections. The import
syntax is described in Section 2.2, “Imports” [4].

An fsIndexCollection may also define zero or more fsIndexDescription elements, each of
which defines a single index. Each fsIndexDescription has the form:

<fsIndexDescription>

 <label>[String]</label>
 <typeName>[TypeName]</typeName>
 <kind>sorted|bag|set</kind>

 <keys>

 <fsIndexKey>
 <featureName>[Name]</featureName>
 <comparator>standard|reverse</comparator>
 </fsIndexKey>

 <fsIndexKey>
 <typePriority/>
 </fsIndexKey>

 ...

 </keys>
</fsIndexDescription>

The label element defines the name by which applications and annotators refer to this index. The
typeName element contains the name of the type that will be contained in this index. This must
match one of the type names defined in the <typeSystemDescription>.

There are three possible values for the <kind> of index. Sorted indexes enforce an ordering of
feature structures, and may contain duplicates. Bag indexes do not enforce ordering, and also may
contain duplicates. Set indexes do not enforce ordering and may not contain duplicates. If the
<kind>element is omitted, it will default to sorted, which is the most common type of index.

Note: There is usually no need to explicitly declare a Bag index in your descriptor. As of
UIMA v2.1, if you do not declare any index for a type (or any of its supertypes), a Bag
index will be automatically created.

An index may define zero or more keys. These keys determine the sort order of the feature
structures within a sorted index, and determine equality for set indexes. Bag indexes do not use
keys, and equality is determined by Feature Structure identity (that is, two elements are considered
equal if and only if they are exactly the same feature structure, located in the same place in the
CAS). Keys are ordered by precedence – the first key is evaluated first, and subsequent keys are
evaluated only if necessary.

Each key is represented by an fsIndexKey element. Most fsIndexKeys contains a
featureName and a comparator. The featureName must match the name of one of the features
for the type specified in the <typeName> element for this index. The comparator defines how the
features will be compared – a value of standard means that features will be compared using the
standard comparison for their data type (e.g. for numerical types, smaller values precede larger
values, and for string types, Unicode string comparison is performed). A value of reverse means

Primitive Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 13

that features will be compared using the reverse of the standard comparison (e.g. for numerical
types, larger values precede smaller values, etc.). For Set indexes, the comparator direction is
ignored – the keys are only used for the equality testing.

Each key used in comparisons must refer to a feature whose range type is String, Float, or Integer.

There is a second type of a key, one which contains only the <typePriority/>. When this key is
used, it indicates that Feature Structures will be compared using the type priorities declared in the
<typePriorities> section of the descriptor.

2.4.1.6. Capabilities

<capabilities>
 <capability>

 <inputs>
 <type allAnnotatorFeatures="true|false"[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </inputs>

 <outputs>
 <type allAnnotatorFeatures="true|false"[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </output>

 <inputSofas>
 <sofaName>[name]</sofaName>
 ...
 </inputSofas>

 <outputSofas>
 <sofaName>[name]</sofaName>
 ...
 </outputSofas>

 <languagesSupported>
 <language>[ISO Language ID]</language>
 ...
 </languagesSupported>
 </capability>

 <capability>
 ...
 </capability>

 ...

</capabilities>

The capabilities definition is used by the UIMA Framework in several ways, including setting up
the Results Specification for process calls, routing control for aggregates based on language, and as
part of the Sofa mapping function.

The capabilities element contains one or more capability elements. In Version 2 and
onwards, only one capability set should be used (multiple sets will continue to work for a while, but
they're not logically consistently supported).

Primitive Analysis Engine Descriptors

14 Component Descriptor Reference UIMA Version 2.6.0

Each capability contains inputs, outputs, languagesSupported, inputSofas,
and outputSofas. Inputs and outputs element are required (though they may be empty);
<languagesSupported>, <inputSofas>, and <outputSofas> are optional.

Both inputs and outputs may contain a mixture of type and feature elements.

<type...> elements contain the name of one of the types defined in the type system or one of
the built in types. Declaring a type as an input means that this component expects instances of this
type to be in the CAS when it receives it to process. Declaring a type as an output means that this
component creates new instances of this type in the CAS.

There is an optional attribute allAnnotatorFeatures, which defaults to false if omitted. The
Component Descriptor Editor tool defaults this to true when a new type is added to the list of inputs
and/or outputs. When this attribute is true, it specifies that all of the type's features are also declared
as input or output. Otherwise, the features that are required as inputs or populated as outputs must
be explicitly specified in feature elements.

<feature...> elements contain the “fully-qualified” feature name, which is the type name
followed by a colon, followed by the feature name, e.g. org.myorg.TokenAnnotation:lemma.
<feature...> elements in the <inputs> section must also have a corresponding type declared
as an input. In output sections, this is not required. If the type is not specified as an output, but
a feature for that type is, this means that existing instances of the type have the values of the
specified features updated. Any type mentioned in a <feature> element must be either specified
as an input or an output or both.

language elements contain one of the ISO language identifiers, such as en for English, or en-US
for the United States dialect of English.

The list of language codes can be found here: http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
and the country codes here: http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

<inputSofas> and <outputSofas> declare sofa names used by this component. All Sofa names
must be unique within a particular capability set. A Sofa name must be an input or an output, and
cannot be both. It is an error to have a Sofa name declared as an input in one capability set, and also
have it declared as an output in another capability set.

A <sofaName> is written as a simple Java-style identifier, without any periods in the name, except
that it may be written to end in “.*”. If written in this manner, it specifies a set of Sofa names, all
of which start with the base name (the part before the .*) followed by a period and then an arbitrary
Java identifier (without periods). This form is used to specify in the descriptor that the component
could generate an arbitrary number of Sofas, the exact names and numbers of which are unknown
before the component is run.

2.4.1.7. OperationalProperties

Components can specify specific operational properties that can be useful in deployment. The
following are available:

<operationalProperties>
 <modifiesCas> true|false </modifiesCas>
 <multipleDeploymentAllowed> true|false </multipleDeploymentAllowed>
 <outputsNewCASes> true|false </outputsNewCASes>
</operationalProperties>

ModifiesCas, if false, indicates that this component does not modify the CAS. If it is not
specified, the default value is true except for CAS Consumer components.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Primitive Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 15

multipleDeploymentAllowed, if true, allows the component to be deployed multiple times to
increase performance through scale-out techniques. If it is not specified, the default value is true,
except for CAS Consumer and Collection Reader components.

Note: If you wrap one or more CAS Consumers inside an aggregate as
the only components, you must explicitly specify in the aggregate the
multipleDeploymentAllowed property as false (assuming the CAS Consumer
components take the default here); otherwise the framework will complain about
inconsistent settings for these.

outputsNewCASes, if true, allows the component to create new CASes during processing, for
example to break a large artifact into smaller pieces. See UIMA Tutorial and Developers' Guides
Chapter 7, CAS Multiplier Developer's Guide for details.

2.4.1.8. External Resource Dependencies

<externalResourceDependencies>
 <externalResourceDependency>
 <key>[String]</key>
 <description>[String] </description>
 <interfaceName>[String]</interfaceName>
 <optional>true|false</optional>
 </externalResourceDependency>

 <externalResourceDependency>
 ...
 </externalResourceDependency>

 ...

</externalResourceDependencies>

A primitive annotator may declare zero or more <externalResourceDependency> elements.
Each dependency has the following elements:

• key – the string by which the annotator code will attempt to access the resource. Must be
unique within this annotator.

• description – a textual description of the dependency.

• interfaceName – the fully-qualified name of the Java interface through which the
annotator will access the data. This is optional. If not specified, the annotator can only get an
InputStream to the data.

• optional – whether the resource is optional. If false, an exception will be thrown if no
resource is assigned to satisfy this dependency. Defaults to false.

2.4.1.9. Resource Manager Configuration

<resourceManagerConfiguration>

 <name>[String]</name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

Primitive Analysis Engine Descriptors

16 Component Descriptor Reference UIMA Version 2.6.0

 <imports>
 <import ...>
 ...
 </imports>

 <externalResources>

 <externalResource>
 <name>[String]</name>
 <description>[String]</description>
 <fileResourceSpecifier>
 <fileUrl>[URL]</fileUrl>
 </fileResourceSpecifier>
 <implementationName>[String]</implementationName>
 </externalResource>
 ...
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>[String]</key>
 <resourceName>[String]</resourceName>
 </externalResourceBinding>
 ...
 </externalResourceBindings>

</resourceManagerConfiguration>

This element declares external resources and binds them to annotators' external resource
dependencies.

The resourceManagerConfiguration element may optionally contain an import,
which allows resource definitions to be stored in a separate (shareable) file. See Section 2.2,
“Imports” [4] for details.

The externalResources element contains zero or more externalResource elements, each of
which consists of:

• name – the name of the resource. This name is referred to in the bindings (see below).
Resource names need to be unique within any Aggregate Analysis Engine or Collection
Processing Engine, so the Java-like org.myorg.mycomponent.MyResource syntax is
recommended.

• description – English description of the resource.

• Resource Specifier – Declares the location of the resource. There are different possibilities
for how this is done (see below).

• implementationName – The fully-qualified name of the Java class that will be instantiated
from the resource data. This is optional; if not specified, the resource will be accessible
as an input stream to the raw data. If specified, the Java class must implement the
interfaceName that is specified in the External Resource Dependency to which it is
bound.

One possibility for the resource specifier is a <fileResourceSpecifier>, as shown above. This
simply declares a URL to the resource data. This support is built on the Java class URL and its
method URL.openStream(); it supports the protocols “file”, “http” and “jar” (for referring to files
in jars) by default, and you can plug in handlers for other protocols. The URL has to start with file:

Primitive Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 17

(or some other protocol). It is relative to either the classpath or the “data path”. The data path works
like the classpath but can be set programmatically via ResourceManager.setDataPath().
Setting the Java System property uima.datapath also works.

file:com/apache.d.txt is a relative path; relative paths for resources are resolved using the
classpath and/or the datapath. For the file protocol, URLs starting with file:/ or file:/// are absolute.
Note that file://org/apache/d.txt is NOT an absolute path starting with “org”. The “//”
indicates that what follows is a host name. Therefore if you try to use this URL it will complain that
it can't connect to the host “org”

Another option is a <fileLanguageResourceSpecifier>, which is intended to support
resources, such as dictionaries, that depend on the language of the document being processed.
Instead of a single URL, a prefix and suffix are specified, like this:

<fileLanguageResourceSpecifier>
 <fileUrlPrefix>file:FileLanguageResource_implTest_data_</fileUrlPrefix>
 <fileUrlSuffix>.dat</fileUrlSuffix>
</fileLanguageResourceSpecifier>

The URL of the actual resource is then formed by concatenating the prefix, the language
of the document (as an ISO language code, e.g. en or en-US – see Section 2.4.1.6,
“Capabilities” [13] for more information), and the suffix.

A third option is a customResourceSpecifier, which allows you to plug in an arbitrary Java
class. See Section 2.8, “Custom Resource Specifiers” [34] for more information.

The externalResourceBindings element declares which resources are bound to which
dependencies. Each externalResourceBinding consists of:

• key – identifies the dependency. For a binding declared in a primitive analysis
engine descriptor, this must match the value of the key element of one of the
externalResourceDependency elements. Bindings may also be specified in aggregate
analysis engine descriptors, in which case a compound key is used – see Section 2.4.2.4,
“External Resource Bindings” [20] .

• resourceName – the name of the resource satisfying the dependency. This must match the
value of the name element of one of the externalResource declarations.

A given resource dependency may only be bound to one external resource; one external resource
may be bound to many dependencies – to allow resource sharing.

2.4.1.10. Environment Variable References

In several places throughout the descriptor, it is possible to reference environment variables. In
Java, these are actually references to Java system properties. To reference system environment
variables from a Java analysis engine you must pass the environment variables into the Java virtual
machine by using the -D option on the java command line.

The syntax for environment variable references is <envVarRef>[VariableName]</
envVarRef> , where [VariableName] is any valid Java system property name. Environment
variable references are valid in the following places:

• The value of a configuration parameter (String-valued parameters only)
• The <annotatorImplementationName> element of a primitive AE descriptor

Aggregate Analysis Engine Descriptors

18 Component Descriptor Reference UIMA Version 2.6.0

• The <name> element within <analysisEngineMetaData>
• Within a <fileResourceSpecifier> or <fileLanguageResourceSpecifier>

For example, if the value of a configuration parameter were specified as:
<string><envVarRef>TEMP_DIR</envVarRef>/temp.dat</string> , and the value of the
TEMP_DIR Java System property were c:/temp, then the configuration parameter's value would
evaluate to c:/temp/temp.dat.

Note: The Component Descriptor Editor does not support environment variable
references. If you need to, however, you can use the source tab view in the CDE to
manually add this notation.

2.4.2. Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or more
component (also called delegate) analysis engines.

Aggregate Analysis Engine Descriptors maintain most of the same structure as Primitive Analysis
Engine Descriptors. The differences are:

• An Aggregate Analysis Engine Descriptor contains the element <primitive>false</
primitive> rather than <primitive>true</primitive>.

• An Aggregate Analysis Engine Descriptor must not include a
<annotatorImplementationName> element.

• In place of the <annotatorImplementationName>, an Aggregate Analysis Engine
Descriptor must have a <delegateAnalysisEngineSpecifiers> element. See
Section 2.4.2.1, “Delegate Analysis Engine Specifiers” [19].

• An Aggregate Analysis Engine Descriptor may provide a <flowController> element
immediately following the <delegateAnalysisEngineSpecifiers>. Section 2.4.2.2,
“FlowController” [19].

• Under the analysisEngineMetaData element, an Aggregate Analysis Engine Descriptor
may specify an additional element -- <flowConstraints>. See Section 2.4.2.3,
“FlowConstraints” [19]. Typically only one of <flowController> and
<flowConstraints> are specified. If both are specified, the <flowController> takes
precedence, and the flow controller implementation can use the information in specified in
the <flowConstraints> as part of its configuration input.

• An aggregate Analysis Engine Descriptors must not contain a
<typeSystemDescription> element. The Type System of the Aggregate Analysis Engine
is derived by merging the Type System of the Analysis Engines that the aggregate contains.

• Within aggregate Analysis Engine Descriptors, <configurationParameter>
elements may define <overrides>. See Section 2.4.3.3, “Configuration Parameter
Overrides” [26] .

• External Resource Bindings can bind resources to dependencies declared by any delegate
AE within the aggregate. See Section 2.4.2.4, “External Resource Bindings” [20].

• An additional optional element, <sofaMappings>, may be included.

Aggregate Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 19

2.4.2.1. Delegate Analysis Engine Specifiers

<delegateAnalysisEngineSpecifiers>

 <delegateAnalysisEngine key="[String]">
 <analysisEngineDescription>...</analysisEngineDescription> |
 <import .../>
 </delegateAnalysisEngine>

 <delegateAnalysisEngine key="[String]">
 ...
 </delegateAnalysisEngine>

 ...

</delegateAnalysisEngineSpecifiers>

The delegateAnalysisEngineSpecifiers element contains one or more
delegateAnalysisEngine elements. Each of these must have a unique key, and must contain
either:

• A complete analysisEngineDescription element describing the delegate analysis
engine OR

• An import element giving the name or location of the XML descriptor for the delegate
analysis engine (see Section 2.2, “Imports” [4]).

The latter is the much more common usage, and is the only form supported by the Component
Descriptor Editor tool.

2.4.2.2. FlowController

<flowController key="[String]">
 <flowControllerDescription>...</flowControllerDescription> |
 <import .../>
 </flowController>

The optional flowController element identifies the descriptor of the FlowController component
that will be used to determine the order in which delegate Analysis Engine are called.

The key attribute is optional, but recommended; it assigns the FlowController an identifier that can
be used for configuration parameter overrides, Sofa mappings, or external resource bindings. The
key must not be the same as any of the delegate analysis engine keys.

As with the delegateAnalysisEngine element, the flowController element may contain
either a complete flowControllerDescription or an import, but the import is recommended.
The Component Descriptor Editor tool only supports imports here.

2.4.2.3. FlowConstraints

If a <flowController> is not specified, the order in which delegate Analysis Engines are called
within the aggregate Analysis Engine is specified using the <flowConstraints> element, which
must occur immediately following the configurationParameterSettings element. If a
<flowController> is specified, then the <flowConstraints> are optional. They can be used
to pass an ordering of delegate keys to the <flowController>.

Aggregate Analysis Engine Descriptors

20 Component Descriptor Reference UIMA Version 2.6.0

There are two options for flow constraints -- <fixedFlow> or <capabilityLanguageFlow>.
Each is discussed in a separate section below.

Fixed Flow

<flowConstraints>
 <fixedFlow>
 <node>[String]</node>
 <node>[String]</node>
 ...
 </fixedFlow>
</flowConstraints>

The flowConstraints element must be included immediately following the
configurationParameterSettings element.

Currently the flowConstraints element must contain a fixedFlow element. Eventually, other
types of flow constraints may be possible.

The fixedFlow element contains one or more node elements, each of which contains
an identifier which must match the key of a delegate analysis engine specified in the
delegateAnalysisEngineSpecifiers element.

Capability Language Flow

<flowConstraints>
 <capabilityLanguageFlow>
 <node>[String]</node>
 <node>[String]</node>
 ...
 </capabilityLanguageFlow>
</flowConstraints>

If you use <capabilityLanguageFlow>, the delegate Analysis Engines named by the <node>
elements are called in the given order, except that a delegate Analysis Engine is skipped if any of
the following are true (according to that Analysis Engine's declared output capabilities):

• It cannot produce any of the aggregate Analysis Engine's output capabilities for the language
of the current document.

• All of the output capabilities have already been produced by an earlier Analysis Engine in
the flow.

For example, if two annotators produce org.myorg.TokenAnnotation feature structures for the
same language, these feature structures will only be produced by the first annotator in the list.

Note: The flow analysis uses the specific types that are specified in the output capabilities,
without any expansion for subtypes. So, if you expect a type TT and another type SubTT
(which is a subtype of TT) in the output, you must include both of them in the output
capabilities.

2.4.2.4. External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind resources
to dependencies declared in any of the delegate analysis engines (or their subcomponents,

Aggregate Analysis Engine Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 21

recursively) within that aggregate. This allows resource sharing. Any binding at this level overrides
(supersedes) any binding specified by a contained component or their subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate
Analysis Engines with keys annotator1 and annotator2 (as declared in the
<delegateAnalysisEngine> element – see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [19]), where annotator1 declares a resource dependency with key myResource
and annotator2 declares a resource dependency with key someResource .

Within that aggregate Analysis Engine Descriptor, the following
resourceManagerConfiguration would bind both of those dependencies to a single external
resource file.

<resourceManagerConfiguration>

 <externalResources>
 <externalResource>
 <name>ExampleResource</name>
 <fileResourceSpecifier>
 <fileUrl>file:MyResourceFile.dat</fileUrl>
 </fileResourceSpecifier>
 </externalResource>
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>annotator1/myResource</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>
 <externalResourceBinding>
 <key>annotator2/someResource</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>
 </externalResourceBindings>

</resourceManagerConfiguration>

The syntax for the externalResources declaration is exactly the same as described previously.
In the resource bindings note the use of the compound keys, e.g. annotator1/myResource. This
identifies the resource dependency key myResource within the annotator with key annotator1.
Compound resource dependencies can be multiple levels deep to handle nested aggregate analysis
engines.

2.4.2.5. Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate descriptor as part of
the <capability> section, and the Sofa names declared in the delegate components. For purposes
of the mapping, all the declarations of Sofas in any of the capability sets contained within the
<capabilities> element are considered together.

<sofaMappings>
 <sofaMapping>
 <componentKey>[keyName]</componentKey>
 <componentSofaName>[sofaName]</componentSofaName>
 <aggregateSofaName>[sofaName]</aggregateSofaName>
 </sofaMapping>
 ...

Configuration Parameters

22 Component Descriptor Reference UIMA Version 2.6.0

</sofaMappings>

The <componentSofaName> may be omitted in the case where the component is not aware
of Multiple Views or Sofas. In this case, the UIMA framework will arrange for the specified
<aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of delegate
components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability set.

2.4.3. Configuration Parameters

Configuration parameters may be declared and set in both Primitive and Aggregate descriptors.
Parameters set in an aggregate may override parameters set in one or more of its delegates.

2.4.3.1. Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and applications by the
following interfaces:

• AnnotatorContext 2 (passed as an argument to the initialize() method of a version 1
annotator)

• ConfigurableResource (every Analysis Engine implements this interface)
• UimaContext (passed as an argument to the initialize() method of a version 2 annotator)

(you can get this from any resource, including Analysis Engines, using the method
getUimaContext()).

Use AnnotatorContext within version 1 annotators and UimaContext for version 2 annotators and
outside of annotators (for instance, in CasConsumers, or the containing application) to access
configuration parameters.

Configuration parameters are set from the corresponding elements in the XML descriptor for the
application. If you need to programmatically change parameter settings within an application, you
can use methods in ConfigurableResource; if you do this, you need to call reconfigure() afterwards
to have the UIMA framework notify all the contained analysis components that the parameter
configuration has changed (the analysis engine's reinitialize() methods will be called). Note that in
the current implementation, only integrated deployment components have configuration parameters
passed to them; remote components obtain their parameters from their remote startup environment.
This will likely change in the future.

There are two ways to specify the <configurationParameters> section – as a list of
configuration parameters or a list of groups. A list of parameters, which are not part of any group,
looks like this:

<configurationParameters>
 <configurationParameter>
 <name>[String]</name>
 <externalOverrideName>[String]</externalOverrideName>
 <description>[String]</description>
 <type>String|Integer|Float|Boolean</type>
 <multiValued>true|false</multiValued>
 <mandatory>true|false</mandatory>

2Deprecated; use UimaContext instead.

Configuration Parameters

UIMA Version 2.6.0 Component Descriptor Reference 23

 <overrides>
 <parameter>[String]</parameter>
 <parameter>[String]</parameter>
 ...
 </overrides>
 </configurationParameter>
 <configurationParameter>
 ...
 </configurationParameter>
 ...
</configurationParameters>

For each configuration parameter, the following are specified:

• name – the name by which the annotator code refers to the parameter. All parameters
declared in an analysis engine descriptor must have distinct names. (required). The name is
composed of normal Java identifier characters.

• externalOverrideName – the name of a property in an external settings file that if defined
overrides any value set in this descriptor or in its parent. See Section 2.4.3.4, “External
Configuration Parameter Overrides” [27] for a discussion of external configuration
parameter overrides. (optional)

• description – a natural language description of the intent of the parameter (optional)

• type – the data type of the parameter's value – must be one of String, Integer, Float, or
Boolean (required).

• multiValued – true if the parameter can take multiple-values (an array), false if the
parameter takes only a single value (optional, defaults to false).

• mandatory – true if a value must be provided for the parameter (optional, defaults to
false).

• overrides – this is used only in aggregate Analysis Engines, but is included here for
completeness. See Section 2.4.3.3, “Configuration Parameter Overrides” [26] for a
discussion of configuration parameter overriding in aggregate Analysis Engines. (optional).

A list of groups looks like this:

<configurationParameters defaultGroup="[String]"
 searchStrategy="none|default_fallback|language_fallback" >

 <commonParameters>
 [zero or more parameters]
 </commonParameters>

 <configurationGroup names="name1 name2 name3 ...">
 [zero or more parameters]
 </configurationGroup>

 <configurationGroup names="name4 name5 ...">
 [zero or more parameters]
 </configurationGroup>

 ...

</configurationParameters>

Configuration Parameters

24 Component Descriptor Reference UIMA Version 2.6.0

Both the <commonParameters> and <configurationGroup> elements contain zero or more
<configurationParameter> elements, with the same syntax described above.

The <commonParameters> element declares parameters that exist in all groups. Each
<configurationGroup> element has a names attribute, which contains a list of group names
separated by whitespace (space or tab characters). Names consist of any number of non-whitespace
characters; however the Component Descriptor Editor tool restricts this to be normal Java
identifiers, including the period (.) and the dash (-). One configuration group will be created for
each name, and all of the groups will contain the same set of parameters.

The defaultGroup attribute specifies the name of the group to be used in the case where an
annotator does a lookup for a configuration parameter without specifying a group name. It may also
be used as a fallback if the annotator specifies a group that does not exist – see below.

The searchStrategy attribute determines the action to be taken when the context is queried for
the value of a parameter belonging to a particular configuration group, if that group does not exist
or does not contain a value for the requested parameter. There are currently three possible values:

• none – there is no fallback; return null if there is no value in the exact group specified by the
user.

• default_fallback – if there is no value found in the specified group, look in the default
group (as defined by the default attribute)

• language_fallback – this setting allows for a specific use of configuration parameter
groups where the groups names correspond to ISO language and country codes (for an
example, see below). The fallback sequence is: <lang>_<country>_<region> →
<lang>_<country> → <lang> → <default>.

Example

<configurationParameters defaultGroup="en"
 searchStrategy="language_fallback">

 <commonParameters>
 <configurationParameter>
 <name>DictionaryFile</name>
 <description>Location of dictionary for this
 language</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 </commonParameters>

 <configurationGroup names="en de en-US"/>

 <configurationGroup names="zh">
 <configurationParameter>
 <name>DBC_Strategy</name>
 <description>Strategy for dealing with double-byte
 characters.</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 </configurationGroup>

Configuration Parameters

UIMA Version 2.6.0 Component Descriptor Reference 25

</configurationParameters>

In this example, we are declaring a DictionaryFile parameter that can have a different value
for each of the languages that our AE supports – English (general), German, U.S. English, and
Chinese. For Chinese only, we also declare a DBC_Strategy parameter.

We are using the language_fallback search strategy, so if an annotator requests the dictionary
file for the en-GB (British English) group, we will fall back to the more general en group.

Since we have defined en as the default group, this value will be returned if the context is queried
for the DictionaryFile parameter without specifying any group name, or if a nonexistent group
name is specified.

2.4.3.2. Configuration Parameter Settings

For configuration parameters that are not part of any group, the
<configurationParameterSettings> element looks like this:

<configurationParameterSettings>
 <nameValuePair>
 <name>[String]</name>
 <value>
 <string>[String]</string> |
 <integer>[Integer]</integer> |
 <float>[Float]</float> |
 <boolean>true|false</boolean> |
 <array> ... </array>
 </value>
 </nameValuePair>

 <nameValuePair>
 ...
 </nameValuePair>
 ...
</configurationParameterSettings>

There are zero or more nameValuePair elements. Each nameValuePair contains a name (which
refers to one of the configuration parameters) and a value for that parameter.

The value element contains an element that matches the type of the parameter. For single-
valued parameters, this is either <string>, <integer> , <float>, or <boolean>. For multi-
valued parameters, this is an <array> element, which then contains zero or more instances of the
appropriate type of primitive value, e.g.:

<array><string>One</string><string>Two</string></array>

For parameters declared in configuration groups the <configurationParameterSettings>
element looks like this:

<configurationParameterSettings>

 <settingsForGroup name="[String]">
 [one or more <nameValuePair> elements]
 </settingsForGroup>

 <settingsForGroup name="[String]">
 [one or more <nameValuePair> elements]

Configuration Parameters

26 Component Descriptor Reference UIMA Version 2.6.0

 </settingsForGroup>

...

</configurationParameterSettings>

where each <settingsForGroup> element has a name that matches one of the configuration
groups declared under the <configurationParameters> element and contains the parameter
settings for that group.

Example

Here are the settings that correspond to the parameter declarations in the previous example:

<configurationParameterSettings>

 <settingsForGroup name="en">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resourcesEnglishdictionary.dat></string></value>
 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="en-US">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resourcesEnglish_USdictionary.dat</string></value>
 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="de">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resourcesDeutschdictionary.dat</string></value>
 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="zh">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resourcesChinesedictionary.dat</string></value>
 </nameValuePair>

 <nameValuePair>
 <name>DBC_Strategy</name>
 <value><string>default</string></value>
 </nameValuePair>

 </settingsForGroup>

</configurationParameterSettings>

2.4.3.3. Configuration Parameter Overrides

In an aggregate Analysis Engine Descriptor, each <configurationParameter> element should
contain an <overrides> element, with the following syntax:

<overrides>

Configuration Parameters

UIMA Version 2.6.0 Component Descriptor Reference 27

 <parameter>
 [delegateAnalysisEngineKey]/[parameterName]
 </parameter>

 <parameter>
 [delegateAnalysisEngineKey]/[parameterName]
 </parameter>
 ...

</overrides>

Since aggregate Analysis Engines have no code associated with them, the only way in which their
configuration parameters can affect their processing is by overriding the parameter values of one
or more delegate analysis engines. The <overrides> element determines which parameters, in
which delegate Analysis Engines, are overridden by this configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate Analysis
Engines with keys annotator1 and annotator2 (as declared in the <delegateAnalysisEngine>
element – see Section 2.4.2.1, “Delegate Analysis Engine Specifiers” [19]) and also declares a
configuration parameter as follows:

<configurationParameter>
 <name>AggregateParam</name>
 <type>String</type>
 <overrides>
 <parameter>annotator1/param1</parameter>
 <parameter>annotator2/param2</parameter>
 </overrides>
</configurationParameter>

The value of the AggregateParam parameter (whether assigned in the aggregate descriptor or at
runtime by an application) will override the value of parameter param1 in annotator1 and also
override the value of parameter param2 in annotator2. No other parameters will be affected.
Note that AggregateParam may itself be overridden by a parameter in an outer aggregate that has
this aggregate as one of its delegates.

Prior to release 2.4.1, if an aggregate Analysis Engine descriptor declared a configuration
parameter with no explicit overrides, that parameter would override any parameters having the
same name within any delegate analysis engine. Starting with release 2.4.1, support for this usage
has been dropped.

2.4.3.4. External Configuration Parameter Overrides

External parameter overrides are usually declared in primitive descriptors as a way to easily
modify the parameters in some or all of an application's annotators. By using external settings files
and global parameter names the configuration information can be specified without regard for a
particular descriptor hierachy.

Configuration parameter declarations in primitive and aggregate descriptors may include an
<externalOverrideName> element, which specifies the name of a property that may be defined
in an external settings file. If this element is present, and if a entry can be found for its name in a
settings files, then this value overrides the value otherwise specified for this parameter.

The value overrides any value set in this descriptor or set by an override in a parent aggregate.
In primitive descriptors the value set by an external override is always applied. In aggregate
descriptors the value set by an external override applies to the aggregate parameter, and is passed

Configuration Parameters

28 Component Descriptor Reference UIMA Version 2.6.0

down to the overridden delegate parameters in the usual way, i.e. only if the delegate's parameter
has not been set by an external override.

Im the absence of external overrides, parameter evaluation can be viewed as proceeding from the
primitive descriptor up through any aggregates containing overrides, taking the last setting found.
With external overrides the search ends with the first external override found that has a value
assigned by a settings file.

The same external name may be used for multiple parameters; the effect of this is that one setting
will override multiple parameters.

The settings for all descriptors in a pipeline are usually loaded from one or more files
whose names are obtained from the Java system property UimaExternalOverrides. The
value of the property must be a list of file names, each separated by single comma, e.g.
-DUimaExternalOverrides=file1.settings,file2.settings

Override settings may also be specified when creating an analysis engine by putting a Settings
object in the additional parameters map for the produceAnalysisEngine method. In this case
the Java system property UimaExternalOverrides is ignored.

 // Construct an analysis engine that uses two settings files
 Settings extSettings = new Settings_impl();
 for (String fname : new String[] { "externalOverride.settings",
 "default.settings" }) {
 FileInputStream fis = new FileInputStream(fname);
 extSettings.load(fis);
 fis.close();
 }
 Map<String,Object> aeParms = new HashMap<String,Object>();
 aeParms.put(Resource.PARAM_EXTERNAL_OVERRIDE_SETTINGS, extSettings);
 AnalysisEngine ae = UIMAFramework.produceAnalysisEngine(desc, aeParms);

These external settings consist of key - value pairs stored in a file using the UTF-8 character
encoding, and written in a style similar to that of Java properties files.

• Leading whitespace is ignored.
• Comment lines start with '#' or '!'.
• The key and value are separated by whitespace, '=' or ':'.
• Keys must contain at least one character and only letters, digits, or the characters '. / - ~ _'.
• If a line ends with '\' it is extended with the following line (after removing any leading

whitespace.)
• Duplicate key values are ignored – once a value is assigned to a key it cannot be changed.
• Values may reference other settings using the syntax '${key}'.
• Array values are represented as a list of strings separated by commas or line breaks, and

bracketed by the '[]' characters. The value must start with an '[' and is terminated by the first
unescaped ']' which must be at the end of a line. The elements of an array (and hence the
array size) may be indirectly specified using the '${key}' syntax but the brackets '[]' must be
explicitly specified.

• In values the special characters '$ { } [,] \' are treated as regular characters if preceeded by
the escape character '\'.

key1 : value1
 key2 = value 2
 key3 element2, element3, element4
 # Next assignment is ignored as key3 has already been set

Flow Controller Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 29

key3 : value ignored
key4 = [array element1, ${key3}, element5
 element6]
key5 value with a reference ${key1} to key1
key6 : long value string \
 continued from previous line (with leading whitespace stripped)
key7 = value without a reference \${not-a-key}
key8 \[value that is not an array]
key9 : [array element1\, with embedded comma, element2]

Multiple settings files are allowed; they are loaded in order, such that early ones take precedence
over later ones, following the first-assignment-wins rule. So, if you have lots of settings, you can
put the defaults in one file, and then in a earlier file, override just the ones you need to.

An external override name may be specified for a parameter declared in a group, but if the
parameter is in the common group or the group is declared with multiple names, the external name
is shared amongst all, i.e. these parameters cannot be given group-specific values.

2.5. Flow Controller Descriptors
The basic structure of a Flow Controller Descriptor is as follows:

<?xml version="1.0" ?>
<flowControllerDescription
 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</flowControllerDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element must contain the fully-qualified class name of the Flow
Controller implementation. This must name a class that implements the FlowController
interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's analysisEngineMetaData element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [9].

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.8,

Collection Processing Component Descriptors

30 Component Descriptor Reference UIMA Version 2.6.0

“External Resource Dependencies” [15] and Section 2.4.1.9, “Resource Manager
Configuration” [15].

2.6. Collection Processing Component Descriptors
There are three types of Collection Processing Components – Collection Readers, CAS Initializers
(deprecated as of UIMA Version 2), and CAS Consumers. Each type of component has a
corresponding descriptor. The structure of these descriptors is very similar to that of primitive
Analysis Engine Descriptors.

2.6.1. Collection Reader Descriptors
The basic structure of a Collection Reader descriptor is as follows:

<?xml version="1.0" ?>
<collectionReaderDescription
 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</collectionReaderDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element contains the fully-qualified class name of the Collection
Reader implementation. This must name a class that implements the CollectionReader
interface.

The processingResourceMetaData element contains essentially the same information as a
Primitive Analysis Engine Descriptor's' analysisEngineMetaData element:

<processingResourceMetaData>

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <configurationParameters>
 ...
 </configurationParameters>

CAS Initializer Descriptors (deprecated)

UIMA Version 2.6.0 Component Descriptor Reference 31

 <configurationParameterSettings>
 ...
 </configurationParameterSettings>

 <typeSystemDescription>
 ...
 </typeSystemDescription>

 <typePriorities>
 ...
 </typePriorities>

 <fsIndexes>
 ...
 </fsIndexes>

 <capabilities>
 ...
 </capabilities>

</processingResourceMetaData>

The contents of these elements are the same as that described in Section 2.4.1.2, “Analysis Engine
MetaData” [9], with the exception that the capabilities section should not declare any inputs
(because the Collection Reader is always the first component to receive the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies” [15] and Section 2.4.1.9, “Resource Manager
Configuration” [15].

2.6.2. CAS Initializer Descriptors (deprecated)
The basic structure of a CAS Initializer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<casInitializerDescription
 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
 <implementationName>[ClassName] </implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</casInitializerDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

CAS Consumer Descriptors

32 Component Descriptor Reference UIMA Version 2.6.0

The implementationName element contains the fully-qualified class name of the CAS Initializer
implementation. This must name a class that implements the CasInitializer interface.

The processingResourceMetaData element contains essentially the same information as a
Primitive Analysis Engine Descriptor's' analysisEngineMetaData element, as described in
Section 2.4.1.2, “Analysis Engine MetaData” [9], with the exception of some changes to the
capabilities section. A CAS Initializer's capabilities element looks like this:

<capabilities>
 <capability>
 <outputs>
 <type allAnnotatorFeatures="true|false">[String]</type>
 <type>[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </outputs>

 <outputSofas>
 <sofaName>[name]</sofaName>
 ...
 </outputSofas>

 <mimeTypesSupported>
 <mimeType>[MIME Type]</mimeType>
 ...
 </mimeTypesSupported>
 </capability>

 <capability>
 ...
 </capability>
 ...
</capabilities>

The differences between a CAS Initializer's capabilities declaration and an Analysis Engine's
capabilities declaration are that the CAS Initializer does not declare any input CAS types and
features or input Sofas (because it is always the first to operate on a CAS), it doesn't have a
language specifier, and that the CAS Initializer may declare a set of MIME types that it supports
for its input documents. Examples include: text/plain, text/html, and application/pdf. For a list
of MIME types see http://www.iana.org/assignments/media-types/. This information is currently
only for users' information, the framework does not use it for anything. This may change in future
versions.

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies” [15] and Section 2.4.1.9, “Resource Manager
Configuration” [15]).

2.6.3. CAS Consumer Descriptors
The basic structure of a CAS Consumer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<casConsumerDescription
 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

http://www.iana.org/assignments/media-types/

Service Client Descriptors

UIMA Version 2.6.0 Component Descriptor Reference 33

 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>
</casConsumerDescription>

The frameworkImplementation element currently must have the value
org.apache.uima.java, or org.apache.uima.cpp.

The next subelement, <annotatorImplementationName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class name for
Java implementations, or the name of a .dll or .so file for C++ implementations.

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element must contain the fully-qualified class name of the CAS
Consumer implementation, or the name of a .dll or .so file for C++ implementations. For Java, the
named class must implement the CasConsumer interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's analysisEngineMetaData element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [9], except that the CAS Consumer Descriptor's
capabilities element should not declare outputs or outputSofas (since CAS Consumers do not
modify the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies” [15] and Section 2.4.1.9, “Resource Manager
Configuration” [15].

2.7. Service Client Descriptors
Service Client Descriptors specify only a location of a remote service. They are therefore much
simpler in structure. In the UIMA SDK, a Service Client Descriptor that refers to a valid Analysis
Engine or CAS Consumer service can be used in place of the actual Analysis Engine or CAS
Consumer Descriptor. The UIMA SDK will handle the details of calling the remote service. (For
details on deploying an Analysis Engine or CAS Consumer as a service, see UIMA Tutorial and
Developers' Guides Section 3.6, “Working with Remote Services”.

The UIMA SDK is extensible to support different types of remote services. In future versions, there
may be different variations of service client descriptors that cater to different types of services. For
now, the only type of service client descriptor is the uriSpecifier, which supports the SOAP
and Vinci protocols.

<?xml version="1.0" encoding="UTF-8" ?>

Custom Resource Specifiers

34 Component Descriptor Reference UIMA Version 2.6.0

<uriSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <resourceType>AnalysisEngine | CasConsumer </resourceType>
 <uri>[URI]</uri>
 <protocol>SOAP | SOAPwithAttachments | Vinci</protocol>
 <timeout>[Integer]</timeout>
 <parameters>
 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address"/>
 <parameter name="VNS_PORT" value="9000"/>
 <parameter name="GetMetaDataTimeout" value="[Integer]"/>
 </parameters>
</uriSpecifier>

The resourceType element is required for new descriptors, but is currently allowed to be
omitted for backward compatibility. It specifies the type of component (Analysis Engine or CAS
Consumer) that is implemented by the service endpoint described by this descriptor.

The uri element contains the URI for the web service. (Note that in the case of Vinci, this will be
the service name, which is looked up in the Vinci Naming Service.)

The protocol element may be set to SOAP, SOAPwithAttachments, or Vinci; other protocols
may be added later. These specify the particular data transport format that will be used.

The timeout element is optional. If present, it specifies the number of milliseconds to wait for a
request to be processed before an exception is thrown. A value of zero or less will wait forever. If
no timeout is specified, a default value (currently 60 seconds) will be used.

The parameters element is optional. If present, it can specify values for each of the following:

• VNS_HOST: host name for the Vinci naming service.

• VNS_PORT: port number for the Vinci naming service.

• GetMetaDataTimeout: timeout period (in milliseconds) for the GetMetaData call. If not
specified, the default is 60 seconds. This may need to be set higher if there are a lot of clients
competing for connections to the service.

If the VNS_HOST and VNS_PORT are not specified in the descriptor, the values used for these
comes from parameters passed on the Java command line using the -DVNS_HOST=<host> and/or
-DVNS_PORT=<port> system arguments. If not present, and a system argument is also not present,
the values for these default to localhost for the VNS_HOST and 9000 for the VNS_PORT.

For details on how to deploy and call Analysis Engine and CAS Consumer services, see UIMA
Tutorial and Developers' Guides Section 3.6, “Working with Remote Services”.

2.8. Custom Resource Specifiers
A Custom Resource Specifier allows you to plug in your own Java class as a UIMA Resource. For
example you can support a new service protocol by plugging in a Java class that implements the
UIMA AnalysisEngine interface and communicates with the remote service.

A Custom Resource Specifier has the following format:

<?xml version="1.0" encoding="UTF-8" ?>
<customResourceSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <resourceClassName>[Java Class Name]</resourceClassName>
 <parameters>

Custom Resource Specifiers

UIMA Version 2.6.0 Component Descriptor Reference 35

 <parameter name="[String]" value="[String]"/>
 <parameter name="[String]" value="[String]"/>
 </parameters>
</customResourceSpecifier>

The resourceClassName element must contain the fully-qualified name of a Java class that can
be found in the classpath (including the UIMA extension classpath, if you have specified one using
the ResourceManager.setExtensionClassPath method). This class must implement the
UIMA Resource interface.

When an application calls the UIMAFramework.produceResource method and passes a
CustomResourceSpecifier, the UIMA framework will load the named class and call its
initialize(ResourceSpecifier,Map) method, passing the CustomResourceSpecifier
as the first argument. Your class can override the initialize method and use the
CustomResourceSpecifier API to get access to the parameter names and values specified in
the XML.

If you are using a custom resource specifier to plug in a class that implements a new service
protocol, your class must also implement the AnalysisEngine interface. Generally it should
also extend AnalysisEngineImplBase. The key methods that should be implemented are
getMetaData, processAndOutputNewCASes, collectionProcessComplete, and destroy.

CPE Descriptor Reference 37

Chapter 3. Collection Processing Engine
Descriptor Reference

A UIMA Collection Processing Engine (CPE) is a combination of UIMA components assembled
to analyze a collection of artifacts. A CPE is an instantiation of the UIMA Collection Processing
Architecture, which defines the collection processing components, interfaces, and APIs. A CPE
is executed by a UIMA framework component called the Collection Processing Manager (CPM),
which provides a number of services for deploying CPEs, running CPEs, and handling errors.

A CPE can be assembled programmatically within a Java application, or it can be assembled
declaratively via a CPE configuration specification, called a CPE Descriptor. This chapter describes
the format of the CPE Descriptor.

Details about the CPE, including its function, sub-components, APIs, and related tools, can
be found in UIMA Tutorial and Developers' Guides Chapter 2, Collection Processing Engine
Developer's Guide. Here we briefly summarize the CPE to define terms and provide context for the
later sections that describe the CPE Descriptor.

3.1. CPE Overview

Figure 3.1. CPE Runtime Overview

An illustration of the CPE runtime is shown in Figure 3.1, “CPE Runtime Overview” [37].
Some of the CPE components, such as the queues and processing pipelines, are internal to the
CPE, but their behavior and deployment may be configured using the CPE Descriptor. Other
CPE components, such as the Collection Reader and CAS Processors, are defined and configured
externally from the CPE and then plugged in to the CPE to create the overall engine. The parts of a
CPE are:

Collection Reader
understands the native data collection format and iterates over the collection producing subjects
of analysis

Notation

38 CPE Descriptor Reference UIMA Version 2.6.0

CAS Initializer1

initializes a CAS with a subject of analysis

Artifact Producer
asynchronously pulls CASes from the Collection Reader, creates batches of CASes and puts
them into the work queue

Work Queue
shared queue containing batches of CASes queued by the Artifact Producer for analysis by
Analysis Engines

B1-Bn
individual batches containing 1 or more CASes

AE1-AEn
Analysis Engines arranged by a CPE descriptor

Processing Pipelines
each pipeline runs in a separate thread and contains a replicated set of the Analysis Engines
running in the defined sequence

Output Queue
holds batches of CASes with analysis results intended for CAS Consumers

CAS Consumers
perform collection level analysis over the CASes and extract analysis results, e.g., creating
indexes or databases

3.2. Notation
CPE Descriptors are XML files. This chapter uses an informal notation to specify the syntax of
CPE Descriptors.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that element has
been omitted (to be described in another section of this chapter). An example of this would
be:

<collectionReader>
...
</collectionReader>

• An ellipsis immediately after an element indicates that the element type may be repeated
arbitrarily many times. For example:

<parameter>[String]</parameter>
<parameter>[String]</parameter>
...

indicates that there may be arbitrarily many parameter elements in this context.

• An ellipsis inside an element means details of the attributes associated with that element are
defined later, e.g.:

1Deprecated

Imports

UIMA Version 2.6.0 CPE Descriptor Reference 39

<casProcessor ...>

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used at that
location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

Which elements are optional and which are required is specified in prose, not in the syntax
definition.

3.3. Imports
As of version 2.2, a CPE Descriptor can use the same import mechanism as other component
descriptors. This allows referring to component descriptors using either relative paths (resolved
relative to the location of the CPE descriptor) or the classpath/datapath. For details see Chapter 2,
Component Descriptor Reference.

The follwing older syntax is still supported, but not recommended:

<descriptor>
 <include href="[URL or File]"/>
</descriptor>

The [URL or File] attribute is a URL or a filename for the descriptor of the incorporated
component. The argument is first attempted to be resolved as a URL.

Relative paths in an include are resolved relative to the current working directory (NOT the
CPE descriptor location as is the case for import). A filename relative to another directory can be
specified using the CPM_HOME variable, e.g.,

<descriptor>
 <include href="${CPM_HOME}/desc_dir/descriptor.xml"/>
</descriptor>

In this case, the value for the CPM_HOME variable must be provided to the CPE by specifying it on
the Java command line, e.g.,

java -DCPM_HOME="C:/Program Files/apache/uima/cpm" ...

3.4. CPE Descriptor Overview
A CPE Descriptor consists of information describing the following four main elements.

1. The Collection Reader, which is responsible for gathering artifacts and initializing the
Common Analysis Structure (CAS) used to support processing in the UIMA collection
processing engine.

2. The CAS Processors, responsible for analyzing individual artifacts, analyzing across
artifacts, and extracting analysis results. CAS Processors include Analysis Engines and CAS
Consumers.

3. Operational parameters of the Collection Processing Manager (CPM), such as checkpoint
frequency and deployment mode.

Collection Reader

40 CPE Descriptor Reference UIMA Version 2.6.0

4. Resource Manager Configuration (optional).

The CPE Descriptor has the following high level skeleton:

<?xml version="1.0"?>
<cpeDescription>
 <collectionReader>
...
 </collectionReader>
 <casProcessors>
...
 </casProcessors>
 <cpeConfig>
...
 </cpeConfig>
 <resourceManagerConfiguration>
...
 </resourceManagerConfiguration>
</cpeDescription>

Details of each of the four main elements are described in the sections that follow.

3.5. Collection Reader
The <collectionReader> section identifies the Collection Reader and optional CAS Initializer
that are to be used in the CPE. The Collection Reader is responsible for retrieval of artifacts from a
collection outside of the CPE, and the optional CAS Initializer (deprecated as of UIMA Version 2)
is responsible for initializing the CAS with the artifact.

A Collection Reader may initialize the CAS itself, in which case it does not require a CAS
Initializer. This should be clearly specified in the documentation for the Collection Reader.
Specifying a CAS Initializer for a Collection Reader that does not make use of a CAS Initializer
will not cause an error, but the specified CAS Initializer will not be used.

The complete structure of the <collectionReader> section is:

<collectionReader>
 <collectionIterator>
 <descriptor>
 <import ...> | <include .../>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 </collectionIterator>
 <casInitializer>
 <descriptor>
 <import ...> | <include .../>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 </casInitializer>
</collectionReader>

The <collectionIterator> identifies the descriptor for the Collection Reader, and the
<casInitializer> identifies the descriptor for the CAS Initializer. The format and details
of the Collection Reader and CAS Initializer descriptors are described in Section 2.6.1,
“Collection Reader Descriptors” . The <configurationParameterSettings> and the
<sofaNameMappings> elements are described in the next section.

Error handling for Collection Readers

UIMA Version 2.6.0 CPE Descriptor Reference 41

3.5.1. Error handling for Collection Readers
The CPM will abort if the Collection Reader throws a large number of consecutive exceptions
(default = 100). This default can by changed by using the Java initialization parameter
-DMaxCRErrorThreshold xxx.

3.6. CAS Processors
The <casProcessors> section identifies the components that perform the analysis on the input
data, including CAS analysis (Analysis Engines) and analysis results extraction (CAS Consumers).
The CAS Consumers may also perform collection level analysis, where the analysis is performed
(or aggregated) over multiple CASes. The basic structure of the CAS Processors section is:

<casProcessors
 dropCasOnException="true|false"
 casPoolSize="[Number]"
 processingUnitThreadCount="[Number]">

 <casProcessor ...>
 ...
 </casProcessor>

 <casProcessor ...>
 ...
 </casProcessor>
 ...
</casProcessors>

The <casProcessors> section has two mandatory attributes and one optional attribute that
configure the characteristics of the CAS Processor flow in the CPE. The first mandatory attribute
is a casPoolSize, which defines the fixed number of CAS instances that the CPM will create and
use during processing. All CAS instances are maintained in a CAS Pool with a check-in and check-
out access. Each CAS is checked-out from the CAS Pool by the Collection Reader and initialized
with an initial subject of analysis. The CAS is checked-in into the CAS Pool when it is completely
processed, at the end of the processing chain. A larger CAS Pool size will result in more memory
being used by the CPM. CAS objects can be large and care should be taken to determine the
optimum size of the CAS Pool, weighing memory tradeoffs with performance.

The second mandatory <casProcessors> attribute is processingUnitThreadCount, which
specifies the number of replicated Processing Pipelines. Each Processing Pipeline runs in its
own thread. The CPM takes CASes from the work queue and submits each CAS to one of the
Processing Pipelines for analysis. A Processing Pipeline contains one or more Analysis Engines
invoked in a given sequence. If more than one Processing Pipeline is specified, the CPM replicates
instances of each Analysis Engine defined in the CPE descriptor. Each Processing Pipeline thread
runs independently, consuming CASes from work queue and depositing CASes with analysis
results onto the output queue. On multiprocessor machines, multiple Processing Pipelines can run
in parallel, improving overall throughput of the CPM.

Note: The number of Processing Pipelines should be equal to or greater than CAS Pool
size.

Elements in the pipeline (each represented by a <casProcessor> element) may indicate that they
do not permit multiple deployment in their Analysis Engine descriptor. If so, even though multiple
pipelines are being used, all CASes passing through the pipelines will be routed through one
instance of these marked Engines.

Specifying an Individual CAS Processor

42 CPE Descriptor Reference UIMA Version 2.6.0

The final, optional, <casProcessors> attribute is dropCasOnException. It defines a policy that
determines what happens with the CAS when an exception happens during processing. If the
value of this attribute is set to true and an exception happens, the CPM will notify all registered
listeners of the exception (see UIMA Tutorial and Developers' Guides Section 2.3.1, “Using
Listeners”), clear the CAS and check the CAS back into the CAS Pool so that it can be re-used.
The presumption is that an exception may leave the CAS in an inconsistent state and therefore that
CAS should not be allowed to move through the processing chain. When this attribute is omitted
the CPM's default is the same as specifying dropCasOnException="false".

3.6.1. Specifying an Individual CAS Processor
The CAS Processors that make up the Processing Pipeline and the CAS Consumer pipeline are
specified with the <casProcessor> entity, which appears within the <casProcessors> entity.
It may appear multiple times, once for each CAS Processor specified for this CPE.

The order of the <casProcessor> entities with the <casProcessors> section specifies the
order in which the CAS Processors will run. Although CAS Consumers are usually put at the end of
the pipeline, they need not be. Also, Aggregate Analysis Engines may include CAS Consumers.

The overall format of the <casProcessor> entity is:

<casProcessor deployment="local|remote|integrated" name="[String]" >
 <descriptor>
 <import ...> | <include .../>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 <runInSeparateProcess>...</runInSeparateProcess>
 <deploymentParameters>...</deploymentParameters>
 <filter/>
 <errorHandling>...</errorHandling>
 <checkpoint batch="Number"/>
</casProcessor>

The <casProcessor> element has two mandatory attributes, deployment and name. The
mandatory name attribute specifies a unique string identifying the CAS Processor.

The mandatory deployment attribute specifies the CAS Processor deployment mode. Currently,
three deployment options are supported:

integrated
indicates integrated deployment of the CAS Processor. The CPM deploys and collocates
the CAS Processor in the same process space as the CPM. This type of deployment is
recommended to increase the performance of the CPE. However, it is NOT recommended to
deploy annotators containing JNI this way. Such CAS Processors may cause a fatal exception
and force the JVM to exit without cleanup (bringing down the CPM). Any UIMA SDK
compliant pure Java CAS Processors may be safely deployed this way.

The descriptor for an integrated deployment can, in fact, be a remote service descriptor. When
used this way, however, the CPM error recovery options (see below) operate in the integrated
mode, which means that many of the retry options are not available.

remote
indicates non-managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descriptor> element must be a Vinci Service Client Descriptor, which
identifies a remotely deployed CAS Processor service (see UIMA Tutorial and Developers'

Specifying an Individual CAS Processor

UIMA Version 2.6.0 CPE Descriptor Reference 43

Guides Section 3.6, “Working with Remote Services”). The CPM assumes that the CAS
Processor is already running as a remote service and will connect to it using the URI provided
in the client service descriptor. The lifecycle of a remotely deployed CAS Processor is not
managed by the CPM, so appropriate infrastructure should be in place to start/restart such CAS
Processors when necessary. This deployment provides fault isolation and is implementation
(i.e., programming language) neutral.

local
indicates managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descriptor> element must be a Vinci Service Deployment Descriptor,
which configures a CAS Processor for deployment as a Vinci service (see UIMA Tutorial
and Developers' Guides Section 3.6, “Working with Remote Services”). The CPM deploys
the CAS Processor in a separate process and manages the life cycle (start/stop) of the CAS
Processor. Communication between the CPM and the CAS Processor is done with Vinci.
When the CPM completes processing, the process containing the CAS Processor is terminated.
This deployment mode insulates the CPM from the CAS Processor, creating a more robust
deployment at the cost of a small communication overhead. On multiprocessor machines, the
separate processes may run concurrently and improve overall throughput.

A number of elements may appear within the <casProcessor> element.

3.6.1.1. <descriptor> Element

The <descriptor> element is mandatory. It identifies the descriptor for the referenced CAS
Processor using the syntax described in Section 2.4, “Analysis Engine Descriptors”.

• For remote CAS Processors, the referenced descriptor must be a Vinci Service Client
Descriptor, which identifies a remotely deployed CAS Processor service.

• For local CAS Processors, the referenced descriptor must be a Vinci Service Deployment
Descriptor.

• For integrated CAS Processors, the referenced descriptor must be an Analysis Engine
Descriptor (primitive or aggregate).

See UIMA Tutorial and Developers' Guides Section 3.6, “Working with Remote Services” for
more information on creating these descriptors and deploying services.

3.6.1.2. <configurationParameterSettings> Element

This element provides a way to override the contained Analysis Engine's parameters settings. Any
entry specified here must already be defined; values specified replace the corresponding values for
each parameter. For Cas Processors, this mechanism is only available when they are deployed in
“integrated” mode. For Collection Readers and Initializers, it always is available.

The content of this element is identical to the component descriptor for specifying parameters (in
the case where no parameter groups are specified)2. Here is an example:

<configurationParameterSettings>
 <nameValuePair>
 <name>CivilianTitles</name>
 <value>
 <array>
 <string>Mr.</string>
 <string>Ms.</string>

2An earlier UIMA version required these to have a suffix of “_p”, e.g., “string_p”. This is no longer required, but this format is accepted,
also, for backward compatibility.

Specifying an Individual CAS Processor

44 CPE Descriptor Reference UIMA Version 2.6.0

 <string>Mrs.</string>
 <string>Dr.</string>
 </array>
 </value>
 </nameValuePair>
 ...
</configurationParameterSettings>

3.6.1.3. <sofaNameMappings> Element

This optional element provides a mapping from defined Sofa names in the component, or the
default Sofa name (if the component does not declare any Sofa names). The form of this element is:

<sofaNameMappings>
 <sofaNameMapping cpeSofaName="a_CPE_name"
 componentSofaName="a_component_Name"/>
 ...
</sofaNameMappings>

There can be any number of <sofaNameMapping> elements contained in the
<sofaNameMappings> element. The componentSofaName attribute is optional; leave it out to
specify a mapping for the _InitialView - that is, for Single-View components.

3.6.1.4. <runInSeparateProcess> Element

The <runInSeparateProcess> element is mandatory for local CAS Processors, but should
not appear for remote or integrated CAS Processors. It enables the CPM to create external
processes using the provided runtime environment. Applications launched this way communicate
with the CPM using the Vinci protocol and connectivity is enabled by a local instance of the
VNS that the CPM manages. Since communication is based on Vinci, the application need not
be implemented in Java. Any language for which Vinci provides support may be used to create
an application, and the CPM will seamlessly communicate with it. The overall structure of this
element is:

<runInSeparateProcess>
 <exec dir="[String]" executable="[String]">
 <env key="[String]" value ="[String]"/>
 ...
 <arg>[String]</arg>
 ...
 </exec>
</runInSeparateProcess>

The <exec> element provides information about how to execute the referenced CAS Processor.
Two attributes are defined for the <exec> element. The dir attribute is currently not used – it
is reserved for future functionality. The executable attribute specifies the actual Vinci service
executable that will be run by the CPM, e.g., java, a batch script, an application (.exe), etc. The
executable must be specified with a fully qualified path, or be found in the PATH of the CPM.

The <exec> element has two elements within it that define parameters used to construct the
command line for executing the CAS Processor. These elements must be listed in the order in
which they should be defined for the CAS Processor.

The optional <env> element is used to set an environment variable. The variable key will be set to
value. For example,

Specifying an Individual CAS Processor

UIMA Version 2.6.0 CPE Descriptor Reference 45

<env key="CLASSPATH" value="C:Javalib"/>

will set the environment variable CLASSPATH to the value C:Javalib. The <env> element may
be repeated to set multiple environment variables. All of the key/value pairs will be added to the
environment by the CPM prior to launching the executable.

Note: The CPM actually adds ALL system environment variables when it launches the
program. It queries the Operating System for its current system variables and one by one
adds them to the program's process configuration.

The <arg> element is used to specify arbitrary string arguments that will appear on the command
line when the CPM runs the command specified in the executable attribute.

For example, the following would be used to invoke the UIMA Java implementation of the Vinci
service wrapper on a Java CAS Processor:

<runInSeparateProcess>
 <exec executable="java">
 <arg>−DVNS_HOST=localhost</arg>
 <arg>−DVNS_PORT=9099</arg>
 <arg>org.apache.uima.reference_impl.analysis_engine.service.
vinci.VinciAnalysisEngineService_impl</arg>
 <arg>C:uimadescdeployCasProcessor.xml</arg>
 </exec>
<runInSeparateProcess>

This will cause the CPM to run the following command line when starting the CAS Processor:

java -DVNS_HOST=localhost -DVNS_PORT=9099
 org.apache.uima.reference_impl.analysis_engine.service.vinci.\\
 VinciAnalysisEngineService_impl
 C:uimadescdeployCasProcessor.xml

The first argument specifies that the Vinci Naming Service is running on the localhost. The
second argument specifies that the Vinci Naming Service port number is 9099. The third argument
(split over 2 lines in this documentation) identifies the UIMA implementation of the Vinci service
wrapper. This class contains the main method that will execute. That main method in turn takes
a single argument – the filename for the CAS Processor service deployment descriptor. Thus
the last argument identifies the Vinci service deployment descriptor file for the CAS Processor.
Since this is the same descriptor file specified earlier in the <descriptor> element, the string
${descriptor} can be used to refer to the descriptor, e.g.:

<arg>${descriptor}</arg>

The CPM will expand this out to the service deployment descriptor file referenced in the
<descriptor> element.

3.6.1.5. <deploymentParameters> Element

The <deploymentParameters> element defines a number of deployment parameters that control
how the CPM will interact with the CAS Processor. This element has the following overall form:

<deploymentParameters>
 <parameter name="[String]" value="..." type="string|integer" />
 ...

Specifying an Individual CAS Processor

46 CPE Descriptor Reference UIMA Version 2.6.0

</deploymentParameters>

The name attribute identifies the parameter, the value attribute specifies the value that will be
assigned to the parameter, and the type attribute indicates the type of the parameter, either string
or integer. The available parameters include:

service-access
string parameter whose value must be “exclusive”, if present. This parameter is only effective
for remote deployments. It modifies the Vinci service connections to be preallocated and
dedicated, one service instance per pipe-line. It is only relevant for non-Integrated deployement
modes. If there are fewer services instances that are available (and alive – responding to a
“ping” request) than there are pipelines, the number of pipelines (the number of concurrent
threads) is reduced to match the number of available instances. If not specified, the VNS is
queried each time a service is needed, and a “random” instance is assigned from the pool of
available instances. If a services dies during processing, the CPM will use its normal error
handling procedures to attempt to reconnect. The number of attempts is specified in the CPE
descriptor for each Cas Processor using the <maxConsecutiveRestarts value="10"
action="kill-pipeline" waitTimeBetweenRetries="50"/> xml element. The
“value” attribute is the number of reconnection tries; the “action” says what to do if the retries
exceed the limit. The “kill-pipeline” action stops the pipeline that was associated with the
failing service (other pipelines will continue to work). The CAS in process within a killed
pipeline will be dropped. These events are communicated to the application using the normal
event listener mechanism. The waitTimeBetweenRetries says how many milliseconds to
wait inbetween attempts to reconnect.

vnsHost
(Deprecated) string parameter specifying the VNS host, e.g., localhost for local CAS
Processors, host name or IP address of VNS host for remote CAS Processors. This parameter
is deprecated; use the parameter specification instead inside the Vinci Service Client
Descriptor, if needed. It is ignored for integrated and local deployments. If present, for remote
deployments, it specifies the VNS Host to use, unless that is specified in the Vinci Service
Client Descriptor.

vnsPort
(Deprecated) integer parameter specifying the VNS port number. This parameter is deprecated;
use the parameter specification instead inside the Vinci Service Client Descriptor, if needed. It
is ignored for integrated and local deployments. If present, for remote deployments, it specifies
the VNS Port number to use, unless that is specified in the Vinci Service Client Descriptor.

For example, the following parameters might be used with a CAS Processor deployed in local
mode:

<deploymentParameters>
 <parameter name="service-access" value="exclusive" type="string"/>
</deploymentParameters>

3.6.1.6. <filter> Element

The <filter> element is a required element but currently should be left empty. This element is
reserved for future use.

3.6.1.7. <errorHandling> Element

The mandatory <errorHandling> element defines error and restart policies for the CAS
Processor. Each CAS Processor may define different actions in the event of errors and restarts.

Specifying an Individual CAS Processor

UIMA Version 2.6.0 CPE Descriptor Reference 47

The CPM monitors and logs errant behaviors and attempts to recover the component based on the
policies specified in this element.

There are two kinds of faults:

1. One kind only occurs with non-integrated CAS Processors – this fault is either a timeout
attempting to launch or connect to the non-integrated component, or some other kind of
connection related exception (for instance, the network connection might timeout or get
reset).

2. The other kind happens when the CAS Processor component (an Annotator, for example)
throws any kind of exception. This kind may occur with any kind of deployment, integrated
or not.

The <errorHandling> has specifications for each of these kinds of faults. The format of this element
is:

<errorHandling>
 <maxConsecutiveRestarts action="continue|disable|terminate"
 value="[Number]"/>
 <errorRateThreshold action="continue|disable|terminate" value="[Rate]"/>
 <timeout max="[Number]"/>
</errorHandling>

The mandatory <maxConsecutiveRestarts> element applies only to faults of the first kind,
and therefore, only applies to non-integrated deployments. If such a fault occurs, a retry is
attempted, up to value="[Number]" of times. This retry resets the connection (if one was
made) and attempts to reconnect and perhaps re-launch (see below for details). The original CAS
(not a partially updated one) is sent to the CAS Processor as part of the retry, once the deployed
component has been successfully restarted or reconnected to.

The action attribute specifies the action to take when the threshold specified by the
value="[Number]" is exceeded. The possible actions are:

continue
skip any further processing for this CAS by this CAS Processor, and pass the CAS to the next
CAS Processor in the Pipeline.

The “restart” action is done, because it is needed for the next CAS.

If the dropCasOnException="true", the CPM will NOT pass the CAS to the next CAS
Processor in the chain. Instead, the CPM will abort processing of this CAS, release the CAS
back to the CAS Pool and will process the next CAS in the queue.

The counter counting the restarts toward the threshold is only reset after a CAS is successfully
processed.

disable
the current CAS is handled just as in the continue case, but in addition, the CAS Processor is
marked so that its process() method will not be called again (i.e., it will be “skipped” for future
CASes)

terminate
the CPM will terminate all processing and exit.

The definition of an error for the <maxConsecutiveRestarts> element differs slightly for each
of the three CAS Processor deployment modes:

Specifying an Individual CAS Processor

48 CPE Descriptor Reference UIMA Version 2.6.0

local
Local CAS Processors experience two general error types:

• launch errors – errors associated with launching a process

• processing errors – errors associated with sending Vinci commands to the process

A launch error is defined by a failure of the process to successfully register with the local
VNS within a default time window. The current timeout is 15 minutes. Multiple local CAS
Processors are launched sequentially, with a subsequent processor launched immediately after
its previous processor successfully registers with the VNS.

A processing error is detected if a connection to the CAS Processor is lost or if the processing
time exceeds a specified timeout value.

For local CAS Processors, the <maxConsecutiveRestarts> element specifies the number of
consecutive attempts made to launch the CAS Processor at CPM startup or after the CPM has
lost a connection to the CAS Processor.

remote
For remote CAS Processors, the <maxConsecutiveRestarts> element applies to errors from
sending Vinci commands. An error is detected if a connection to the CAS Processor is lost,
or if the processing time exceeds the timeout value specified in the <timeout> element (see
below).

integrated
Although mandatory, the <maxConsecutiveRestarts> element is NOT used for integrated CAS
Processors, because Integrated CAS Processors are not re-instantiated/restarted on exceptions.
This setting is ignored by the CPM for Integrated CAS Processors but it is required. Future
version of the CPM will make this element mandatory for remote and local CAS Processors
only.

The mandatory <errorRateThreshold> element is used for all faults – both those above, and
exceptions thrown by the CAS Processor itself. It specifies the number of retries for exceptions
thrown by the CAS Processor itself, a maximum error rate, and the corresponding action to take
when this rate is exceeded. The value attribute specifies the error rate in terms of errors per
sample size in the form “N/M”, where N is the number of errors and M is the sample size, defined in
terms of the number of documents.

The first number is used also to indicate the maximum number of retries. If this number is less than
the <maxConsecutiveRestarts value="[Number]">, it will override, reducing the number
of “restarts” attempted. A retry is done only if the dropCasOnException is false. If it is set to
true, no retry occurs, but the error is counted.

When the number of counted errors exceeds the sample size, an action specified by the action
attribute is taken. The possible actions and their meaning are the same as described above for the
<maxConsecutiveRestarts> element:

• continue
• disable
• terminate

The dropCasOnException="true" attribute of the <casProcessors> element modifies the
action taken for continue and disable, in the same manner as above. For example:

<errorRateThreshold value="3/1000" action="disable"/>

CPE Operational Parameters

UIMA Version 2.6.0 CPE Descriptor Reference 49

specifies that each error thrown by the CAS Processor itself will be retried up to 3 times (if
dropCasOnException is false) and the CAS Processor will be disabled if the error rate exceeds 3
errors in 1000 documents.

If a document causes an error and the error rate threshold for the CAS Processor is not exceeded,
the CPM increments the CAS Processor's error count and retries processing that document (if
dropCasOnException is false). The retry means that the CPM calls the CAS Processor's
process() method again, passing in as an argument the same CAS that previously caused an
exception.

Note: The CPM does not attempt to rollback any partial changes that may have been
applied to the CAS in the previous process() call.

Errors are accumulated across documents. For example, assume the error rate threshold is 3/1000.
The same document may fail three times before finally succeeding on the fourth try, but the error
count is now 3. If one more error occurs within the current sample of 1000 documents, the error
rate threshold will be exceeded and the specified action will be taken. If no more errors occur
within the current sample, the error counter is reset to 0 for the next sample of 1000 documents.

The <timeout> element is a mandatory element. Although mandatory for all CAS Processors, this
element is only relevant for local and remote CAS Processors. For integrated CAS Processors, this
element is ignored. In the current CPM implementation the integrated CAS Processor process()
method is not subject to timeouts.

The max attribute specifies the maximum amount of time in milliseconds the CPM will wait for a
process() method to complete When exceeded, the CPM will generate an exception and will treat
this as an error subject to the threshold defined in the <errorRateThreshold> element above,
including doing retries.

Retry action taken on a timeout

The action taken depends on whether the CAS Processor is local (managed) or remote
(unmanaged). Local CAS Processors (which are services) are killed and restarted, and a new
connection to them is established. For remote CAS Processors, the connection to them is dropped,
and a new connection is reestablished (which may actually connect to a different instance of the
remote services, if it has multiple instances).

3.6.1.8. <checkpoint> Element

The <checkpoint> element is an optional element used to improve the performance of CAS
Consumers. It has a single attribute, batch, which specifies the number of CASes in a batch, e.g.:

<checkpoint batch="1000">

sets the batch size to 1000 CASes. The batch size is the interval used to mark a point in processing
requiring special handling. The CAS Processor's batchProcessComplete() method will be
called by the CPM when this mark is reached so that the processor can take appropriate action.
This mark could be used as a mechanism to buffer up results in CAS Consumers and perform time-
consuming operations, such as check-pointing, that should not be done on a per-document basis.

3.7. CPE Operational Parameters
The parameters for configuring the overall CPE and CPM are specified in the <cpeConfig>
section. The overall format of this section is:

CPE Operational Parameters

50 CPE Descriptor Reference UIMA Version 2.6.0

<cpeConfig>
 <startAt>[NumberOrID]</startAt>

 <numToProcess>[Number]</numToProcess>

 <outputQueue dequeueTimeout="[Number]" queueClass="[ClassName]" />

 <checkpoint file="[File]" time="[Number]" batch="[Number]"/>

 <timerImpl>[ClassName]</timerImpl>

 <deployAs>vinciService|interactive|immediate|single-threaded
 </deployAs>

</cpeConfig>

This section of the CPE descriptor allows for defining the starting entity, the number of entities
to process, a checkpoint file and frequency, a pluggable timer, an optional output queue
implementation, and finally a mode of operation. The mode of operation determines how the CPM
interacts with users and other systems.

The <startAt> element is an optional argument. It defines the starting entity in the collection at
which the CPM should start processing.

The implementation in the CPM passes this argument to the Collection Reader as the value of the
parameter “startNumber”. The CPM does not do anything else with this parameter; in particular,
the CPM has no ability to skip to a specific document - that function, if available, is only provided
by a particular Collection Reader implementation.

If the <startAt> element is used, the Collection Reader descriptor must define a single-valued
configuration parameter with the name startNumber. It can declare this value to be of any type;
the value passed in this XML element must be convertible to that type.

A typical use is to declare this to be an integer type, and to pass the sequential document number
where processing should start. An alternative implementation might take a specific document ID;
the collection reader could search through its collection until it reaches this ID and then start there.

This parameter will only make sense if the particular collection reader is implemented to use the
startNumber configuration parameter.

The <numToProcess> element is an optional element. It specifies the total number of entities
to process. Use -1 to indicate ALL. If not defined, the number of entities to process will be taken
from the Collection Reader configuration. If present, this value overrides the Collection Reader
configuration.

The <outputQueue> element is an optional element. It enables plugging in a custom
implementation for the Output Queue. When omitted, the CPM will use a default output queue that
is based on First-in First-out (FIFO) model.

The UIMA SDK provides a second implementation for the Output Queue that can be plugged in to
the CPM, named “ org.apache.uima.collection.impl.cpm.engine.SequencedQueue ”.

This implementation supports handling very large documents that are split into “chunks”;
it provides a delivery mechanism that insures the sequential order of the chunks using
information carried in the CAS metadata. This metadata, which is required for this
implementation to work correctly, must be added as an instance of a Feature Structure of type
org.apache.es.tt.DocumentMetaData and referred to by an additional feature named

CPE Operational Parameters

UIMA Version 2.6.0 CPE Descriptor Reference 51

esDocumentMetaData in the special instance of uima.tcas.DocumentAnnotation that is
associated with the CAS. This is usually done by the Collection Reader; the instance contains the
following features:

sequenceNumber
[Number] the sequential number of a chunk, starting at 1. If not a chunk (i.e. complete
document), the value should be 0.

documentId
[Number] current document id. Chunks belonging to the same document have identical
document id.

isCompleted
[Number] 1 if the chunk is the last in a sequence, 0 otherwise.

url
[String] document url.

throttleID
[String] special attribute currently used by OmniFind.

This implementation of a sequenced queue supports proper sequencing of CASes in CPM
deployments that use document chunking. Chunking is a technique of splitting large documents
into pieces to reduce overall memory consumption. Chunking does not depend on the number of
CASes in the CAS Pool. It works equally well with one or more CASes in the CAS Pool. Each
chunk is packaged in a separate CAS and placed in the Work Queue. If the CAS Pool is depleted,
the CollectionReader thread is suspended until a CAS is released back to the pool by the processing
threads. A document may be split into 1, 2, 3 or more chunks that are analyzed independently.
In order to reconstruct the document correctly, the CAS Consumer can depend on receiving
the chunks in the same sequential order that the chunks were “produced”, when this sequenced
queue implementation is used. To plug in this sequenced queue to the CPM use the following
specification:

<outputQueue dequeueTimeout="100000" queueClass=
"org.apache.uima.collection.impl.cpm.engine.SequencedQueue"/>

where the mandatory queueClass attribute defines the name of the class and the second
mandatory attribute, dequeueTimeout specifies the maximum number of milliseconds to wait for
the expected chunk.

Note: The value for this timeout must be carefully determined to avoid excessive
occurrences of timeouts. Typically, the size of a chunk and the type of analysis being done
are the most important factors when deciding on the value for the timeout. The larger
the chunk and the more complicated analysis, the more time it takes for the chunk to go
from source to sink. You may specify 0, in which case, the timeout is disabled - i.e., it is
equivalent to an infinitely long timeout.

If the chunk doesn't arrive in the configured time window, the entire document is presumed to be
invalid and the CAS is dropped from further processing. This action occurs regardless of any other
error action specification. The SequencedQueue invalidate the document, adding the offending
document's metadata to a local cache of invalid documents.

If the time out occurs, the CPM notifies all registered listeners (see UIMA Tutorial and Developers'
Guides Section 2.3.1, “Using Listeners”) by calling entityProcessComplete(). As part of this call,
the SequencedQueue will pass null instead of a CAS as the first argument, and a special exception

CPE Operational Parameters

52 CPE Descriptor Reference UIMA Version 2.6.0

– CPMChunkTimeoutException. The reason for passing null as the first argument is because the
time out occurs due to the fact that the chunk has not been received in the configured timeout
window, so there is no CAS available when the timeout event occurs.

The CPMChunkTimeoutException object includes an API that allows the listener to retrieve the
offending document id as well as the other metadata attributes as defined above. These attributes
are part of each chunk's metadata and are added by the Collection Reader.

Each chunk that SequencedQueue works on is subjected to a test to determine if the chunk belongs
to an invalid document. This test checks the chunk's metadata against the data in the local cache.
If there is a match, the chunk is dropped. This check is only performed for chunks and complete
documents are not subject to this check.

If there is an exception during the processing of a chunk, the CPM sends a notification to all
registered listeners. The notification includes the CAS and an exception. When the listener
notification is completed, the CPM also sends separate notifications, containing the CAS, to the
Artifact Producer and the SequencedQueue. The intent is to stop adding new chunks to the Work
Queue that belong to an “invalid” document and also to deal with chunks that are en-route, being
processed by the processing threads.

In response to the notification, the Artifact Producer will drop and release back to the CAS
Pool all CASes that belong to an “invalid” document. Currently, there is no support in the
CollectionReader's API to tell it to stop generating chunks. The CollectionReader keeps producing
the chunks but the Artifact Producer immediately drops/releases them to the CAS Pool. Before the
CAS is released back to the CAS Pool, the Artifact Producer sends notification to all registered
listeners. This notification includes the CAS and an exception – SkipCasException.

In response to the notification of an exception involving a chunk, the SequencedQueue retrieves
from the CAS the metadata and adds it to its local cache of “invalid” documents. All chunks de-
queued from the OutputQueue and belonging to “invalid” documents will be dropped and released
back to the CAS Pool. Before dropping the CAS, the CPM sends notification to all registered
listeners. The notification includes the CAS and SkipCasException.

The <checkpoint> element is an optional element. It specifies a CPE checkpoint file, checkpoint
frequency, and strategy for checkpoints (time or count based). At checkpoint time, the CPM saves
status information and statistics to the checkpoint file. The checkpoint file is specified in the file
attribute, which has the same form as the href attribute of the <include> element described in
Section 3.3, “Imports” [39]. The time attribute indicates that a checkpoint should be taken
every [Number] seconds, and the batch attribute indicates that a checkpoint should be taken
every [Number] batches.

The <timerImpl> element is optional. It is used to identify a custom timer plug-in class to
generate time stamps during the CPM execution. The value of the element is a Java class name.

The <deployAs> element indicates the type of CPM deployment. Valid contents for this element
include:

vinciService
Vinci service exposing APIs for stop, pause, resume, and getStats

interactive
provide command line menus (start, stop, pause, resume)

immediate
run the CPM without menus or a service API

Resource Manager Configuration

UIMA Version 2.6.0 CPE Descriptor Reference 53

single-threaded
run the CPM in a single threaded mode. In this mode, the Collection Reader, the Processing
Pipeline, and the CAS Consumer Pipeline are all running in one thread without the work queue
and the output queue.

3.8. Resource Manager Configuration
External resource bindings for the CPE may optionally be specified in an element:

<resourceManagerConfiguration href="..."/>

For an introduction to external resources, refer to UIMA Tutorial and Developers' Guides
Section 1.5.4, “Accessing External Resources”.

In the resourceManagerConfiguration element, the value of the href attribute refers to
another file that contains definitions and bindings for the external resources used by the CPE. The
format of this file is the same as the XML snippet Section 2.4.2.4, “External Resource Bindings”
. For example, in a CPE containing an aggregate analysis engine with two annotators, and a
CAS Consumer, the following resource manager configuration file would bind external resource
dependencies in all three components to the same physical resource:

<resourceManagerConfiguration>

 <!-- Declare Resource -->

 <externalResources>
 <externalResource>
 <name>ExampleResource</name>
 <fileResourceSpecifier>
 <fileUrl>file:MyResourceFile.dat</fileUrl>
 </fileResourceSpecifier>
 </externalResource>
 </externalResources>

 <!-- Bind component resource dependencies to ExampleResource -->

 <externalResourceBindings>
 <externalResourceBinding>
 <key>MyAE/annotator1/myResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>MyAE/annotator2/someResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>MyCasConsumer/otherResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 </externalResourceBindings>

</resourceManagerConfiguration>

In this example, MyAE and MyCasConsumer are the names of the Analysis Engine and CAS
Consumer, as specified by the name attributes of the CPE's <casProcessor> elements.

Example CPE Descriptor

54 CPE Descriptor Reference UIMA Version 2.6.0

annotator1 and annotator2 are the annotator keys specified within the Aggregate AE
Descriptor, and myResourceKey, someResourceKey, and otherResourceKey are the keys of
the resource dependencies declared in the individual annotator and CAS Consumer descriptors.

3.9. Example CPE Descriptor
<?xml version="1.0" encoding="UTF-8"?>
<cpeDescription>
 <collectionReader>
 <collectionIterator>
 <descriptor>
 <import location=
 "../collection_reader/FileSystemCollectionReader.xml"/>
 </descriptor>
 </collectionIterator>
 </collectionReader>
 <casProcessors dropCasOnException="true" casPoolSize="1"
 processingUnitThreadCount="1">
 <casProcessor deployment="integrated"
 name="Aggregate TAE - Name Recognizer and Person Title Annotator">
 <descriptor>
 <import location=
 "../analysis_engine/NamesAndPersonTitles_TAE.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="1"/>
 </casProcessor>
 <casProcessor deployment="integrated" name="Annotation Printer">
 <descriptor>
 <import location="../cas_consumer/AnnotationPrinter.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="1"/>
 </casProcessor>
 </casProcessors>
 <cpeConfig>
 <numToProcess>1</numToProcess>
 <deployAs>immediate</deployAs>
 <checkpoint file="" time="3000"/>
 <timerImpl/>
 </cpeConfig>
</cpeDescription>

CAS Reference 55

Chapter 4. CAS Reference
The CAS (Common Analysis System) is the part of the Unstructured Information Management
Architecture (UIMA) that is concerned with creating and handling the data that annotators
manipulate.

Java users typically use the JCas (Java interface to the CAS) when manipulating objects in the
CAS. This chapter describes an alternative interface to the CAS which allows discovery and
specification of types and features at run time. It is recommended for use when the using code
cannot know ahead of time the type system it will be dealing with.

Use of the CAS as described here is also recommended (or necessary) when components add to the
definitions of types of other components. This UIMA feature allows users to add features to a type
that was already defined elsewhere. When this feature is used in conjunction with the JCas, it can
lead to problems with class loading. This is because different JCas representations of a single type
are generated by the different components, and only one of them is loaded (unless you are using
Pear descriptors). Note: we do not recommend that you add features to pre-existing types. A type
should be defined in one place only, and then there is no problem with using the JCas. However,
if you do use this feature, do not use the JCas. Similarly, if you distribute your components for
inclusion in somebody else's UIMA application, and you're not sure that they won't add features to
your types, do not use the JCas for the same reasons.

CASes passed to Annotator Components are either a base CAS or a regular CAS. Base CASes
are only passed to Multi-View components - they are like regular CASes, but do not have user
accessible indexes or Sofas. They are used by the component only for switching to other CAS
views, which are regular CASes.

4.1. Javadocs
The subdirectory docs/api contains the documentation details of all the classes, methods, and
constants for the APIs discussed here. Please refer to this for details on the methods, classes and
constants, specifically in the packages org.apache.uima.cas.*.

4.2. CAS Overview
There are three1 main parts to the CAS: the type system, data creation and manipulation, and
indexing. We will start with a brief description of these components.

4.2.1. The Type System
The type system specifies what kind of data you will be able to manipulate in your annotators.
The type system defines two kinds of entities, types and features. Types are arranged in a single
inheritance tree and define the kinds of entities (objects) you can manipulate in the CAS. Features
optionally specify slots or fields within a type. The correspondence to Java is to equate a CAS Type
to a Java Class, and the CAS Features to fields within the type. A critical difference is that CAS
types have no methods; they are just data structures with named slots (features). These features can
have as values primitive things like integers, floating point numbers, and strings, and they also can
hold references to other instances of objects in the CAS. We call instances of the data structures
declared by the type system “feature structures” (not to be confused with “features”). Feature
structures are similar to the many variants of record structures found in computer science.2

1A fourth part, the Subject of Analysis, is discussed in UIMA Tutorial and Developers' Guides Chapter 5, Annotations, Artifacts, and Sofas.
2 The name “feature structure” comes from terminology used in linguistics.

Creating/Accessing/Changing data

56 CAS Reference UIMA Version 2.6.0

Each CAS Type defines a supertype; it is a subtype of that supertype. This means that any features
that the supertype defines are features of the subtype; in other words, it inherits its supertype's
features. Only single inheritance is supported; a type's feature set is the union of all of the features
in its supertype hierarchy. There is a built-in type called uima.cas.TOP; this is the top, root node of
the inheritance tree. It defines no features.

The values that can be stored in features are either built-in primitive values or references to other
feature structures. The primitive values are boolean, byte, short (16 bit integers), integer
(32 bit), long (64 bit), float (32 bit), double (64 bit floats) and strings; the official names of
these are uima.cas.Boolean, uima.cas.Byte, uima.cas.Short, uima.cas.Integer,
uima.cas.Long, uima.cas.Float , uima.cas.Double and uima.cas.String . The strings
are Java strings, and characters are Java characters. Technically, this means that characters are
UTF-16 code points, which is not quite the same as a Unicode character. This distinction should
make no difference for almost all applications. The CAS also defines other basic built-in types
for arrays of these, plus arrays of references to other objects, called uima.cas.IntegerArray ,
uima.cas.FloatArray, uima.cas.StringArray, uima.cas.FSArray, etc.

The CAS also defines a built-in type called uima.tcas.Annotation which inherits from
uima.cas.AnnotationBase which in turn inherits from uima.cas.TOP. There are two features
defined by this type, called begin and end, both of which are integer valued.

4.2.2. Creating, accessing and manipulating data

Creating and accessing data in the CAS requires knowledge about the types and features defined
in the type system. The idea is similar to other data access APIs, such as the XML DOM or SAX
APIs, or database access APIs such as JDBC. Contrary to those APIs, however, the CAS does not
use the names of type system entities directly in the APIs. Rather, you use the type system to access
type and feature entities by name, then use these entities in the data manipulation APIs. This can be
compared to the Java reflection APIs: the type system is comparable to the Java class loader, and
the type and feature objects to the java.lang.Class and java.lang.reflect.Field classes.

Why does it have to be this complicated? You wouldn't normally use reflection to create a Java
object, either. As mentioned earlier, the JCas provides the more straightforward method to
manipulate CAS data. The CAS access methods described here need only be used for generic types
of applications that need to be able to handle any kind of data (e.g., generic tooling) or when the
JCas may not be used for other reasons. The generic kinds of applications are exactly the ones
where you would use the reflection API in Java as well.

4.2.3. Creating and using indexes

Each view of a CAS provides a set of indexes for that view. Instances of feature structures
can be added to a view's indexes. These indexes provide the only way for other annotators
to locate existing data in the CAS. The only way for an annotator to use data that another
annotator has created is by using an index (or the method getAllIndexedFS of the object
FSIndexRepository) to retrieve feature structures the first annotator created. If you want the
data you create to be visible to other annotators, you must explicitly call methods which add it to
the indexes — you must index it.

Indexes are named and are associated with a CAS Type; they are used to index instances of that
CAS type (including instances of that type's subtypes). If you are using multiple views (see UIMA
Tutorial and Developers' Guides Chapter 6, Multiple CAS Views of an Artifact), each view contains
a separate instantiation of all of the indexes. To access an index, you minimally need to know its
name. A CAS view provides an index repository which you can query for indexes for that view.

Built-in CAS Types

UIMA Version 2.6.0 CAS Reference 57

Once you have a handle to an index, you can get information about the feature structures in the
index, the size of the index, as well as an iterator over the feature structures.

Indexes are defined in the XML descriptor metadata for the application. Each CAS View has
its own, separate instantiation of indexes based on these definitions, kept in the view's index
repository. When you obtain an index, it is always from a particular CAS view. When you index an
item, it is always added to all indexes where it belongs, within just one repository. You can specify
different repositories (associated with different CAS views) to use; a given Feature Structure
instance may be indexed in more than one CAS View.

Iterators allow you to enumerate the feature structures in an index. FS iterators provide two
kinds of APIs: the regular Java iterator API, and a specific FS iterator API where the usual
Java iterator APIs (hasNext() and next()) are replaced by isValid(), moveToNext()
(which does not return an element) and get(). Which API style you use is up to you, but we
do not recommend mixing the styles as the results are sometimes unexpected. If you just want
to iterate over an index from start to finish, either style is equally appropriate. If you also use
moveTo(FeatureStructure fs) and moveToPrevious(), it is better to use the special FS
iterator style.

Note: The reason to not mix these styles is that you might be thinking that next() followed
by moveToPrevious() would always work. This is not true, because next() returns the
"current" element, and advances to the next position, which might be beyond the last
element. At that point, the interator becomes "invalid", and by the iterator contracts,
moveToNext and moveToPrevious are not allowed on "invalid" iterators; when an
iterator is not valid, all bets are off. But you can call these methods on the iterator —
moveToFirst(), moveToLast(), or moveTo(FS) — to reset it.

Indexes are created by specifying them in the annotator's or aggregate's resource descriptor. An
index specification includes its name, the CAS type being indexed, the kind of index it is, and
an (optional) ordering relation on the feature structures to be indexed. At startup time, all index
specifications are combined; duplicate definitions (having the same name) are allowed only if their
definitions are the same.

Feature structure instances need to be explicitly added to the index repository by a method call.
Feature structures that are not indexed will not be visible to other annotators, (unless they are
located via being referenced by some other feature of another feature structure, which is indexed, or
through a chain of these).

The framework defines an unnamed bag index which indexes all types. The only access provided
for this index is the getAllIndexedFS(type) method on the index repository, which returns an
iterator over all indexed instances of the specified type (including its subtypes) for that CAS View.

The framework defines one standard, built-in annotation index, called AnnotationIndex,
which indexes the uima.tcas.Annotation type: all feature structures of type
uima.tcas.Annotation or its subtypes are automatically indexed with this built-in index.

The ordering relation used by this index is to first order by the value of the “begin” features (in
ascending order) and then by the value of the “end” feature (in descending order). This ordering
insures that longer annotations starting at the same spot come before shorter ones. For Subjects of
Analysis other than Text, this may not be an appropriate index.

4.3. Built-in CAS Types
The CAS has two kinds of built-in types – primitive and non-primitive. The primitive types are:

• uima.cas.Boolean

Built-in CAS Types

58 CAS Reference UIMA Version 2.6.0

• uima.cas.Byte
• uima.cas.Short
• uima.cas.Integer
• uima.cas.Long
• uima.cas.Float
• uima.cas.Double
• uima.cas.String

The Byte, Short, Integer, and Long are all signed integer types, of length 8, 16, 32, and 64
bits. The Double type is 64 bit floating point. The String type can be subtyped to create sets of
allowed values; see Section 2.3.4, “String Subtypes”. These types can be used to specify the range
of a String-valued feature. They act like Strings, but have additional checking to insure the setting
of values into them conforms to one of the allowed values, or to null (which is the value if it is not
set). Note that the other primitive types cannot be used as a supertype for another type definition;
only uima.cas.String can be sub-typed.

The non-primitive types exist in a type hierarchy; the top of the hierarchy is the type
uima.cas.TOP. All other non-primitive types inherit from some supertype.

There are 9 built-in array types. These arrays have a size specified when they are created; the size is
fixed at creation time. They are named:

• uima.cas.BooleanArray
• uima.cas.ByteArray
• uima.cas.ShortArray
• uima.cas.IntegerArray
• uima.cas.LongArray
• uima.cas.FloatArray
• uima.cas.DoubleArray
• uima.cas.StringArray
• uima.cas.FSArray

The uima.cas.FSArray type is an array whose elements are arbitrary other feature structures
(instances of non-primitive types).

There are 3 built-in types associated with the artifact being analyzed:
• uima.cas.AnnotationBase
• uima.tcas.Annotation
• uima.tcas.DocumentAnnotation

The AnnotationBase type defines one system-used feature which specifies for an annotation the
subject of analysis (Sofa) to which it refers. The Annotation type extends from this and defines 2
features, taking uima.cas.Integer values, called begin and end. The begin feature typically
identifies the start of a span of text the annotation covers; the end feature identifies the end. The
values refer to character offsets; the starting index is 0. An annotation of the word “CAS” in a text
“CAS Reference” would have a start index of 0, and an end index of 3; the difference between end
and start is the length of the span the annotation refers to.

Annotations are always with respect to some Sofa (Subject of Analysis – see UIMA Tutorial and
Developers' Guides Chapter 5, Annotations, Artifacts, and Sofas .

Note: Artifacts which are not text strings may have a different interpretation of the
meaning of begin and end, or may define their own kind of annotation, extending from
AnnotationBase.

The DocumentAnnotation type has one special instance. It is a subtype of the Annotation type,
and the built-in definition defines one feature, language, which is a string indicating the language

Accessing the type system

UIMA Version 2.6.0 CAS Reference 59

of the document in the CAS. The value of this language feature is used by the system to control
flow among annotators when the “CapabilityLanguageFlow” mode is used, allowing the flow to
skip over annotators that don't process particular languages. Users may extend this type by adding
additional features to it, using the XML Descriptor element for defining a type.

Note: We do not recommend extending the DocumentAnnotation type. If you do, you
must not use the JCas, for the reasons stated earlier.

Each CAS view has a different associated instance of the DocumentAnnotation type. On the
CAS, use getDocumentationAnnotation() to access the DocumentAnnotation.

There are also built-in types supporting linked lists, similar to the ones available in Java and other
programming languages. Their use is constrained by the usual properties of linked lists: not very
space efficient, no (efficient) random access, but an easy choice if you don't know how long your
list will be ahead of time. The implementation is type specific; there are different list building
objects for each of the primitive types, plus one for general feature structures. Here are the type
names:

• uima.cas.FloatList
• uima.cas.IntegerList
• uima.cas.StringList
• uima.cas.FSList

• uima.cas.EmptyFloatList
• uima.cas.EmptyIntegerList
• uima.cas.EmptyStringList
• uima.cas.EmptyFSList

• uima.cas.NonEmptyFloatList
• uima.cas.NonEmptyIntegerList
• uima.cas.NonEmptyStringList
• uima.cas.NonEmptyFSList

For the primitive types Float, Integer, String and FeatureStructure, there is a base type,
for instance, uima.cas.FloatList. For each of these, there are two subtypes, corresponding to
a non-empty element, and a marker that serves to indicate the end of the list, or an empty list. The
non-empty types define two features – head and tail. The head feature holds the particular value
for that part of the list. The tail refers to the next list object (either a non-empty one or the empty
version to indicate the end of the list).

There are no other built-in types. Users are free to define their own type systems, building upon
these types.

4.4. Accessing the type system
During annotator processing, or outside an annotator, access the type system by calling
CAS.getTypeSystem().

However, CAS annotators implement an additional method, typeSystemInit(), which is called
by the UIMA framework before the annotator's process method. This method, implemented by the
annotator writer, is passed a reference to the CAS's type system metadata. The method typically
uses the type system APIs to obtain type and feature objects corresponding to all the types and
features the annotator will be using in its process method. This initialization step should not be
done during an annotator's initialize method since the type system can change after the initialize
method is called; it should not be done during the process method, since this is presumably work

TypeSystemPrinter example

60 CAS Reference UIMA Version 2.6.0

that is identical for each incoming document, and so should be performed only when the type
system changes (which will be a rare event). The UIMA framework guarantees it will call the
typeSystemInit method of an annotator whenever the type system changes, before calling the
annotator's process() method.

The initialization done by typeSystemInit() is done by the UIMA framework when you use the
JCas APIs; you only need to provide a typeSystemInit() method, as described here, when you
are not using the JCas approach.

4.4.1. TypeSystemPrinter example
Here is a code fragment that, given a CAS Type System, will print a list of all types.

// Get all type names from the type system
// and print them to stdout.
private void listTypes1(TypeSystem ts) {
 // Get an iterator over types
 Iterator typeIterator = ts.getTypeIterator();
 Type t;
 System.out.println("Types in the type system:");
 while (typeIterator.hasNext()) {
 // Retrieve a type...
 t = (Type) typeIterator.next();
 // ...and print its name.
 System.out.println(t.getName());
 }
 System.out.println();
}

This method is passed the type system as a parameter. From the type system, we can get an iterator
over all known types. If you run this against a CAS created with no additional user-defined types,
we should see something like this on the console:

Types in the type system:
uima.cas.Boolean
uima.cas.Byte
uima.cas.Short
uima.cas.Integer
uima.cas.Long
uima.cas.ArrayBase
...

If the type system had user-defined types these would show up too. Note that some of these
types are not directly creatable – they are types used by the framework in the type hierarchy (e.g.
uima.cas.ArrayBase).

CAS type names include a name-space prefix. The components of a type name are separated by the
dot (.). A type name component must start with a Unicode letter, followed by an arbitrary sequence
of letters, digits and the underscore (_). By convention, the last component of a type name starts
with an uppercase letter, the rest start with a lowercase letter.

Listing the type names is mildly useful, but it would be even better if we could see the inheritance
relation between the types. The following code prints the inheritance tree in indented format.

private static final int INDENT = 2;
private void listTypes2(TypeSystem ts) {

Using CAS APIs: Feature Structures

UIMA Version 2.6.0 CAS Reference 61

 // Get the root of the inheritance tree.
 Type top = ts.getTopType();
 // Recursively print the tree.
 printInheritanceTree(ts, top, 0);
}

private void printInheritanceTree(TypeSystem ts, Type type, int level) {
 indent(level); // Print indentation.
 System.out.println(type.getName());
 // Get a vector of the immediate subtypes.
 Vector subTypes =
 ts.getDirectlySubsumedTypes(type);
 ++level; // Increase the indentation level.
 for (int i = 0; i < subTypes.size(); i++) {
 // Print the subtypes.
 printInheritanceTree(ts, (Type) subTypes.get(i), level);
 }
}

// A simple, inefficient indenter
private void indent(int level) {
 int spaces = level * INDENT;
 for (int i = 0; i < spaces; i++) {
 System.out.print(" ");
 }
}

This example shows that you can traverse the type hierarchy by starting
at the top with TypeSystem.getTopType and by retrieving subtypes with
TypeSystem.getDirectlySubsumedTypes().

The Javadocs also have APIs that allow you to access the features, as well as what the allowed
value type is for that feature. Here is sample code which prints out all the features of all the types,
together with the allowed value types (the feature “range”). Each feature has a “domain” which is
the type where it is defined, as well as a “range”.

private void listFeatures2(TypeSystem ts) {
 Iterator featureIterator = ts.getFeatures();
 Feature f;
 System.out.println("Features in the type system:");
 while (featureIterator.hasNext()) {
 f = (Feature) featureIterator.next();
 System.out.println(
 f.getShortName() + ": " +
 f.getDomain() + " -> " + f.getRange());
 }
 System.out.println();
}

We can ask a feature object for its domain (the type it is defined on) and its range (the type of
the value of the feature). The terminology derives from the fact that features can be viewed as
functions on subspaces of the object space.

4.4.2. Using the CAS APIs to create and modify feature
structures

Assume a type system declaration that defines two types: Entity and Person. Entity has no features
defined within it but inherits from uima.tcas.Annotation – so it has the begin and end features.

Using CAS APIs: Feature Structures

62 CAS Reference UIMA Version 2.6.0

Person is, in turn, a subtype of Entity, and adds firstName and lastName features. CAS type
systems are declaratively specified using XML; the format of this XML is described in Section 2.3,
“Type System Descriptors”.

<!-- Type System Definition -->
<typeSystemDescription>
 <types>
 <typeDescription>
 <name>com.xyz.proj.Entity</name>
 <description />
 <supertypeName>uima.tcas.Annotation</supertypeName>
 </typeDescription>
 <typeDescription>
 <name>Person</name>
 <description />
 <supertypeName>com.xyz.proj.Entity </supertypeName>
 <features>
 <featureDescription>
 <name>firstName</name>
 <description />
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 <featureDescription>
 <name>lastName</name>
 <description />
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 </features>
 </typeDescription>
 </types>
</typeSystemDescription>

To be able to access types and features, we need to know their names. The CAS interface defines
constants that hold the names of built-in feature names, such as, e.g., CAS.TYPE_NAME_INTEGER.
It is good programming practice to create such constants for the types and features you define, for
your own use as well as for others who will be using your annotators.

/** Entity type name constant. */
public static final String ENTITY_TYPE_NAME = "com.xyz.proj.Entity";

/** Person type name constant. */
public static final String PERSON_TYPE_NAME = "com. xyz.proj.Person";

/** First name feature name constant. */
public static final String FIRST_NAME_FEAT_NAME = "firstName";

/** Last name feature name constant. */
public static final String LAST_NAME_FEAT_NAME = "lastName";

Next we define type and feature member variables; these will hold the values of the type and
feature objects needed by the CAS APIs, to be assigned during typeSystemInit().

// Type system object variables
private Type entityType;
private Type personType;
private Feature firstNameFeature;
private Feature lastNameFeature;
private Type stringType;

Creating feature structures

UIMA Version 2.6.0 CAS Reference 63

The type system does not throw an exception if we ask for something that is not known, it simply
returns null; therefore the code checks for this and throws a proper exception. We require all these
types and features to be defined for the annotator to work. One might imagine situations where
certain computations are predicated on some type or feature being defined in the type system, but
that is not the case here.

// Get a type object corresponding to a name.
// If it doesn't exist, throw an exception.
private Type initType(String typeName)
 throws AnnotatorInitializationException {
 Type type = ts.getType(typeName);
 if (type == null) {
 throw new AnnotatorInitializationException(
 AnnotatorInitializationException.TYPE_NOT_FOUND,
 new Object[] { this.getClass().getName(), typeName });
 }
 return type;
}

// We add similar code for retrieving feature objects.
// Get a feature object from a name and a type object.
// If it doesn't exist, throw an exception.
private Feature initFeature(String featName, Type type)
 throws AnnotatorInitializationException {
 Feature feat = type.getFeatureByBaseName(featName);
 if (feat == null) {
 throw new AnnotatorInitializationException(
 AnnotatorInitializationException.FEATURE_NOT_FOUND,
 new Object[] { this.getClass().getName(), featName });
 }
 return feat;
}

Using these two functions, code for initializing the type system described above would be:

public void typeSystemInit(TypeSystem aTypeSystem)
 throws AnalysisEngineProcessException {
 this.typeSystem = aTypeSystem;
 // Set type system member variables.
 this.entityType = initType(ENTITY_TYPE_NAME);
 this.personType = initType(PERSON_TYPE_NAME);
 this.firstNameFeature =
 initFeature(FIRST_NAME_FEAT_NAME, personType);
 this.lastNameFeature =
 initFeature(LAST_NAME_FEAT_NAME, personType);
 this.stringType = initType(CAS.TYPE_NAME_STRING);
}

Note that we initialize the string type by using a type name constant from the CAS.

4.5. Creating feature structures
To create feature structures in JCas, we use the Java “new” operator. In the CAS, we use
one of several different API methods on the CAS object, depending on which of the 10 basic
kinds of feature structures we are creating (a plain feature structure, or an instance of the built-
in primitive type arrays or FSArray). There are is also a method to create an instance of a
uima.tcas.Annotation, setting the begin and end values.

Accessing or modifying Features

64 CAS Reference UIMA Version 2.6.0

Once a feature structure is created, it needs to be added to the CAS indexes (unless it will be
accessed via some reference from another accessible feature structure). The CAS provides this API:
Assuming aCAS holds a reference to a CAS, and token holds a reference to a newly created feature
structure, here's the code to add that feature structure to all the relevant CAS indexes:

 // Add the token to the index repository.
 aCAS.addFsToIndexes(token);

There is also a corresponding removeFsFromIndexes(token) method on CAS objects.

Because some of the indexes (the Sorted and Set types) use comparators defined on particular
values of the features of an indexed type, if you change the values of those features being used in
the index key, the correct way to do this is to

1. remove the item from all indexes where it is indexed, in all views where it is indexed,
2. update the value of the features being used as keys,
3. add the item back to the indexes, in all views.

As of version 2.4.1, there are two methods you can use on an index repository to efficiently bulk-
remove all instances of particular types of feature structures from a particular view. One of these,
aCas.getIndexRepository().removeAllIncludingSubtypes(aType) removes all
instances of a particular type, including instances which are subtypes of the specified type. The
other, aCas.getIndexRepository().removeAllExcludingSubtypes(aType) remove all
instances of a particular type, only. In both cases, the removal is done from the particular view of
the CAS referenced by aCas.

4.6. Accessing or modifying features of feature
structures

Values of individual features for a feature structure can be set or referenced, using a set of
methods that depend on the type of value that feature is declared to have. There are methods
on FeatureStructure for this: getBooleanValue, getByteValue, getShortValue, getIntValue,
getLongValue, getFloatValue, getDoubleValue, getStringValue, and getFeatureValue (which
means to get a value which in turn is a reference to a feature structure). There are corresponding
“setter” methods, as well. These methods on the feature structure object take as arguments the
feature object retrieved earlier in the typeSystemInit method.

Using the previous example, with the type system initialized with type personType and feature
lastNameFeature, here's a sample code fragment that gets and sets that feature:

// Assume aPerson is a variable holding an object of type Person
// get the lastNameFeature value from the feature structure
String lastName = aPerson.getStringValue(lastNameFeature);
// set the lastNameFeature value
aPerson.setStringValue(lastNameFeature, newStringValueForLastName);

The getters and setters for each of the primitive types are defined in the Javadocs as methods of the
FeatureStructure interface.

4.7. Indexes and Iterators
Each CAS can have many indexes associated with it; each CAS View contains a complete
set of instantions of the indexes. Each index is represented by an instance of the type

Built-in Indexes

UIMA Version 2.6.0 CAS Reference 65

org.apache.uima.cas.FSIndex. You use the object org.apache.uima.cas.FSIndexRepository,
accessible via a method on a CAS object, to retrieve instances of indexes. There are methods that
let you select the index by name, by type, or by both name and type. Since each index is already
associated with a type, passing both a name and a type is valid only if the type passed in is the same
type or a subtype of the one declared in the index specification for the named index. If you pass in a
subtype, the returned FSIndex object refers to an index that will return only items belonging to that
subtype (or subtypes of that subtype).

The returned FSIndex objects are used, in turn, to create iterators. There is also a method on the
Index Repository, getAllIndexedFS, which will return an iterator over all indexed Feature
Structures (for that CAS View), in no particular order. The iterators created can be used like
common Java iterators, to sequentially retrieve items indexed. If the index represents a sorted
index, the items are returned in a sorted order, where the sort order is specified in the XML index
definition. This XML is part of the Component Descriptor, see Section 2.4.1.5, “Index Definition”.

Feature structures should not be added to or removed from indexes while iterating over them; a
ConcurrentModificationException is thrown when this is detected. Certain operations are allowed
with the iterators after modification, which can “reset” this condition, such as moving to beginning,
end, or moving to a particular feature structure. So - if you have to modify the index, you can move
it back to the last FS you had retrieved from the iterator, and then continue, if that makes sense in
your application.

4.7.1. Built-in Indexes
An unnamed built-in bag index exists which holds all feature structures which are indexed. The
only access to this index is the method getAllIndexedFS(Type) which returns an iterator over all
indexed Feature Structures.

The CAS also contains a built-in index for the type uima.tcas.Annotation, which sorts
annotations in the order in which they appear in the document. Annotations are sorted first by
increasing begin position. Ties are then broken by decreasing end position (so that longer
annotations come first). Annotations that match in both their begin and end features are sorted
using the Type Priority (see Section 2.4.1.4, “Type Priority Definition”)

4.7.2. Adding Feature Structures to the Indexes
Feature Structures are added to the indexes by calling the
FSIndexRepository.addFS(FeatureStructure) method or the equivalent convenience
method CAS.addFsToIndexes(FeatureStructure). This adds the Feature Structure to all
indexes that are defined for the type of that FeatureStructure (or any of its supertypes). Note
that you should not add a Feature Structure to the indexes until you have set values for all of the
features that may be used as sort keys in an index.

4.7.3. Iterators
Iterators are objects of class org.apache.uima.cas.FSIterator. This class extends
java.util.Iterator and implements the normal Java iterator methods, plus additional ones that
allow moving both forwards and backwards.

4.7.4. Special iterators for Annotation types
The built-in index over the uima.tcas.Annotation type named “AnnotationIndex” has
additional capabilities. To use them, you first get a reference to this built-in index using either the

Constraints and Filtered iterators

66 CAS Reference UIMA Version 2.6.0

getAnnotationIndex method on a CAS View object, or by asking the FSIndexRepository
object for an index having the particular name “AnnotationIndex”, for example:

AnnotationIndex idx = aCAS.getAnnotationIndex();
// or you can iterate over a specific subtype of Annotation:
AnnotationIndex idx = aCAS.getAnnotationIndex(aType);

This object can be used to produce several additional kinds of iterators. It can produce
unambiguous iterators; these skip over elements until it finds one where the start position of the
next annotation is equal to or greater than the end position of the previously returned annotation.

It can also produce several kinds of subiterators; these are iterators whose annotations fall within
the span of another annotation. This kind of iterator can also have the unambiguous property, if
desired. It also can be “strict” or not; strict means that the returned annotation lies completely
within the span of the controlling annotation. Non-strict only implies that the beginning of the
returned annotation falls within the span of the controlling annotation.

There is also a method which produces an AnnotationTree object, which contains nodes
representing the results of doing a strict, unambiguous subiterator over the span of some controlling
annotation. For more details, please refer to the Javadocs for the org.apache.uima.cas.text
package.

4.7.5. Constraints and Filtered iterators
There is a set of API calls that build constraint objects. These objects can be used directly to test
if a particular feature structure matches (satisfies) the constraint, or they can be passed to the
createFilteredIterator method to create an iterator that skips over instances which fail to satisfy the
constraint.

It is possible to specify a feature value located by following a chain of references starting from the
feature structure being tested. Here's a scenario to explore this concept. Let's suppose you have the
following type system (namespaces are omitted for clarity):

Token, having a feature PartOfSpeech which holds a reference to another type
(POS)

POS (a type with many subtypes, each representing a different part of speech)

Noun (a subtype of POS)

ProperName (a subtype of Noun), having a feature Class which holds an integer
value encoding some information about the proper noun.

If you want to filter Token instances, such that only those tokens get through which are proper
names of class 3 (for example), you would need a test that started with a Token instance, followed
its PartOfSpeech reference to another instance (the ProperName instance) and then tested the Class
feature of that instance for a value equal to 3.

To support this, the filtering approach has components that specify tests, and components that
specify “paths”. The tests that can be done include testing references to type instances to see if they
are instances of some type or its subtypes; this is done with a FSTypeConstraint constraint. Other
tests check for equality or, for numeric values, ranges.

Each test may be combined with a path – to get to the value to test. Tests that start from a
feature structure instance can be combined with and and or connectors. The Javadocs for these

CAS API's Javadocs

UIMA Version 2.6.0 CAS Reference 67

are in the package org.apache.uima.cas in the classes that end in Constraint, plus the classes
ConstraintFactory, FeaturePath and CAS. Here's an example; assume the variable cas holds a
reference to a CAS instance.

// Start by getting the constraint factory from the CAS.
ConstraintFactory cf = cas.getConstraintFactory();

// To specify a path to an item to test, you start by
// creating an empty path.
FeaturePath path = cas.createFeaturePath();

// Add POS feature to path, creating one-element path.
path.addFeature(posFeat);

// You can extend the chain arbitrarily by adding additional
// features.

// Create a new type constraint.

// Type constraints will check that structures
// they match against have a type at least as specific
// as the type specified in the constraint.
FSTypeConstraint nounConstraint = cf.createTypeConstraint();

// Set the type (by default it is TOP).
// This succeeds if the type being tested by this constraint
// is nounType or a subtype of nounType.
nounConstraint.add(nounType);

// Embed the noun constraint under the pos path.
// This means, associate the test with the path, so it tests the
// proper value.

// The result is a test which will
// match a feature structure that has a posFeat defined
// which has a value which is an instance of a nounType or
// one of its subtypes.
FSMatchConstraint embeddedNoun = cf.embedConstraint(path, nounConstraint);

// Create a type constraint for token (or a subtype of it)
FSTypeConstraint tokenConstraint = cf.createTypeConstraint();

// Set the type.
tokenConstraint.add(tokenType);

// Create the final constraint by conjoining the two constraints.
FSMatchConstraint nounTokenCons = cf.and(nounConstraint, tokenConstraint);

// Create a filtered iterator from some annotation iterator.
FSIterator it = cas.createFilteredIterator(annotIt, nounTokenCons);

4.8. The CAS API's – a guide to the Javadocs
The CAS APIs are organized into 3 Java packages: cas, cas.impl, and cas.text. Most of the APIs
described here are in the cas package. The cas.impl package contains classes used in serializing
and deserializing (reading and writing to external strings) the XCAS form of the CAS (XCAS is an
XML serialization of the CAS). The XCAS form is used for transporting the CAS among local and
remote annotators, or for storing the CAS in permanent storage. The cas.text contains the APIs that
extend the CAS to support artifact (including “text”) analysis.

APIs in the CAS package

68 CAS Reference UIMA Version 2.6.0

4.8.1. APIs in the CAS package

The main objects implementing the APIs discussed here are shown in the diagram below. The
hierarchy represents that there is a way to get from an upper object to an instance of the lower
object, usually by using a method on the upper object; this is not an inheritance hierarchy.

Figure 4.1. CAS Object hierarchy

The main Interface is the CAS interface. This has most of the functionality of the CAS, except
for the type system metadata access, and the indexing access. JCas and CAS are alternative
representations and API approaches to the CAS; each has a method to get the other. You can
mix JCas and CAS APIs in your application as needed. To use the JCas APIs, you have to create
the Java classes that correspond to the CAS types, and include them in the Java class path of the
application. If you have a CAS object, you can get a JCas object by using the getJCas() method
call on the CAS object; likewise, you can get the CAS object from a JCas by using the getCAS()
method call on the JCas object. There is also a low level CAS interface that is not part of the
official API, and is intended for internal use only – it is not documented here.

The type system metadata APIs are found in the TypeSystem interface. The objects defining each
type and feature are defined by the interfaces Type and Feature. The Type interface has methods to
see what types subsume other types, to iterate over the types available, and to extract information
about the types, including what features it has. The Feature interface has methods that get what type
it belongs to, its name, and its range (the kind of values it can hold).

The FSIndexRepository gives you access to methods to get instances of indexes, and also provides
access to the iterator over all indexed feature structures: getAllIndexedFS(aType). The
FSIndex and AnnotationIndex objects give you methods to create instances of iterators.

Iterators and the CAS methods that create new feature structures return FeatureStructure objects.
These objects can be used to set and get the values of defined features within them.

Type Merging

UIMA Version 2.6.0 CAS Reference 69

4.9. Type Merging
When annotators are combined in an aggregate, their defined type systems are merged. This is
designed to support independent development of annotator components. The merge results in a
single defined type system for CASes that flow through a particular set of annotators.

The basic operation of a type system merge is to iterate through all the defined types, and if two
annotators define the same fully qualified type name, to take the features defined for those types
and form a logical union of those features. This operation requires that same-named features have
the same range type names. The resulting type system has features comprising the union of all
features over all the various definitions for this type in different annotators.

Feature merging checks that for all features having the same name in a type, that the range type is
identical; otherwise an error is signaled.

Types are combined for merging when their fully qualified names are the same. Two different
definitions can be merged even if their supertype definitions do not match, if one supertype
subsumes the other supertype; otherwise an error is signaled. Likewise, two types with the same
name can be merged only if their features can be merged.

JCas Reference 71

Chapter 5. JCas Reference
The CAS is a system for sharing data among annotators, consisting of data structures (definable
at run time), sets of indexes over these data, metadata describing these, subjects of analysis, and
a high performance serialization/deserialization mechanism. JCas provides Java approach to
accessing CAS data, and is based on using generated, specific Java classes for each CAS type.

Annotators process one CAS per call to their process method. During processing, annotators can
retrieve feature structures from the passed in CAS, add new ones, modify existing ones, and use
and update CAS indexes. Of course, an annotator can also use plain Java Objects in addition; but
the data in the CAS is what is shared among annotators within an application.

All the facilities present in the APIs for the CAS are available when using the JCas APIs; indeed,
you can use the getCas() method to get the corresponding CAS object from a JCas (and vice-versa).
The JCas APIs often have helper methods that make using this interface more convenient for Java
developers.

The data in the CAS are typed objects having fields. JCas uses a set of generated Java classes (each
corresponding to a particular CAS type) with “getter” and “setter” methods for the features, plus
a constructor so new instances can be made. The Java classes don't actually store the data in the
class instance; instead, the getters and setters forward to the underlying CAS data representation.
Because of this, applications which use the JCas interface can share data with annotators using
plain CAS (i.e., not using the JCas approach).

Users can modify the JCas generated Java classes by adding fields to them; this allows arbitrary
non-CAS data to also be represented within the JCas objects, as well; however, the non-CAS data
stored in the JCas object instances cannot be shared with annotators using the plain CAS.

Data in the CAS initially has no corresponding JCas type instances; these are created as needed
at the first reference. This means, if your annotator is passed a large CAS having millions of CAS
feature structures, but you only reference a few of them, and no previously created Java JCas object
instances were created by upstream annotators, the only Java objects that will be created will be
those that correspond to the CAS feature structures that you reference.

The JCas class Java source files are generated from XML type system descriptions. The JCasGen
utility does the work of generating the corresponding Java Class Model for the CAS types. There
are a variety of ways JCasGen can be run; these are described later. You include the generated
classes with your UIMA component, and you can publish these classes for others who might want
to use your type system.

The specification of the type system in XML can be written using a conventional text editor, an
XML editor, or using the Eclipse plug-in that supports editing UIMA descriptors.

Changes to the type system are done by changing the XML and regenerating the corresponding
Java Class Models. Of course, once you've published your type system for others to use, you should
be careful that any changes you make don't adversely impact the users. Additional features can be
added to existing types without breaking other code.

A separate Java class is generated for each type; this type implements the CAS FeatureStructure
interface, as well as having the special getters and setters for the included features. In the current
implementation, an additional helper class per type is also generated. The generated Java classes
have methods (getters and setters) for the fields as defined in the XML type specification.
Descriptor comments are reflected in the generated Java code as Java-doc style comments.

Name Spaces

72 JCas Reference UIMA Version 2.6.0

5.1. Name Spaces
Full Type names consist of a “namespace” prefix dotted with a simple name. Namespaces are used
like packages to avoid collisions between types that are defined by different people at different
times. The namespace is used as the Java package name for generated Java files.

Type names used in the CAS correspond to the generated Java classes directly. If the CAS
name is com.myCompany.myProject.ExampleClass, the generated Java class is in the package
com.myCompany.myProject, and the class is ExampleClass.

An exception to this rule is the built-in types starting with uima.cas and uima.tcas;
these names are mapped to Java packages named org.apache.uima.jcas.cas and
org.apache.uima.jcas.tcas.

5.2. XML description element
Each XML type specification can have <description ... > tags. The description for a type will be
copied into the generated Java code, as a Javadoc style comment for the class. When writing these
descriptions in the XML type specification file, you might want to use html tags, as allowed in
Javadocs.

If you use the Component Description Editor, you can write the html tags normally, for instance,
“<h1>My Title</h1>”. The Component Descriptor Editor will take care of coverting the actual
descriptor source so that it has the leading “<” character written as “<”, to avoid confusing
the XML type specification. For example, <p> would be written in the source of the descriptor
as <p>. Any characters used in the Javadoc comment must of course be from the character
set allowed by the XML type specification. These specifications often start with the line <?xml
version=“1.0” encoding=“UTF-8” ?>, which means you can use any of the UTF-8 characters.

5.3. Mapping built-in CAS types to Java types
The built-in primitive CAS types map to Java types as follows:

uima.cas.Boolean → boolean

uima.cas.Byte → byte

uima.cas.Short → short

uima.cas.Integer → int

uima.cas.Long → long

uima.cas.Float → float

uima.cas.Double → double

uima.cas.String → String

5.4. Augmenting the generated Java Code
The Java Class Models generated for each type can be augmented by the user. Typical
augmentations include adding additional (non-CAS) fields and methods, and import statements
that might be needed to support these. Commonly added methods include additional constructors
(having different parameter signatures), and implementations of toString().

Persistence of additional data

UIMA Version 2.6.0 JCas Reference 73

To augment the code, just edit the generated Java source code for the class named the same as the
CAS type. Here's an example of an additional method you might add; the various getter methods
are retrieving values from the instance:

public String toString() { // for debugging
 return "XsgParse "
 + getslotName() + ": "
 + getheadWord().getCoveredText()
 + " seqNo: " + getseqNo()
 + ", cAddr: " + id
 + ", size left mods: " + getlMods().size()
 + ", size right mods: " + getrMods().size();
}

5.4.1. Persistence of additional data

If you add custom instance fields to JCas cover classes, these exist in the JCas cover object
instance, but not in the CAS itself. Each time a CAS object is referenced (by an iterator, or by
following a Feature Structure reference), a new JCas cover object instance may be created. If you
need these values, you can (a) make them CAS values if possible, or (b) hold a reference to the
the particular JCas cover object instance in your Java code. For some simple cases, setting the the
performance tuning option JCAS_CACHE_ENABLE (see UIMA Tutorial and Developers' Guides
Section 3.9, “Performance Tuning Options”) to true will cause the same JCas cover object that
was previously used for a particular CAS Feature Structure to be reused. However, this capability
won't work when other factors interfere with the ability to reuse the same object. Pear isolation is
an example of this.

Because of this, and because the JCas Cache holds on to the JCas cover objects beyond their useful
life and prevents them from being garbage collected, it is normally recommended running with the
JCAS_CACHE_ENABLE set to "false".

5.4.2. Keeping hand-coded augmentations when
regenerating

If the type system specification changes, you have to re-run the JCasGen generator. This will
produce updated Java for the Class Models that capture the changed specification. If you have
previously augmented the source for these Java Class Models, your changes must be merged with
the newly (re)generated Java source code for the Class Models. This can be done by hand, or you
can run the version of JCasGen that is integrated with Eclipse, and use automatic merging that is
done using Eclipse's EMF plug-in. You can obtain Eclipse and the needed EMF plug-in from http://
www.eclipse.org/.

If you run the generator version that works without using Eclipse, it will not merge Java source
changes you may have previously made; if you want them retained, you'll have to do the merging
by hand.

The Java source merging will keep additional constructors, additional fields, and any changes you
may have made to the readObject method (see below). Merging will not delete classes in the target
corresponding to deleted CAS types, which no longer are in the source – you should delete these by
hand.

Warning: The merging supports Java 1.4 syntactic constructs only. JCasGen generates
Java 1.4 code, so as long as any code you change here also sticks to only Java 1.4

http://www.eclipse.org/
http://www.eclipse.org/

Additional Constructors

74 JCas Reference UIMA Version 2.6.0

constructs, the merge will work. If you use Java 5 or later specific syntax or constructs, the
merge operation will likely fail to merge properly.

5.4.3. Additional Constructors

Any additional constructors that you add must include the JCas argument. The first line of your
constructor is required to be

this(jcas); // run the standard constructor

where jcas is the passed in JCas reference. If the type you're defining extends
uima.tcas.Annotation, JCasGen will automatically add a constructor which takes 2 additional
parameters – the begin and end Java int values, and set the uima.tcas.Annotation begin and
end fields.

Here's an example: If you're defining a type MyType which has a feature parent, you might make
an additional constructor which has an additional argument of parent:

MyType(JCas jcas, MyType parent) {
 this(jcas); // run the standard constructor
 setParent(parent); // set the parent field from the parameter
}

5.4.3.1. Using readObject

Fields defined by augmenting the Java Class Model to include additional fields represent data that
exist for this class in Java, in a local JVM (Java Virtual Machine), but do not exist in the CAS when
it is passed to other environments (for example, passing to a remote annotator).

A problem can arise when new instances are created, perhaps by the underlying system when it
iterates over an index, which is: how to insure that any additional non-CAS fields are properly
initialized. To allow for arbitrary initialization at instance creation time, an initialization method
in the Java Class Model, called readObject is used. The generated default for this method is to do
nothing, but it is one of the methods that you can modify – to do whatever initialization might be
needed. It is called with 0 parameters, during the constructor for the object, after the basic object
fields have been set up. It can refer to fields in the CAS using the getters and setters, and other
fields in the Java object instance being initialized.

A pre-existing CAS feature structure could exist if a CAS was being passed to this annotator;
in this case the JCas system calls the readObject method when creating the corresponding Java
instance for the first time for the CAS feature structure. This can happen at two points: when a new
object is being returned from an iterator over a CAS index, or a getter method is getting a field for
the first time whose value is a feature structure.

5.4.4. Modifying generated items

The following modifications, if made in generated items, will be preserved when regenerating.

The public/private etc. flags associated with methods (getters and setters). You can change the
default (“public”) if needed.

“final” or “abstract” can be added to the type itself, with the usual semantics.

Merging Types

UIMA Version 2.6.0 JCas Reference 75

5.5. Merging types
Type definitions are merged by the framework from all the components being run together.

5.5.1. Aggregate AEs and CPEs as sources of types
When running aggregate AEs (Analysis Engines), or a set of AEs in a collection processing engine,
the UIMA framework will build a merged type system (Note: this “merge” is merging types, not
to be confused with merging Java source code, discussed above). This merged type system has all
the types of every component used in the application. In addition, application code can use UIMA
Framework APIs to read and merge type descriptions, manually.

In most cases, each type system can have its own Java Class Models generated individually,
perhaps at an earlier time, and the resulting class files (or .jar files containing these class files) can
be put in the class path to enable JCas.

However, it is possible that there may be multiple definitions of the same CAS type, each of which
might have different features defined. In this case, the UIMA framework will create a merged
type by accumulating all the defined features for a particular type into that type's type definition.
However, the JCas classes for these types are not automatically merged, which can create some
issues for JCas users, as discussed in the next section.

5.5.2. JCasGen support for type merging
When there are multiple definitions of the same CAS type with different features defined, then
JCasGen can be re-run on the merged type system, to create one set of JCas Class definitions for
the merged types, which can then be shared by all the components. Directions for running JCasGen
can be found in UIMA Tools Guide and Reference Chapter 8, JCasGen User's Guide. This is
typically done by the person who is assembling the Aggregate Analysis Engine or Collection
Processing Engine. The resulting merged Java Class Model will then contain get and set methods
for the complete set of features. These Java classes must then be made available in the class path,
replacing the pre-merge versions of the classes.

If hand-modifications were done to the pre-merge versions of the classes, these must be applied to
the merged versions, as described in section Section 5.4.2, “Keeping hand-coded augmentations
when regenerating” [73], above. If just one of the pre-merge versions had hand-modifications,
the source for this hand-modified version can be put into the file system where the generated output
will go, and the -merge option for JCasGen will automatically merge the hand-modifications with
the generated code. If both pre-merged versions had hand-modifications, then these modifications
must be manually merged.

An alternative to this is packaging the components as individual PEAR files, each with their own
version of the JCas generated Classes. The Framework (as of release 2.2) can run PEAR files using
the pear file descriptor, and supply each component with its particular version of the JCas generated
class.

5.5.3. Impact of Type Merging on Composability of
Annotators

The recommended approach in UIMA is to build and maintain type systems as separate
components, which are imported by Annotators. Using this approach, Type Merging does not occur
because the Type System and its JCas classes are centrally managed and shared by the annotators.

Adding Features to DocumentAnnotation

76 JCas Reference UIMA Version 2.6.0

If you do choose to create a JCas Annotator that relies on Type Merging (meaning that your
annotator redefines a Type that is already in use elsewhere, and adds its own features), this can
negatively impact the reusability of your annotator, unless your component is used as a PEAR file.

If not using PEAR file packaging isolation capability, whenever anyone wants to combine your
annotator with another annotator that uses a different version of the same Type, they will need to be
aware of all of the issues described in the previous section. They will need to have the know-how
to re-run JCasGen and appropriately set up their classpath to include the merged Java classes and
to not include the pre-merge classes. (To enable this, you should package these classes separately
from other .jar files for your annotator, so that they can be more easily excluded.) And, if you
have done hand-modifications to your JCas classes, the person assembling your annotator will
need to properly merge those changes. These issues significantly complicate the task of combining
annotators, and will cause your annotator not to be as easily reusable as other UIMA annotators.

5.5.4. Adding Features to DocumentAnnotation
There is one built-in type, uima.tcas.DocumentAnnotation, to which applications
can add additional features. (All other built-in types are "feature-final" and you
cannot add additional features to them.) Frequently, additional features are added to
uima.tcas.DocumentAnnotation to provide a place to store document-level metadata.

For the same reasons mentioned in the previous section, adding features to DocumentAnnotation is
not recommended if you are using JCas. Instead, it is recommended that you define your own type
for storing your document-level metadata. You can create an instance of this type and add it to the
indexes in the usual way. You can then retrieve this instance using the iterator returned from the
methodgetAllIndexedFS(type) on an instance of a JFSIndexRepository object. (As of UIMA
v2.1, you do not have to declare a custom index in your descriptor to get this to work).

If you do choose to add features to DocumentAnnotation, there are additional issues to be aware of.
The UIMA SDK provides the JCas cover class for the built-in definition of DocumentAnnotation,
in the separate jar file uima-document-annotation.jar. If you add additional features to
DocumentAnnotation, you must remove this jar file from your classpath, because you will not want
to use the default JCas cover class. You will need to re-run JCasGen as described in Section 5.5.2,
“JCasGen support for type merging” [75]. JCasGen will generate a new cover class for
DocumentAnnotation, which you must place in your classpath in lieu of the version in uima-
document-annotation.jar.

Also, this is the reason why the method JCas.getDocumentAnnotationFs() returns
type TOP, rather than type DocumentAnnotation. Because the DocumentAnnotation
class can be replaced by users, it is not part of uima-core.jar and so the core UIMA
framework cannot have any references to it. In your code, you may “cast” the result of
JCas.getDocumentAnnotationFs() to type DocumentAnnotation, which must be available
on the classpath either via uima-document-annotation.jar or by including a custom version
that you have generated using JCasGen.

5.6. Using JCas within an Annotator
To use JCas within an annotator, you must include the generated Java classes output from JCasGen
in the class path.

An annotator written using JCas is built by defining a class for the annotator that extends
JCasAnnotator_ImplBase. The process method for this annotator is written

public void process(JCas jcas)

Creating new instances

UIMA Version 2.6.0 JCas Reference 77

 throws AnalysisEngineProcessException {
 ... // body of annotator goes here
}

The process method is passed the JCas instance to use as a parameter.

The JCas reference is used throughout the annotator to refer to the particular JCas instance being
worked on. In pooled or multi-threaded implementations, there will be a separate JCas for each
thread being (simultaneously) worked on.

You can do several kinds of operations using the JCas APIs: create new feature structures
(instances of CAS types) (using the new operator), access existing feature structures passed to
your annotator in the JCas (for example, by using the next method of an iterator over the feature
structures), get and set the fields of a particular instance of a feature structure, and add and remove
feature structure instances from the CAS indexes. To support iteration, there are also functions to
get and use indexes and iterators over the instances in a JCas.

5.6.1. Creating new instances using the Java “new”
operator

The new operator creates new instances of JCas types. It takes at least one parameter, the JCas
instance in which the type is to be created. For example, if there was a type Meeting defined, you
can create a new instance of it using:

Meeting m = new Meeting(jcas);

Other variations of constructors can be added in custom code; the single parameter version is the
one automatically generated by JCasGen. For types that are subtypes of Annotation, JCasGen also
generates an additional constructor with additional “begin” and “end” arguments.

5.6.2. Getters and Setters
If the CAS type Meeting had fields location and time, you could get or set these by using getter
or setter methods. These methods have names formed by splicing together the word “get” or “set”
followed by the field name, with the first letter of the field name capitalized. For instance

getLocation()

The getter forms take no parameters and return the value of the field; the setter forms take one
parameter, the value to set into the field, and return void.

There are built-in CAS types for arrays of integers, strings, floats, and feature structures. For fields
whose values are these types of arrays, there is an alternate form of getters and setters that take an
additional parameter, written as the first parameter, which is the index in the array of an item to get
or set.

5.6.3. Obtaining references to Indexes
The only way to access instances (not otherwise referenced from other instances) passed in to your
annotator in its JCas is to use an iterator over some index. Indexes in the CAS are specified in the
annotator descriptor. Indexes have a name; text annotators have a built-in, standard index over all
annotations.

Updating Indexes

78 JCas Reference UIMA Version 2.6.0

To get an index, first get the JFSIndexRepository from the JCas using the method
jcas.getJFSIndexRepository(). Here are the calls to get indexes:

JFSIndexRepository ir = jcas.getJFSIndexRepository();

ir.getIndex(name-of-index) // get the index by its name, a string
ir.getIndex(name-of-index, Foo.type) // filtered by specific type

ir.getAnnotationIndex() // get AnnotationIndex
ir.getAnnotationIndex(Foo.type) // filtered by specific type

For convenience, the getAnnotationIndex method is available directly on the JCas object instance;
the implementation merely forwards to the associated index repository.

Filtering types have to be a subtype of the type specified for this index in its index specification.
They can be written as either Foo.type or if you have an instance of Foo, you can write

fooInstance.jcasType.casType.

Foo is (of course) an example of the name of the type.

5.6.4. Adding (and removing) instances to (from) indexes
CAS indexes are maintained automatically by the CAS. But you must add any instances of feature
structures you want the index to find, to the indexes by using the call:

myInstance.addToIndexes();

Do this after setting all features in the instance which could be used in indexing, for example, in
determining the sorting order. After indexing, do not change the values of these particular features
because the indexes will not be updated. If you need to change the values, you must first remove
the instance from the CAS indexes, change the values, and then add the instance back. To remove
an instance from the indexes, use the method:

myInstance.removeFromIndexes();

Note: It's OK to change feature values which are not used in determining sort ordering (or
set membership), without removing and re-adding back to the index.

When writing a Multi-View component, you may need to index instances in multiple CAS views.
The methods above use the indexes associated with the current JCas object. There is a variation of
the addToIndexes / removeFromIndexes methods which takes one argument: a reference to a
JCas object holding the view in which you want to index this instance.

myInstance.addToIndexes(anotherJCas)
myInstance.removeFromIndexes(anotherJCas)

You can also explicitly add instances to other views using the addFsToIndexes method on other
JCas (or CAS) objects. For instance, if you had 2 other CAS views (myView1 and myView2), in
which you wanted to index myInstance, you could write:

myInstance.addToIndexes(); //addToIndexes used with the new operator
myView1.addFsToIndexes(myInstance); // index myInstance in myView1
myView2.addFsToIndexes(myInstance); // index myInstance in myView2

Using Iterators

UIMA Version 2.6.0 JCas Reference 79

The rules for determining which index to use with a particular JCas object are designed to behave
the way most would think they should; if you need specific behavior, you can always explicitly
designate which view the index adding and removing operations should work on.

The rules are: If the instance is a subtype of AnnotationBase, then the view is the view associated
with the annotation as specified in the feature holding the view reference in AnnotationBase.
Otherwise, if the instance was created using the "new" operator, then the view is the view passed
to the instance's constructor. Otherwise, if the instance was created by getting a feature value
from some other instance, whose range type is a feature structure, then the view is the same as the
referring instance. Otherwise, if the instance was created by any of the Feature Structure Iterator
operations over some index, then it is the view associated with the index.

As of release 2.4.1, there are two efficient bulk-remove methods to remove all instances of a
given type, or all instances of a given type and its subtypes. These are invoked on an instance of
an IndexRepository, for a particular view. For example, to remove all instances of Token from a
particular JCas instance:

jcas.removeAllIncludingSubtypes(Token.type) or
jcas.removeAllIncludingSubtypes(aTokenInstance.getTypeIndexID()) or
jcas.getFsIndexRepository().
 removeAllIncludingSubtypes(jcas.getCasType(Token.type))

5.6.5. Using Iterators
Once you have an index obtained from the JCas, you can get an iterator from the index; here is an
example:

FSIndexRepository ir = jcas.getFSIndexRepository();
FSIndex myIndex = ir.getIndex("myIndexName");
FSIterator myIterator = myIndex.iterator();

JFSIndexRepository ir = jcas.getJFSIndexRepository();
FSIndex myIndex = ir.getIndex("myIndexName", Foo.type); // filtered
FSIterator myIterator = myIndex.iterator();

Iterators work like normal Java iterators, but are augmented to support additional capabilities.
Iterators are described in the CAS Reference, Section 4.7, “Indexes and Iterators”.

5.6.6. Class Loaders in UIMA
The basic concept of a UIMA application includes assembling engines into a flow. The application
made up of these Engines are run within the UIMA Framework, either by the Collection Processing
Manager, or by using more basic UIMA Framework APIs.

The UIMA Framework exists within a JVM (Java Virtual Machine). A JVM has the capability to
load multiple applications, in a way where each one is isolated from the others, by using a separate
class loader for each application. For instance, one set of UIMA Framework Classes could be
shared by multiple sets of application - specific classes, even if these application-specific classes
had the same names but were different versions.

5.6.6.1. Use of Class Loaders is optional

The UIMA framework will use a specific ClassLoader, based on how ResourceManager instances
are used. Specific ClassLoaders are only created if you specify an ExtensionClassPath as part

Issues accessing JCas objects outside of UIMA Engine Components

80 JCas Reference UIMA Version 2.6.0

of the ResourceManager. If you do not need to support multiple applications within one UIMA
framework within a JVM, don't specify an ExtensionClassPath; in this case, the classloader used
will be the one used to load the UIMA framework - usually the overall application class loader.

Of course, you should not run multiple UIMA applications together, in this way, if they have
different class definitions for the same class name. This includes the JCas “cover” classes. This
case might arise, for instance, if both applications extended uima.tcas.DocumentAnnotation
in differing, incompatible ways. Each application would need its own definition of this class, but
only one could be loaded (unless you specify ExtensionClassPath in the ResourceManager which
will cause the UIMA application to load its private versions of its classes, from its classpath).

5.6.7. Issues accessing JCas objects outside of UIMA
Engine Components

If you are using the ExtensionClassPaths, the JCas cover classes are loaded under a class loader
created by the ResourceManager part of the UIMA Framework. If you reference the same JCas
classes outside of any UIMA component, for instance, in top level application code, the JCas
classes used by that top level application code also must be in the class path for the application
code.

Alternatively, you could do all the JCas processing inside a UIMA component (and do no
processing using JCas outside of the UIMA pipeline).

5.7. Setting up Classpath for JCas
The JCas Java classes generated by JCasGen are typically compiled and put into a JAR file, which,
in turn, is put into the application's class path.

This JAR file must be generated from the application's merged type system. This is most
conveniently done by opening the top level descriptor used by the application in the Component
Descriptor Editor tool, and pressing the Run-JCasGen button on the Type System Definition page.

5.8. PEAR isolation
As of version 2.2, the framework supports component descriptors which are PEAR descriptors.
These descriptors define components plus include information on the class path needed to run
them. The framework uses the class path information to set up a localized class path, just for code
running within the PEAR context. This allows PEAR files requiring different versions of common
code to work well together, even if the class names in the different versions have the same names.

The mechanism used to switch the class loaders when entering a PEAR-packaged annotator
in a flow depends on the framework knowing if JCas is being used within that annotator code.
The framework will know this if the particular view being passed has had a previous call to
getJCas(), or if the particular annotator is marked as a JCas-using one (by having it extend the class
JCasAnnotator_ImplBase).

PEAR Reference 81

Chapter 6. PEAR Reference
A PEAR (Processing Engine ARchive) file is a standard package for UIMA components. This
chapter describes the PEAR 1.0 structure and specification.

The PEAR package can be used for distribution and reuse by other components or applications.
It also allows applications and tools to manage UIMA components automatically for verification,
deployment, invocation, testing, etc.

Currently, there is an Eclipse plugin and a command line tool available to create PEAR packages
for standard UIMA components. Please refer to UIMA Tools Guide and Reference Chapter 9,
PEAR Packager User's Guide for more information about these tools.

PEARs distributed to new targets can be installed at those targets. UIMA includes a tool for
installing PEARs; see UIMA Tools Guide and Reference Chapter 11, PEAR Installer User's Guide
for more information about installing PEARs.

An installed PEAR can be used as a component within a UIMA pipeline, by specifying the pear
descriptor that is created when installing the pear. See Section 6.3, “PEAR package descriptor”.

6.1. Packaging a UIMA component
For the purpose of describing the process of creating a PEAR file and its internal structure, this
section describes the steps used to package a UIMA component as a valid PEAR file. The PEAR
packaging process consists of the following steps:

• Section 6.1.1, “Creating the PEAR structure” [81]

• Section 6.1.2, “Populating the PEAR structure” [82]

• Section 6.1.3, “Creating the installation descriptor” [83]

• Section 6.1.5, “Packaging the PEAR structure into one file” [89]

6.1.1. Creating the PEAR structure
The first step in the PEAR creation process is to create a PEAR structure. The PEAR structure is a
structured tree of folders and files, including the following elements:

• Required Elements:

• The metadata folder which contains the PEAR installation descriptor and properties
files.

• The installation descriptor (metadata/install.xml)

• A UIMA analysis engine descriptor and its required code, delegates (if any), and
resources

• Optional Elements:

• The desc folder to contain descriptor files of analysis engines, delegates analysis
engines (all levels), and other components (Collection Readers, CAS Consumers, etc).

• The src folder to contain the source code

Populating the PEAR structure

82 PEAR Reference UIMA Version 2.6.0

• The bin folder to contain executables, scripts, class files, dlls, shared libraries, etc.

• The lib folder to contain jar files.

• The doc folder containing documentation materials, preferably accessible through an
index.html.

• The data folder to contain data files (e.g. for testing).

• The conf folder to contain configuration files.

• The resources folder to contain other resources and dependencies.

• Other user-defined folders or files are allowed, but should be avoided.

Figure 6.1. The PEAR Structure

6.1.2. Populating the PEAR structure
After creating the PEAR structure, the component's descriptor files, code files, resources files, and
any other files and folders are copied into the corresponding folders of the PEAR structure. The
developer should make sure that the code would work with this layout of files and folders, and that
there are no broken links. Although it is strongly discouraged, the optional elements of the PEAR
structure can be replaced by other user defined files and folder, if required for the component to
work properly.

Note: The PEAR structure must be self-contained. For example, this means that the
component must run properly independently from the PEAR root folder location. If the
developer needs to use an absolute path in configuration or descriptor files, then he/she
should put these files in the “conf” or “desc” and replace the path of the PEAR root folder

Creating the installation descriptor

UIMA Version 2.6.0 PEAR Reference 83

with the string “$main_root” . The tools that deploy and use PEAR files should localize the
files in the “conf” and “desc” folders by replacing the string “$main_root” with the local
absolute path of the PEAR root folder. The “$main_root” macro can also be used in the
Installation descriptor (install.xml)

Currently there are three types of component packages depending on their deployment:

6.1.2.1. Standard Type
A component package with the standard type must be a valid Analysis Engine, and all the required
files to deploy it locally must be included in the PEAR package.

6.1.2.2. Service Type
A component package with the service type must be deployable locally as a supported UIMA
service (e.g. Vinci). In this case, all the required files to deploy it locally must be included in the
PEAR package.

6.1.2.3. Network Type
A component package with the network type is not deployed locally but rather in the “remote”
environment. It's accessed as a network AE (e.g. Vinci Service). The component owner has the
responsibility to start the service and make sure it's up and running before it's used by others (like
a webmaster that makes sure the web site is up and running). In this case, the PEAR package does
not have to contain files required for deployment, but must contain the network AE descriptor
(see UIMA Tutorial and Developers' Guides Section 1.1.4, “Creating the XML Descriptor”) and
the <DESC> tag in the installation descriptor must point to the network AE descriptor. For more
information about Network Analysis Engines, please refer to UIMA Tutorial and Developers'
Guides Section 3.6, “Working with Remote Services” .

6.1.3. Creating the installation descriptor
The installation descriptor is an xml file called install.xml under the metadata folder of the PEAR
structure. It's also called InsD. The InsD XML file should be created in the UTF-8 file encoding.
The InsD should contain the following sections:

• <OS>: This section is used to specify supported operating systems

• <TOOLKITS>: This section is used to specify toolkits, such as JDK, needed by the
component.

• <SUBMITTED_COMPONENT>: This is the most important section in the Installation
Descriptor. It's used to specify required information about the component. See Section 6.1.4,
“Installation Descriptor: template” [83] for detailed information about this section.

• <INSTALLATION>: This section is explained in section Section 6.2, “Installing a PEAR
package” [90] .

6.1.4. Documented template for the installation
descriptor:

The following is a sample “documented template” which describes content of the installation
descriptor install.xml:

<? xml version="1.0" encoding="UTF-8"?>

Installation Descriptor: template

84 PEAR Reference UIMA Version 2.6.0

<!-- Installation Descriptor Template -->
<COMPONENT_INSTALLATION_DESCRIPTOR>
 <!-- Specifications of OS names, including version, etc. -->
 <OS>
 <NAME>OS_Name_1</NAME>
 <NAME>OS_Name_2</NAME>
 </OS>
 <!-- Specifications of required standard toolkits -->
 <TOOLKITS>
 <JDK_VERSION>JDK_Version</JDK_VERSION>
 </TOOLKITS>

 <!-- There are 2 types of variables that are used in the InsD:
 a) $main_root , which will be substituted with the real path to the
 main component root directory after installing the
 main (submitted) component
 b) $component_id$root, which will be substituted with the real path
 to the root directory of a given delegate component after
 installing the given delegate component -->

 <!-- Specification of submitted component (AE) -->
 <!-- Note: submitted_component_id is assigned by developer; -->
 <!-- XML descriptor file name is set by developer. -->
 <!-- Important: ID element should be the first in the -->
 <!-- SUBMITTED_COMPONENT section. -->
 <!-- Submitted component may include optional specification -->
 <!-- of Collection Reader that can be used for testing the -->
 <!-- submitted component. -->
 <!-- Submitted component may include optional specification -->
 <!-- of CAS Consumer that can be used for testing the -->
 <!-- submitted component. -->

 <SUBMITTED_COMPONENT>
 <ID>submitted_component_id</ID>
 <NAME>Submitted component name</NAME>
 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

 <!-- deployment options: -->
 <!-- a) "standard" is deploying AE locally -->
 <!-- b) "service" is deploying AE locally as a service, -->
 <!-- using specified command (script) -->
 <!-- c) "network" is deploying a pure network AE, which -->
 <!-- is running somewhere on the network -->

 <DEPLOYMENT>standard | service | network</DEPLOYMENT>

 <!-- Specifications for "service" deployment option only -->
 <SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>
 <SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>
 <SERVICE_COMMAND_ARGS>

 <ARGUMENT>
 <VALUE>1st_parameter_value</VALUE>
 <COMMENTS>1st parameter description</COMMENTS>
 </ARGUMENT>

 <ARGUMENT>
 <VALUE>2nd_parameter_value</VALUE>
 <COMMENTS>2nd parameter description</COMMENTS>
 </ARGUMENT>

 </SERVICE_COMMAND_ARGS>

Installation Descriptor: template

UIMA Version 2.6.0 PEAR Reference 85

 <!-- Specifications for "network" deployment option only -->

 <NETWORK_PARAMETERS>
 <VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />
 </NETWORK_PARAMETERS>

 <!-- General specifications -->

 <COMMENTS>Main component description</COMMENTS>

 <COLLECTION_READER>
 <COLLECTION_ITERATOR_DESC>
 $main_root/desc/CollIterDescriptor.xml
 </COLLECTION_ITERATOR_DESC>

 <CAS_INITIALIZER_DESC>
 $main_root/desc/CASInitializerDescriptor.xml
 </CAS_INITIALIZER_DESC>
 </COLLECTION_READER>

 <CAS_CONSUMER>
 <DESC>$main_root/desc/CASConsumerDescriptor.xml</DESC>
 </CAS_CONSUMER>

 </SUBMITTED_COMPONENT>
 <!-- Specifications of the component installation process -->
 <INSTALLATION>
 <!-- List of delegate components that should be installed together -->
 <!-- with the main submitted component (for aggregate components) -->
 <!-- Important: ID element should be the first in each -->

 <!-- DELEGATE_COMPONENT section. -->
 <DELEGATE_COMPONENT>
 <ID>first_delegate_component_id</ID>
 <NAME>Name of first required separate component</NAME>
 </DELEGATE_COMPONENT>

 <DELEGATE_COMPONENT>
 <ID>second_delegate_component_id</ID>
 <NAME>Name of second required separate component</NAME>
 </DELEGATE_COMPONENT>

 <!-- Specifications of local path names that should be replaced -->
 <!-- with real path names after the main component as well as -->
 <!-- all required delegate (library) components are installed. -->
 <!-- <FILE> and <REPLACE_WITH> values may use the $main_root or -->
 <!-- one of the $component_id$root variables. -->
 <!-- Important: ACTION element should be the first in each -->
 <!-- PROCESS section. -->

 <PROCESS>
 <ACTION>find_and_replace_path</ACTION>
 <PARAMETERS>
 <FILE>$main_root/desc/ComponentDescriptor.xml</FILE>
 <FIND_STRING>../resources/dict/</FIND_STRING>
 <REPLACE_WITH>$main_root/resources/dict/</REPLACE_WITH>
 <COMMENTS>Specify actual dictionary location in XML component
 descriptor
 </COMMENTS>
 </PARAMETERS>
 </PROCESS>

Installation Descriptor: template

86 PEAR Reference UIMA Version 2.6.0

 <PROCESS>
 <ACTION>find_and_replace_path</ACTION>
 <PARAMETERS>
 <FILE>$main_root/desc/DelegateComponentDescriptor.xml</FILE>
 <FIND_STRING>
local_root_directory_for_1st_delegate_component/resources/dict/
 </FIND_STRING>
 <REPLACE_WITH>
 $first_delegate_component_id$root/resources/dict/
 </REPLACE_WITH>
 <COMMENTS>
 Specify actual dictionary location in the descriptor of the 1st
 delegate component
 </COMMENTS>
 </PARAMETERS>
 </PROCESS>

 <!-- Specifications of environment variables that should be set prior
 to running the main component and all other reused components.
 <VAR_VALUE> values may use the $main_root or one of the
 $component_id$root variables. -->

 <PROCESS>
 <ACTION>set_env_variable</ACTION>
 <PARAMETERS>
 <VAR_NAME>env_variable_name</VAR_NAME>
 <VAR_VALUE>env_variable_value</VAR_VALUE>
 <COMMENTS>Set environment variable value</COMMENTS>
 </PARAMETERS>
 </PROCESS>

 </INSTALLATION>
</COMPONENT_INSTALLATION_DESCRIPTOR>

6.1.4.1. The SUBMITTED_COMPONENT section

The SUBMITTED_COMPONENT section of the installation descriptor (install.xml) is used to
specify required information about the UIMA component. Before explaining the details, let's clarify
the concept of component ID and “macros” used in the installation descriptor. The component ID
element should be the first element in the SUBMITTED_COMPONENT section.

The component id is a string that uniquely identifies the component. It should use the JAVA
naming convention (e.g. com.company_name.project_name.etc.mycomponent).

Macros are variables such as $main_root, used to represent a string such as the full path of a certain
directory.

The values of these macros are defined by the PEAR installation process, when the PEAR is
installed, and represent the values local to that particular installation. The values are stored in the
metadata/PEAR.properties file that is generated during PEAR installation. The tools and
applications that use and deploy PEAR files replace these macros with the corresponding values in
the local environment as part of the deployment process in the files included in the conf and desc
folders.

Currently, there are two types of macros:

• $main_root, which represents the local absolute path of the main component root directory
after deployment.

Installation Descriptor: template

UIMA Version 2.6.0 PEAR Reference 87

• $component_id$root, which represents the local absolute path to the root directory of the
component which has component_id as component ID. This component could be, for
instance, a delegate component.

For example, if some part of a descriptor needs to have a path to the data subdirectory of the
PEAR, you write $main_root/data. If your PEAR refers to a delegate component having
the ID “my.comp.Dictionary”, and you need to specify a path to one of this component's
subdirectories, e.g. resource/dict, you write $my.comp.Dictionary$root/resources/
dict.

6.1.4.2. The ID, NAME, and DESC tags

These tags are used to specify the component ID, Name, and descriptor path using the
corresponding tags as follows:

<SUBMITTED_COMPONENT>
 <ID>submitted_component_id</ID>
 <NAME>Submitted component name</NAME>
 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

6.1.4.3. Tags related to deployment types

As mentioned before, there are currently three types of PEAR packages, depending on the
following deployment types

Standard Type

A component package with the standard type must be a valid UIMA Analysis Engine, and all the
required files to deploy it must be included in the PEAR package. This deployment type should be
specified as follows:

<DEPLOYMENT>standard</DEPLOYMENT>

Service Type

A component package with the service type must be deployable locally as a supported UIMA
service (e.g. Vinci). The installation descriptor must include the path for the executable or script
to start the service including its arguments, and the working directory from where to launch it,
following this template:

<DEPLOYMENT>service</DEPLOYMENT>
<SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>
<SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>
<SERVICE_COMMAND_ARGS>
 <ARGUMENT>
 <VALUE>1st_parameter_value</VALUE>
 <COMMENTS>1st parameter description</COMMENTS>
 </ARGUMENT>
 <ARGUMENT>
 <VALUE>2nd_parameter_value</VALUE>
 <COMMENTS>2nd parameter description</COMMENTS>
 </ARGUMENT>
</SERVICE_COMMAND_ARGS>

Installation Descriptor: template

88 PEAR Reference UIMA Version 2.6.0

Network Type

A component package with the network type is not deployed locally, but rather in a “remote”
environment. It's accessed as a network AE (e.g. Vinci Service). In this case, the PEAR package
does not have to contain files required for deployment, but must contain the network AE descriptor.
The <DESC> tag in the installation descriptor (See section 2.3.2.1) must point to the network AE
descriptor. Here is a template in the case of Vinci services:

<DEPLOYMENT>network</DEPLOYMENT>
<NETWORK_PARAMETERS>
 <VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />
</NETWORK_PARAMETERS>

6.1.4.4. The Collection Reader and CAS Consumer tags

These sections of the installation descriptor are used by any specific Collection Reader or CAS
Consumer to be used with the packaged analysis engine.

6.1.4.5. The INSTALLATION section

The <INSTALLATION> section specifies the external dependencies of the component and the
operations that should be performed during the PEAR package installation.

The component dependencies are specified in the <DELEGATE_COMPONENT> sub-sections, as
shown in the installation descriptor template above.

Important: The ID element should be the first element in each <DELEGATE_COMPONENT>
sub-section.

The <INSTALLATION> section may specify the following operations:

• Setting environment variables that are required to run the installed component.

This is also how you specify additional classpaths for a Java component - by
specifying the setting of an environmental variable named CLASSPATH. The
buildComponentClasspath method of the PackageBrowser class builds a classpath
string from what it finds in the CLASSPATH specification here, plus adds a classpath
entry for all Jars in the lib directory. Because of this, there is no need to specify Class
Path entries for Jars in the lib directory, when using the Eclipse plugin pear packager or the
Maven Pear Packager.

When specifying the value of the CLASSPATH environment variable,
use the semicolon ";" as the separator character, regardless of the target
Operating System conventions. This delimiter will be replaced with the
right one for the Operating System during PEAR installation.

If your component needs to set the UIMA datapath you must specify the necessary datapath
setting using an environment variable with the key uima.datapath. When such a key is
specified the getComponentDataPath method of the PackageBrowser class will return the
specified datapath settings for your component.

Warning: Do not put UIMA Framework Jars into the lib directory of your PEAR;
doing so will cause system failures due to class loading issues.

• Note that you can use “macros”, like $main_root or $component_id$root in the
VAR_VALUE element of the <PARAMETERS> sub-section.

Packaging the PEAR structure into one file

UIMA Version 2.6.0 PEAR Reference 89

• Finding and replacing string expressions in files.

• Note that you can use the “macros” in the FILE and REPLACE_WITH elements of the
<PARAMETERS> sub-section.

Important: the ACTION element always should be the 1st element in each <PROCESS> sub-
section.

By default, the PEAR Installer will try to process every file in the desc and conf directories of the
PEAR package in order to find the “macros” and replace them with actual path expressions. In
addition to this, the installer will process the files specified in the <INSTALLATION> section.

Important: all XML files which are going to be processed should be created using UTF-8 or
UTF-16 file encoding. All other text files which are going to be processed should be created using
the ASCII file encoding.

6.1.5. Packaging the PEAR structure into one file
The last step of the PEAR process is to simply zip the content of the PEAR root folder (not
including the root folder itself) to a PEAR file with the extension “.pear”.

To do this you can either use the PEAR packaging tools that are described in “UIMA Tools Guide
and Reference Chapter 9, PEAR Packager User's Guide” or you can use the PEAR packaging API
that is shown below.

To use the PEAR packaging API you first have to create the necessary information for the PEAR
package:

 //define PEAR data
 String componentID = "AnnotComponentID";
 String mainComponentDesc = "desc/mainComponentDescriptor.xml";
 String classpath ="$main_root/bin;";
 String datapath ="$main_root/resources;";
 String mainComponentRoot = "/home/user/develop/myAnnot";
 String targetDir = "/home/user/develop";
 Properties annotatorProperties = new Properties();
 annotatorProperties.setProperty("sysProperty1", "value1");

To create a complete PEAR package in one step call:

PackageCreator.generatePearPackage(
 componentID, mainComponentDesc, classpath, datapath,
 mainComponentRoot, targetDir, annotatorProperties);

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

To create just the PEAR installation descriptor in the main component root directory call:

PackageCreator.createInstallDescriptor(componentID, mainComponentDesc,
 classpath, datapath, mainComponentRoot, annotatorProperties);

To package a PEAR file with an existing installation descriptor call:

PackageCreator.createPearPackage(componentID, mainComponentRoot,
 targetDir);

Installing a PEAR package

90 PEAR Reference UIMA Version 2.6.0

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

6.2. Installing a PEAR package
The installation of a PEAR package can be done using the PEAR installer tool (see UIMA Tools
Guide and Reference Chapter 11, PEAR Installer User's Guide, or by an application using the
PEAR APIs, directly.

During the PEAR installation the PEAR file is extracted to the installation directory and the PEAR
macros in the descriptors are updated with the corresponding path. At the end of the installation
the PEAR verification is called to check if the installed PEAR package can be started successfully.
The PEAR verification use the classpath, datapath and the system property settings of the PEAR
package to verify the PEAR content. Necessary Java library path settings for native libararies,
PATH variable settings or system environment variables cannot be recognized automatically and
the use must take care of that manually.

Note: By default the PEAR packages are not installed directly to the specified installation
directory. For each PEAR a subdirectory with the name of the PEAR's ID is created where
the PEAR package is installed to. If the PEAR installation directory already exists, the old
content is automatically deleted before the new content is installed.

6.2.1. Installing a PEAR file using the PEAR APIs
The example below shows how to use the PEAR APIs to install a PEAR package and access the
installed PEAR package data. For more details about the PackageBrowser API, please refer to the
Javadocs for the org.apache.uima.pear.tools package.

File installDir = new File("/home/user/uimaApp/installedPears");
File pearFile = new File("/home/user/uimaApp/testpear.pear");
boolean doVerification = true;

try {
 // install PEAR package
 PackageBrowser instPear = PackageInstaller.installPackage(
 installDir, pearFile, doVerification);

 // retrieve installed PEAR data
 // PEAR package classpath
 String classpath = instPear.buildComponentClassPath();
 // PEAR package datapath
 String datapath = instPear.getComponentDataPath();
 // PEAR package main component descriptor
 String mainComponentDescriptor = instPear
 .getInstallationDescriptor().getMainComponentDesc();
 // PEAR package component ID
 String mainComponentID = instPear
 .getInstallationDescriptor().getMainComponentId();
 // PEAR package pear descriptor
 String pearDescPath = instPear.getComponentPearDescPath();

 // print out settings
 System.out.println("PEAR package class path: " + classpath);
 System.out.println("PEAR package datapath: " + datapath);
 System.out.println("PEAR package mainComponentDescriptor: "
 + mainComponentDescriptor);
 System.out.println("PEAR package mainComponentID: "

PEAR package descriptor

UIMA Version 2.6.0 PEAR Reference 91

 + mainComponentID);
 System.out.println("PEAR package specifier path: " + pearDescPath);

 } catch (PackageInstallerException ex) {
 // catch PackageInstallerException - PEAR installation failed
 ex.printStackTrace();
 System.out.println("PEAR installation failed");
 } catch (IOException ex) {
 ex.printStackTrace();
 System.out.println("Error retrieving installed PEAR settings");
 }

To run a PEAR package after it was installed using the PEAR API see the example below. It use
the generated PEAR specifier that was automatically created during the PEAR installation. For
more details about the APIs please refer to the Javadocs.

File installDir = new File("/home/user/uimaApp/installedPears");
File pearFile = new File("/home/user/uimaApp/testpear.pear");
boolean doVerification = true;

try {

 // Install PEAR package
 PackageBrowser instPear = PackageInstaller.installPackage(
 installDir, pearFile, doVerification);

 // Create a default resouce manager
 ResourceManager rsrcMgr = UIMAFramework.newDefaultResourceManager();

 // Create analysis engine from the installed PEAR package using
 // the created PEAR specifier
 XMLInputSource in =
 new XMLInputSource(instPear.getComponentPearDescPath());
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);
 AnalysisEngine ae =
 UIMAFramework.produceAnalysisEngine(specifier, rsrcMgr, null);

 // Create a CAS with a sample document text
 CAS cas = ae.newCAS();
 cas.setDocumentText("Sample text to process");
 cas.setDocumentLanguage("en");

 // Process the sample document
 ae.process(cas);
 } catch (Exception ex) {
 ex.printStackTrace();
 }

6.3. PEAR package descriptor
To run an installed PEAR package directly in the UIMA framework the pearSpecifier XML
descriptor can be used. Typically during the PEAR installation such an specifier is automatically
generated and contains all the necessary information to run the installed PEAR package. Settings
for system environment variables, system PATH settings or Java library path settings cannot be
recognized automatically and must be set manually when the JVM is started.

Note: The PEAR may contain specifications for "environment variables" and their
settings. When such a PEAR is run directly in the UIMA framework, those settings (except

PEAR package descriptor

92 PEAR Reference UIMA Version 2.6.0

for Classpath and Data Path) are converted to Java System properties, and set to the
specified values. Java cannot set true environmental variables; if such a setting is needed,
the application would need to arrange to do this prior to invoking Java.

The generated PEAR descriptor is located in the component root directory of the installed PEAR
package and has a filename like <componentID>_pear.xml.

The PEAR package descriptor looks like:

<?xml version="1.0" encoding="UTF-8"?>
<pearSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <pearPath>/home/user/uimaApp/installedPears/testpear</pearPath>
</pearSpecifier>

The pearPath setting in the descriptor must point to the component root directory of the installed
PEAR package.

Note: It is not possible to share resources between PEAR Analysis Engines that are
instantiated using the PEAR descriptor. The PEAR runtime created for each PEAR
descriptor has its own specific ResourceManager (unless exactly the same Classpath and
Data Path are being used).

XMI CAS Serialization Reference 93

Chapter 7. XMI CAS Serialization Reference
This is the specification for the mapping of the UIMA CAS into the XMI
(XML Metadata Interchange1) format. XMI is an OMG standard for expressing
object graphs in XML. The UIMA SDK provides support for XMI through
the classes org.apache.uima.cas.impl.XmiCasSerializer and
org.apache.uima.cas.impl.XmiCasDeserializer.

7.1. XMI Tag
The outermost tag is <XMI> and must include a version number and XML namespace attribute:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
 <!-- CAS Contents here -->
</xmi:XMI>

XML namespaces2 are used throughout. The “xmi” namespace prefix is used to identify elements
and attributes that are defined by the XMI specification. The XMI document will also define one
namespace prefix for each CAS namespace, as described in the next section.

7.2. Feature Structures
UIMA Feature Structures are mapped to XML elements. The name of the element is formed from
the CAS type name, making use of XML namespaces as follows.

The CAS type namespace is converted to an XML namespace URI by the following rule: replace
all dots with slashes, prepend http:///, and append .ecore.

This mapping was chosen because it is the default mapping used by the Eclipse Modeling
Framework (EMF)3 to create namespace URIs from Java package names. The use of the http
scheme is a common convention, and does not imply any HTTP communication. The .ecore suffix
is due to the fact that the recommended type system definition for a namespace is an ECore model,
see UIMA Tutorial and Developers' Guides Chapter 8, XMI and EMF Interoperability.

Consider the CAS type name “org.myproj.Foo”. The CAS namespace (“org.myorg.”) is converted
to the XML namespace URI is http:///org/myproj.ecore.

The XML element name is then formed by concatenating the XML namespace prefix (which is an
arbitrary token, but typically we use the last component of the CAS namespace) with the type name
(excluding the namespace).

So the example “org.myproj.Foo” FeatureStructure is written to XMI as:

<xmi:XMI
 xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1"/>
 ...

1 For details on XMI see Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons, Inc. 2002.
2http://www.w3.org/TR/xml-names11/
3 For details on EMF and Ecore see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-Wesley. 2006.

Primitive Features

94 XMI CAS Serialization Reference UIMA Version 2.6.0

</xmi:XMI>

The xmi:id attribute is only required if this object will be referred to from elsewhere in the XMI
document. If provided, the xmi:id must be unique for each feature.

All namespace prefixes (e.g. “myproj”) in this example must be bound to URIs using the “xmlns...”
attribute, as defined by the XML namespaces specification.

7.3. Primitive Features
CAS features of primitive types (String, Boolean, Byte, Short, Integer, Long , Float, or Double) can
be mapped either to XML attributes or XML elements. For example, a CAS FeatureStructure of
type org.myproj.Foo, with features:

begin = 14
end = 19
myFeature = "bar"

could be mapped to:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>
 ...
</xmi:XMI>

or equivalently:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1">
 <begin>14</begin>
 <end>19</end>
 <myFeature>bar</myFeature>
 </myproj:Foo>
 ...
</xmi:XMI>

The attribute serialization is preferred for compactness, but either representation is allowable.
Mixing the two styles is allowed; some features can be represented as attributes and others as
elements.

7.4. Reference Features
CAS features that are references to other feature structures (excluding arrays and lists, which are
handled separately) are serialized as ID references.

If we add to the previous CAS example a feature structure of type org.myproj.Baz, with feature
“myFoo” that is a reference to the Foo object, the serialization would be:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...

Array and List Features

UIMA Version 2.6.0 XMI CAS Serialization Reference 95

 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>
 <myproj:Baz xmi:id="2" myFoo="1"/>
 ...
</xmi:XMI>

As with primitive-valued features, it is permitted to use an element rather than an attribute.
However, the syntax is slightly different:

<myproj:Baz xmi:id="2">
 <myFoo href="#1"/>
<myproj.Baz>

Note that in the attribute representation, a reference feature is indistinguishable from an integer-
valued feature, so the meaning cannot be determined without prior knowledge of the type system.
The element representation is unambiguous.

7.5. Array and List Features
For a CAS feature whose range type is one of the CAS array or list types, the XMI serialization
depends on the setting of the “multipleReferencesAllowed” attribute for that feature in the UIMA
Type System Description (see Section 2.3.3, “Features”).

An array or list with multipleReferencesAllowed = false (the default) is serialized as a “multi-
valued” property in XMI. An array or list with multipleReferencesAllowed = true is serialized as a
first-class object. Details are described below.

7.5.1. Arrays and Lists as Multi-Valued Properties
In XMI, a multi-valued property is the most natural XMI representation for most cases. Consider
the example where the FeatureStructure of type org.myproj.Baz has a feature myIntArray whose
value is the integer array {2,4,6}. This can be mapped to:

<myproj:Baz xmi:id="3" myIntArray="2 4 6"/>

or equivalently:

<myproj:Baz xmi:id="3">
 <myIntArray>2</myIntArray>
 <myIntArray>4</myIntArray>
 <myIntArray>6</myIntArray>
</myproj:Baz>

Note that String arrays whose elements contain embedded spaces MUST use the latter mapping.

FSArray or FSList features are serialized in a similar way. For example an FSArray feature that
contains references to the elements with xmi:id's “13” and “42” could be serialized as:

<myproj:Baz xmi:id="3" myFsArray="13 42"/>

or:

<myproj:Baz xmi:id="3">
 <myFsArray href="#13"/>
 <myFsArray href="#42"/>

Arrays and Lists as First-Class Objects

96 XMI CAS Serialization Reference UIMA Version 2.6.0

</myproj:Baz>

7.5.2. Arrays and Lists as First-Class Objects
The multi-valued-property representation described in the previous section does not allow multiple
references to an array or list object. Therefore, it cannot be used for features that are defined to
allow multiple references (i.e. features for which multipleReferencesAllowed = true in the Type
System Description).

When multipleReferencesAllowed is set to true, array and list features are serialized as references,
and the array or list objects are serialized as separate objects in the XMI. Consider again the
example where the FeatureStructure of type org.myproj.Baz has a feature myIntArray whose value
is the integer array {2,4,6}. If myIntArray is defined with multipleReferencesAllowed=true, the
serialization will be as follows:

<myproj:Baz xmi:id="3" myIntArray="4"/>

or:

<myproj:Baz xmi:id="3">
 <myIntArray href="#4"/>
</myproj:Baz>

with the array object serialized as

<cas:IntegerArray xmi:id="4" elements="2 4 6"/>

or:

<cas:IntegerArray xmi:id="4">
 <elements>2</elements>
 <elements>4</elements>
 <elements>6</elements>
</cas:IntegerArray>

Note that in this case, the XML element name is formed from the CAS type name (e.g.
“uima.cas.IntegerArray”) in the same way as for other FeatureStructures. The elements of the
array are serialized either as a space-separated attribute named “elements” or as a series of child
elements named “elements”.

List nodes are just standard FeatureStructures with “head” and “tail” features, and are serialized
using the normal FeatureStructure serialization. For example, an IntegerList with the values 2, 4,
and 6 would be serialized as the four objects:

<cas:NonEmptyIntegerList xmi:id="10" head="2" tail="11"/>
<cas:NonEmptyIntegerList xmi:id="11" head="4" tail="12"/>
<cas:NonEmptyIntegerList xmi:id="12" head="6" tail="13"/>
<cas:EmptyIntegerList xmi:id"13"/>

This representation of arrays allows multiple references to an array of list. It also allows a feature
with range type TOP to refer to an array or list. However, it is a very unnatural representation
in XMI and does not support interoperability with other XMI-based systems, so we instead
recommend using the multi-valued-property representation described in the previous section
whenever it is possible.

Null Array/List Elements

UIMA Version 2.6.0 XMI CAS Serialization Reference 97

7.5.3. Null Array/List Elements
In UIMA, an element of an FSArray or FSList may be null. In XMI, multi-valued properties do
not permit null values. As a workaround for this, we use a dummy instance of the special type
cas:NULL, which has xmi:id 0. For example, in the following example the “myFsArray” feature
refers to an FSArray whose second element is null:

<cas:NULL xmi:id="0"/>
<myproj:Baz xmi:id="3">
 <myFsArray href="#13"/>
 <myFsArray href="#0"/>
 <myFsArray href="#42"/>
</myproj:Baz>

7.6. Subjects of Analysis (Sofas) and Views
A UIMA CAS contain one or more subjects of analysis (Sofas). These are serialized no differently
from any other feature structure. For example:

<?xml version="1.0"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI
 xmlns:cas="http:///uima/cas.ecore">
 <cas:Sofa xmi:id="1" sofaNum="1"
 text="the quick brown fox jumps over the lazy dog."/>
</xmi:XMI>

Each Sofa defines a separate View. Feature Structures in the CAS can be members of one or more
views. (A Feature Structure that is a member of a view is indexed in its IndexRepository, but that is
an implementation detail.)

In the XMI serialization, views will be represented as first-class objects. Each View has an
(optional) “sofa” feature, which references a sofa, and multi-valued reference to the members of the
View. For example:

<cas:View sofa="1" members="3 7 21 39 61"/>

Here the integers 3, 7, 21, 39, and 61 refer to the xmi:id fields of the objects that are members of
this view.

7.7. Linking an XMI Document to its Ecore Type
System

If the CAS Type System has been saved to an Ecore file (as described in UIMA Tutorial and
Developers' Guides Chapter 8, XMI and EMF Interoperability), it is possible to store a link from
an XMI document to that Ecore type system. This is done using an xsi:schemaLocation attribute on
the root XMI element.

The xsi:schemaLocation attribute is a space-separated list that represents a mapping from
namespace URI (e.g. http:///org/myproj.ecore) to the physical URI of the .ecore file containing the
type system for that namespace. For example:

xsi:schemaLocation=

Delta CAS XMI Format

98 XMI CAS Serialization Reference UIMA Version 2.6.0

 "http:///org/myproj.ecore file:/c:/typesystems/myproj.ecore"

would indicate that the definition for the org.myproj CAS types is contained in the file c:/
typesystems/myproj.ecore. You can specify a different mapping for each of your CAS
namespaces, using a space separated list. For details see Budinsky et al. Eclipse Modeling
Framework.

7.8. Delta CAS XMI Format
The Delta CAS XMI serialization format is designed primarily to reduce the overhead serialization
when calling annotators configured as services. Only Feature Structures and Views that are new or
modified by the service are serialized and returned by the service.

The classes org.apache.uima.cas.impl.XmiCasSerializer and
org.apache.uima.cas.impl.XmiCasDeserializer support serialization of only the
modifications to the CAS. A caller is expected to set a marker to indicate the point from which
changes to the CAS are to be tracked.

A Delta CAS XMI document contains only the Feature Structures and Views that have been
added or modified. The new and modified Feature Structures are represented in exactly the format
as in a complete CAS serialization. The cas:View element has been extended with three
additional attributes to represent modifications to View membership. These new attributes are
added_members, deleted_members and reindexed_members. For example:

<cas:View sofa="1" added_members="63 77"
 deleted_member="7 61" reindexed_members="39" />

Here the integers 63, 77 represent xmi:id fields of the objects that have been newly added members
to this View, 7 and 61 are xmi:id fields of the objects that have been removed from this view and
39 is the xmi:id of an object to be reindexed in this view.

Compressed Binary CASes 99

Chapter 8. Compressed Binary CASes

8.1. Binary CAS Compression overview
UIMA has a proprietary binary serialization format, used internally for several things, including
communicating with embedded C++ annotators using UIMA-CPP. This binary format is also
selectable for use with UIMA-AS. Its use requires that the source and target systems implement the
identical type system (because the type system is not sent, and internal coding is used within the
format that is keyed to the particular type system).

Starting with version 2.4.1, two additional forms of binary serialization are added. Both compress
the data being serialized; typical size ratios can approach 50 : 1, depending on the exact contents of
the CAS, when compared with normal binary serialization.

The two forms are called 4 and 6, for historical/internal reasons. The serialized forms of both of
these is fixed, but not currently standardized, and the form being used is encoded in the header so
that the appropriate deserializer can be chosen. Both forms include support for Delta CAS being
returned from a service.

Form 6 builds on form 4, and adds: serializing only those feature structures which are reachable
(that is, in some index, or referenced by other reachable feature structures), and type filtering.

Type filtering takes a source type system and a target type system, and for serializing (source to
target), sends the binary representation of reachable feature structures in the target's type system.
For deserializing (reading a target into a source), the filtering takes the specification being read as
being encoded using the target's type system, and translates that into the source's type system. In
this process, types which exist in the source but not the target are skipped (when serializing); types
which exist in the target, but not the source are skipped when deserializing. Features that exist in
some source type but not in the version of the same type in the target are skipped (when serializing)
or set to default values (i.e., 0 or null) when being deserialized.

There are two main use cases for using compressed forms. The first one is for communicating with
UIMA-AS remote services (not yet implemented).

The second use case is for saving compressed representations of CASes to other media, such as
disk files, where they can be deserialized later for use in other UIMA applications.

8.2. Using Compressed Binary CASes
The main user interface for serializing a CAS using compression is to use one of the static
methods named serializeWithCompression in Serialization. If you pass a Type System argument
representing a target type system, then form 6 compression is used; otherwise form 4 is used. To
get the benefit of only serializing reachable Feature Structure instances, without type mapping
(which is only in form 6), pass a type system argument which is null.

To deserialize into a CAS without type mapping, use one of the deserialize method in Serialization.
There are multiple forms of this method, depending on the arguments. The forms which take
extra arguments include a ReuseInfo may only be used with serialized forms created with form 6
compression. The plain form of deserialize works with all forms of binary serialization, compressed
and non-compressed, by examining a common header which identifies the form of binary
serialization used; however, for form 6, since it requires additional arguments, it will fail - and you
need to use the other deserialize form.

Simple Delta CAS serialization

100 Compressed Binary CASes UIMA Version 2.6.0

Form 6 has an additional object, ReuseInfo, which holds information which is required for
subsequent Delta CAS format serializations / deserializations. It can speed up subsequent
serializations of the same CAS (before it is further updated), for instance, if an application is
sending the CAS to multiple services in parallel. The serializeWithCompression method returns
this object when form 6 is being used.

8.3. Simple Delta CAS serialization
Use Form 4 for this, becuase form 6 supports delta CAS but requires that at the time of
deserialization of a CAS (on the receiver side) which will later be delta serialized back to the
sender, an instance of the ReuseInfo must be saved, and that same instance then used for delta
serialization; furthermore, the original serialization (on the sender side) also must save an instance
of the ReuseInfo and use this when deserializing the delta CAS.

Form 4 may not be as efficient as form 6 in that it does not filter the CASes either by type systems
nor by only sending reachable Feature Structure instances. But, it doesn't require a ReuseInfo
object when doing delta serialization or deserialization, so it may be more convenient to use when
saving delta CASes to files (as opposed to the other use case of a remote service returning delta
CASes to a remote client).

8.4. Use Case cookbook
Here are some use cases, together with a suggested approach and example of how to use the APIs.

Save a CAS to an output stream, using form 4 (no type system filtering):

// set up an output stream. In this example, an internal byte array.
ByteArrayOutputStream baos = new ByteArrayOutputStream(OUT_BFR_INIT_SZ);
Serialization.serializeWithCompression(casSrc, baos);

Deserialize from a stream into an existing CAS:

// assume the stream is a byte array input stream
// For example, one could be created
// from the above ByteArrayOutputStream as follows:
ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
// Deserialize into a cas having the identical type system
Serialization.deserializeCAS(cas, bais);

Note that the deserializeCAS(cas, inputStream) method is a general way to deserialize
into a CAS from an inputStream for all forms of binary serialized data (with exceptions as noted
above). The method reads a common header, and based on what it finds, selects the appropriate
deserialization routine.

Note: The deserialization method with just 2 arguments method doesn't support type
filtering, or delta cas deserializating for form 6. To do those, see example below.

Serialize to an output stream, filtering out some types and/or features:

To do this, an additional input specifying the Type System of the target must be supplied; this Type
System should be a subset of the source CAS's. The out parameter may be an OutputStream, a
DataOutputStream, or a File.

// set up an output stream. In this example, an internal byte array.

Use Case cookbook

UIMA Version 2.6.0 Compressed Binary CASes 101

ByteArrayOutputStream baos = new ByteArrayOutputStream(OUT_BFR_INIT_SZ);
Serialization.serializeWithCompression(cas, out, tgtTypeSystem);

Deserialize with type filtering:

The reuseInfo should be null unless deserializing a delta CAS, in which case, it must be the reuse
info captured when the original CAS was serialized out. If the target type system is identical to the
one in the CAS, you may pass null for it. If a delta cas is not being received, you must pass null for
the reuseInfo.

ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
Serialization.deserializeCAS(cas, bais, tgtTypeSystem, reuseInfo);

	UIMA References
	Table of Contents
	Chapter 1. Javadocs
	1.1. Using named Eclipse User Libraries

	Chapter 2. Component Descriptor Reference
	2.1. Notation
	2.2. Imports
	2.3. Type System Descriptors
	2.3.1. Imports
	2.3.2. Types
	2.3.3. Features
	2.3.4. String Subtypes

	2.4. Analysis Engine Descriptors
	2.4.1. Primitive Analysis Engine Descriptors
	2.4.1.1. Basic Structure
	2.4.1.2. Analysis Engine MetaData
	2.4.1.3. Type System Definition
	2.4.1.4. Type Priority Definition
	2.4.1.5. Index Definition
	2.4.1.6. Capabilities
	2.4.1.7. OperationalProperties
	2.4.1.8. External Resource Dependencies
	2.4.1.9. Resource Manager Configuration
	2.4.1.10. Environment Variable References

	2.4.2. Aggregate Analysis Engine Descriptors
	2.4.2.1. Delegate Analysis Engine Specifiers
	2.4.2.2. FlowController
	2.4.2.3. FlowConstraints
	Fixed Flow
	Capability Language Flow

	2.4.2.4. External Resource Bindings
	2.4.2.5. Sofa Mappings

	2.4.3. Configuration Parameters
	2.4.3.1. Configuration Parameter Declaration
	Example

	2.4.3.2. Configuration Parameter Settings
	Example

	2.4.3.3. Configuration Parameter Overrides
	2.4.3.4. External Configuration Parameter Overrides

	2.5. Flow Controller Descriptors
	2.6. Collection Processing Component Descriptors
	2.6.1. Collection Reader Descriptors
	2.6.2. CAS Initializer Descriptors (deprecated)
	2.6.3. CAS Consumer Descriptors

	2.7. Service Client Descriptors
	2.8. Custom Resource Specifiers

	Chapter 3. Collection Processing Engine Descriptor Reference
	3.1. CPE Overview
	3.2. Notation
	3.3. Imports
	3.4. CPE Descriptor Overview
	3.5. Collection Reader
	3.5.1. Error handling for Collection Readers

	3.6. CAS Processors
	3.6.1. Specifying an Individual CAS Processor
	3.6.1.1. <descriptor> Element
	3.6.1.2. <configurationParameterSettings> Element
	3.6.1.3. <sofaNameMappings> Element
	3.6.1.4. <runInSeparateProcess> Element
	3.6.1.5. <deploymentParameters> Element
	3.6.1.6. <filter> Element
	3.6.1.7. <errorHandling> Element
	Retry action taken on a timeout

	3.6.1.8. <checkpoint> Element

	3.7. CPE Operational Parameters
	3.8. Resource Manager Configuration
	3.9. Example CPE Descriptor

	Chapter 4. CAS Reference
	4.1. Javadocs
	4.2. CAS Overview
	4.2.1. The Type System
	4.2.2. Creating, accessing and manipulating data
	4.2.3. Creating and using indexes

	4.3. Built-in CAS Types
	4.4. Accessing the type system
	4.4.1. TypeSystemPrinter example
	4.4.2. Using the CAS APIs to create and modify feature structures

	4.5. Creating feature structures
	4.6. Accessing or modifying features of feature structures
	4.7. Indexes and Iterators
	4.7.1. Built-in Indexes
	4.7.2. Adding Feature Structures to the Indexes
	4.7.3. Iterators
	4.7.4. Special iterators for Annotation types
	4.7.5. Constraints and Filtered iterators

	4.8. The CAS API's – a guide to the Javadocs
	4.8.1. APIs in the CAS package

	4.9. Type Merging

	Chapter 5. JCas Reference
	5.1. Name Spaces
	5.2. XML description element
	5.3. Mapping built-in CAS types to Java types
	5.4. Augmenting the generated Java Code
	5.4.1. Persistence of additional data
	5.4.2. Keeping hand-coded augmentations when regenerating
	5.4.3. Additional Constructors
	5.4.3.1. Using readObject

	5.4.4. Modifying generated items

	5.5. Merging types
	5.5.1. Aggregate AEs and CPEs as sources of types
	5.5.2. JCasGen support for type merging
	5.5.3. Impact of Type Merging on Composability of Annotators
	5.5.4. Adding Features to DocumentAnnotation

	5.6. Using JCas within an Annotator
	5.6.1. Creating new instances using the Java “new” operator
	5.6.2. Getters and Setters
	5.6.3. Obtaining references to Indexes
	5.6.4. Adding (and removing) instances to (from) indexes
	5.6.5. Using Iterators
	5.6.6. Class Loaders in UIMA
	5.6.6.1. Use of Class Loaders is optional

	5.6.7. Issues accessing JCas objects outside of UIMA Engine Components

	5.7. Setting up Classpath for JCas
	5.8. PEAR isolation

	Chapter 6. PEAR Reference
	6.1. Packaging a UIMA component
	6.1.1. Creating the PEAR structure
	6.1.2. Populating the PEAR structure
	6.1.2.1. Standard Type
	6.1.2.2. Service Type
	6.1.2.3. Network Type

	6.1.3. Creating the installation descriptor
	6.1.4. Documented template for the installation descriptor:
	6.1.4.1. The SUBMITTED_COMPONENT section
	6.1.4.2. The ID, NAME, and DESC tags
	6.1.4.3. Tags related to deployment types
	Standard Type
	Service Type
	Network Type

	6.1.4.4. The Collection Reader and CAS Consumer tags
	6.1.4.5. The INSTALLATION section

	6.1.5. Packaging the PEAR structure into one file

	6.2. Installing a PEAR package
	6.2.1. Installing a PEAR file using the PEAR APIs

	6.3. PEAR package descriptor

	Chapter 7. XMI CAS Serialization Reference
	7.1. XMI Tag
	7.2. Feature Structures
	7.3. Primitive Features
	7.4. Reference Features
	7.5. Array and List Features
	7.5.1. Arrays and Lists as Multi-Valued Properties
	7.5.2. Arrays and Lists as First-Class Objects
	7.5.3. Null Array/List Elements

	7.6. Subjects of Analysis (Sofas) and Views
	7.7. Linking an XMI Document to its Ecore Type System
	7.8. Delta CAS XMI Format

	Chapter 8. Compressed Binary CASes
	8.1. Binary CAS Compression overview
	8.2. Using Compressed Binary CASes
	8.3. Simple Delta CAS serialization
	8.4. Use Case cookbook

