Axiom Developer Guide

Axiom Developer Guide
1214

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS |S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Working with the AXiOm SOUICE COURcceuuuniiiiii ettt 1
Importing the Axiom source code iNt0 ECliPSEovvvveiiiiiii e 1

I 1o [P PP PP PTPPPPTP 1

Uit tESE OrgaNiZaHIONcevtieiiiii ettt et e e e e e e 1

Testing Axiom with different SLAX implementationsSooevvvviiniiiiinneiii e, 1

A O €Il 010 o = (ol N PP PP PUPPTT 3
REQUITEIMENTS ...ttt ettt et e et e e e et e et e e e e nb e e e enanns 3
Analysis of the Geronimo JAXB DUNAIESooieiiiiiiii e 5

NEW BDSITECE APIS ..ttt 6

3. Li fecycl eManager design (AXIOM L1.3)iiiiiiiiiiiiieieii e 8
Issues with the Li f ecycl eManager APl in AXIOM 12Xoviiiiiiniiiiiiiieieiiieeeeii e 8
Cleanup strategy for temporary fil€Siiiiiiii e 9

4. REIEASE PIOCESSeeetteietti ettt ettt ettt e et e e et e e e et e b e et et e e et et e e e 11
REIEASE PIrEPAIGLIONu ittt ettt 11
PrEIEOUISITES ...ttt et ettt ettt et e e e aaans 13
REIBASE ...ttt e et 14
POSE-TEIEASE @CHIOMNS ...ttt ettt e et 16
REFEIENCES ...t e et et e e e e 16

5. The SEAX SPECITICALIONuiiiiiiii e 17
Semantics of the set Pref i X Method ..o 17

The three XMLSt r eamNV i t er USage PAtEINSc.vuniiiiiieeeiii e 18

AL APPENTIX ettt ettt e e et e et et eeeaba e aee 20
Installing IBM'S JDK 0N DEDIAN LINUX ...covvniiiiiiiieiiiii e e 20

List of Figures

4.1. Package dependencies for r944680
4.2. Package dependencies for r939984

Chapter 1. Working with the Axiom
source code

Importing the Axiom source code into Eclipse

In order to import the Axiom source code into Eclipse with the Maven Eclipse plugin, use the following
command:

nmvn - Dski pTest s=true -Ddownl oadSour ces=true install eclipse:eclipse

Testing

Unit test organization

Historically, al unit tests were placed in the axi om t est s project. One specific problem with thisis
that since all tests are in a common Maven module which depends on both axi om i npl and axi om
dom it is not rare to see DOOM tests that accidentally use the LLOM implementation (which is the
default). The project descriptioninaxi om t est s/ pom xmi indicates that it was the intention to split
the axi om t est s project into several parts and make them part of axi om api , axi om i npl and
axi om dom This reorganization is not complete yet®. For new test cases (or when refactoring existing
tests), the following guidelines should be applied:

1.

Teststhat validatethecodeinaxi om api andthat do not require an Axiom implementation to execute
should be placedinaxi om api . Thisprimarily appliesto teststhat validate utility classesinaxi omt

api .

. The code of unit tests that apply to all Axiom implementations and that check conformance to the

specifications of the Axiom API should be added to axi om api and executed in axi om i npl and
axi om dom Currently, the recommended way isto create a base classin axi om api (with suffix
Test Base) and to create subclasses in axi om i npl and axi om dom This makes sure that the
DOOM tests never accidentally use LLOM (because axi om i npl isnot a dependency of axi om

dom.

. Teststhat check integration with other libraries should beplacedinaxi om i nt egr at i on. Notethat

thisis the only module that requires Java 1.5 (so that e.g. integration with JAXB2 can be tested).

. Testsrelated to codeinaxi om api and requiring an Axiom implementation to execute, but that don't

fall into category 2 should stay inaxi om t est s.

Testing Axiom with different StAX implementations

The following StAX implementations are available to test compatibility with Axiom;

Woodstox

Thisisthe StAX implementation that Axiom uses by default.

Sun Java Streaming XML Parser (SISXP)

Thisimplementation is available as Maven artifact com sun. xnl . st r eam sj sxp: 1. 0. 1.

1See AXIOM-311 [https://issues.apache.org/jira/lbrowse/AXIOM-311].

https://issues.apache.org/jira/browse/AXIOM-311
https://issues.apache.org/jira/browse/AXIOM-311

Working with the Axiom source code

StAX Reference Implementation
The reference implementation was written by BEA and is available as Maven artifact
st ax: st ax: 1. 2. 0. The homepage is http://stax.codehaus.org/Home. Note that the JAR doesn't
contain the necessary files to enable service discovery. Geronimo's implementation of the StAX API
library will not be able to locate the reference implementation unless the following system properties
are set:

javax.xm . stream XM.| nput Fact ory=com bea. xm . st ream MXPar ser Fact ory
javax.xm . stream XM.CQut put Fact or y=com bea. xn . st r eam XM.Cut put Fact or yBase

XL XP-J
“XL XML Processor for Java’ isIBM'simplementation of StAX 1.0 and ispart of IBM's JRE/JDK V6.
Note that due to an agreement between IBM and Sun, IBM's Java implementation for the Windows
platform is not available as a separate download, but only bundled with another IBM product, e.g.
WebSphere Application Server for Devel opers|http://www.ibm.com/devel operworks/downl oads/ws/
wasdevel opers/].

On the other hand, the JDK for Linux can be downloaded as a separate package from the
developerWorks site. There are versions for 32-bit x86 (“xSeries’) and 64-bit AMD. They are
available as RPMs and tarballs. To install the JDK properly on a Debian based system (including
Ubuntu), follow the instructions given in the section called “ Installing IBM's JDK on Debian Linux”.

http://stax.codehaus.org/Home
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/

Chapter 2. OSGI integration

Requirements

Requirement 1. The Axiom artifacts SHOULD be usable both as normal JAR files and as OSGi
bundles.

00000000 The aternative would be to produce two sets of artifacts during the build. This should be
/ avoided in order to keep the build process as simple as possible. It should also be noted that
l | the Geronimo Spec artifacts also meet this requirement.

Requirement 2. All APIs defined by the axi om api module, and in particular the
OVAbst ract Fact or y API MUST continue to work as expected in an OSGi environment, so that code
in downstream projects doesn't need to be rewritten.

Requirement 3. OMAbstract Fact ory MUST select the same implementation regardless of
the type of container (OSGi or non OSGi). The only exception is related to the usage of system
properties to specify the default OMMet aFact or y implementation: in an OSGi environment, selecting
an implementation class using a system property is not meaningful.

00000000, Thisiscurrently not the case. Inanon OSGi environment, recent versions of Axiom use JDK
/ 1.3 service discovery to locate the default implementation and fall back to LLOM if noneis
l | found. DOOM will never be selected as the default implementation. On the other hand, the
current OSGi integration will select any Axiom implementation as default implementation,

but gives priority to LLOM.

Requirement 4. The bundles for the LLOM and DOOM implementations MUST NOT export any
packages. This is required to keep a clean separation between the public APl and implementation
specific classes and to make sure that the implementations can be modified without the risk of breaking
existing code. An exception MAY be made for factory classes related to foreign APIs, such as the
Docurent Bui | der Fact or y implementation for an Axiom implementation supporting DOM.

00000000, When the Axiom artifacts are used as normal JAR files in a Maven build, this requirement
/ impliesthat they should be used in scoper unt i ne.

Although this requirement is easy to implement for the Axiom project, there are currently a
couple of issues in the downstreams project that need to be addressed to make this work:

» Asexplained in AXIS2-4902 [https://issues.apache.org/jira/lbrowse/ AX1S2-4902], there
are many placesin Axis2 that still refer directly to Axiom implementation classes.

» The axi s2- saaj module is tightly coupled to axi om dom Making this work will
probably require using maven- shade- pl ugi n to include (a relocated copy of) the
DOOM classesinto axi s2- saaj .

* Abdera extends the LLOM implementation. Probably, some naven- shade- pl ugi n
magic will be required here as well to create Abdera OSGi bundles that work properly
with the Axiom bundles.

Requirement 5. It MUST be possible to use a non standard (third party) Axiom implementation as

a drop-in replacement for the standard LLOM and DOOM implementation, i.e. the axi om i npl and
axi om dombundles. It MUST be possibleto replaceaxi om i npl (resp. axi om don) by any Axiom
implementation that supportsthe full Axiom API (resp. that supports DOM in addition to the Axiom API),
without the need to change any application code.

https://issues.apache.org/jira/browse/AXIS2-4902
https://issues.apache.org/jira/browse/AXIS2-4902

OSGi integration

00000000, This requirement has several important implications:
L / | * Itrestricts the allowable exceptions to Requirement 4.

It implies that there must be an API that allows application code to select an Axiom
implementation based on its capabilities (e.g. DOM support) without introducing a hard
dependency on a particular Axiom implementation.

* In accordance with Requirement 2 and Requirement 3 this requirement not only applies
to an OSGi environment, but extends to non OSGi environments as well.

Requirement 6. The OSGi integration SHOULD remove the necessity for downstreams projects to
produce their own custom OSGi bundles for Axiom. There SHOULD be one and only one set of OSGi
bundles for Axiom, namely the ones released by the Axiom project.

0000000 Currently there are at least two projects that create their own modified Axiom bundles:

=

L » Apache Geronimo has a custom Axiom bundle to support the Axis2 integration.

» ServiceMix also has a custom bundles for Axiom. However, this bundle only seem
to exist to support their own custom Abdera bundle, which is basically an incorrect
repackaging of the original Abdera code. See SMX4-877 [https.//issues.apache.org/jiral
browse/SM X4-877] for more details.

Note that this requirement can't be satisfied directly by Axiom. It requires that the above
mentioned projects (Geronimo, Axis2 and Abdera) use Axiom in away that is compatible
with itsdesign, and in particular with Requirement 4. Nevertheless, Axiom must provide the
necessary APIs and features to meet the needs of these projects.

Requirement 7. The Axiom OSGi integration SHOULD NOT rely on any particular OSGi framework
such as Felix SCR (Declarative Services). When deployed in an OSGi environment, Axiom should have
the same runtime dependencies asin anon OSGi environment (i.e. StAX, Activation and JavaMail).

0000000(: Axiom 1.2.12 relies on Felix SCR. Although there is no real issue with that, getting rid of

/ this extra dependency is seen as a nice to have. One of the reasons for using Felix SCR was

l | to avoid introducing OSGi specific codeinto Axiom. However, thereis no issue with having
such code, provided that Requirement 8 is satisfied.

Requirement 8. Inanon OSGi environment, AXiom MUST NOT haveany OSGi related dependencies.
That meansthat the OSGi integration must be written in such away that no OSGi specific classes are ever
loaded in anon OSGi environment.

Requirement 9. The OSGi integration MUST follow established best practices. It SHOULD beinspired
by what has been done to add OSGi integration to APIs that have a similar structure as Axiom.

00000000, Axiom is designed around an abstract APl and allows for the existence of multiple
/ independent implementations. A factory (OMAbst ract Fact ory) is used to locate
l | and instantiate the desired implementation. This is similar to APIs such as JAXP
(Docurnent Bui | der Fact ory, etc.) and JAXB (JAXBCont ext). These APIshave been
successfully "OSGi-fied" e.g. by the Apache Geronimo project. Instead of reinventing the

wheel, we should leverage that work and adapt it to Axiom's specific requirements.

It should be noted that because of the way the Axiom API isdesigned and taking into account
Requirement 2, it is not possible to make Axiom entirely compatible with OSGi paradigms
(the same is true for JAXB). In an OSGi-only world, each Axiom implementation would
simply exposeitself asan OSGi service (of type OMVet aFact or y e.g.) and code depending

https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877

OSGi integration

on Axiom would bind to one (or more) of these services depending on its needs. That is not
possible because it would conflict with Requirement 2.

Non-Requirement 1. APIs such as JAXP and JAXB have been designed from the start for inclusion
into the JRE. They need to support scenarios where an application bundles its own implementation
(e.g. an application may package a version of Apache Xerces, which would then be instantiated
by the newl nst ance method in Docurnent Bui | der Fact ory). That implies that the selected
implementation depends on the thread context classloader. It is assumed that thereis no such requirement
for Axiom, which meansthat in anon OSGi environment, the Axiom implementations are always loaded
from the same class |oader asthe axi om api JAR.

00000000, This (non-)requirement is actually not directly relevant for the OSGi support, but it

/ nevertheless has some importance because of Requirement 3 (which implies that the

l | OSGi support needs to be designed in parallel with the implementation discovery strategy
applicablein anon OSGi environment).

Analysis of the Geronimo JAXB bundles

As noted in Requirement 9 the Apache Geronimo has successfully added OSGi support
to the JAXB APl which has a structure similar to the Axiom API. This section
briefly describes how this works. The anadysis refers to the following Geronimo
artifacts: or g. apache. ger oni no. specs: geroni no-j axb_2.2 _spec:1.0.1 (caled the
"APl bundle" hereafter), or g. apache. geroni no. bundl es: jaxb-inpl:2.2.3-1_1 (the
"implementation bundle"), or g. apache. ger oni no. specs: ger oni nb- 0osgi -l ocator: 1.0
(the "locator bundle") and or g. apache. ger oni no. specs: ger oni nb-osgi -registry: 1.0
(the "registry bundle"):

* The implementation bundle retains the VETA- | NF/ servi ces/
j avax. xm . bi nd. JAXBCont ext resource from the original artifact
(com sun. xmi . bi nd: j axb-i npl). In a non OSGi environment, that resource will be used to
discover the implementation, following the standard JDK 1.3 service discovery algorithm will (as
required by the JAXB specification). Thisisthe equivalent of our Requirement 1.

» The manifest of the implementation bundle has an attribute SPI - Pr ovi der: t r ue that indicates
that it contains provider implementations that are discovered using the JDK 1.3 service discovery.

» Theregistry bundle createsaBundl eTr acker that looksfor the SPI - Pr ovi der attributein active
bundles. For each bundle that has this attribute set to t r ue, it will scan the content of META- | NF/
servi ces and add the discovered services to aregistry (Note that the registry bundle supports other
ways to declare SPI providers, but thisis not really relevant for the present discussion).

e The Cont ext Fi nder class (the interface of which is defined by the JAXB specification and that is
used by the newl nst ance method in JAXBCont ext) in the API bundle delegates the discovery of
the SPI implementation to a static method of the Pr ovi der Locat or class defined by the locator
bundle (which is not specific to JAXB and is used by other API bundles as well). Thisistrue both in
an OSGi environment and in anon OSGi environment.

The build is configured (using a Pr i vat e- Package instruction) such that the classes of the locator
bundle are actually included into the API bundle, thus avoiding an additional dependency.

» TheProvi der Locat or classand related code provided by the locator bundleisdesigned such that in
anon OSGi environment, it will simply use JDK 1.3 servicediscovery to locate the SPI implementation,
without ever loading any OSGi specific class. On the other hand, in an OSGi environment, it will query
the registry maintained by the registry bundle to locate the provider. The reference to the registry is
injected into the Pr ovi der Locat or classusing abundle activator.

OSGi integration

New

 Finally, it should also be noted that the API bundle is configured with si ngl et on=t r ue. Thereis
indeed no meaningful way how providers could be matched with different versions of the same API
bundle.

This is an example of a particularly elegant way to satisfy Requirement 1, Requirement 2 and
Requirement 3, especially because it relies on the same metadata (the META- | NF/ ser vi ces/
j avax. xm . bi nd. JAXBCont ext resources) in OSGi and non OSGi environments.

Obviously, Axiom could reuse the registry and locator bundles developed by Geronimo. This however
would contradict Requirement 7. In addition, for Axiom thereis no requirement to strictly follow the JDK
1.3 service discovery agorithm. Therefore Axiom should reuse the pattern developed by Geronimo, but
not the actual implementation.

abstract APIs

Application code rarely uses DOOM as the default Axiom implementation. Several downstream projects
(e.g. the Axis2/Rampart combination) use both the default (LLOM) implementation and DOOM. They
select the implementation based on the particular context. As of Axiom 1.2.12, the only way to create
an object model instance with the DOOM implementation is to use the DOOMAbst r act Fact ory AP
or to instantiate one of the factory classes (OVDOVMet aFact ory, OVDOVFact ory or one of the
subclasses of DOVBQAPFact or y). All these classes are part of the axi om domartifact. Thisis clearly
in contradiction with Requirement 4 and Requirement 5.

To overcome this problem the Axiom APl must be enhanced to make it possible to select an Axiom
implementati on based on capabilities/features requested by the application code. E.g. inthe case of DOOM,
the application code would request afactory that implementsthe DOM API. It isthen up to the Axiom API
classes to locate an appropriate implementation, which may be DOOM or another drop-in replacement,
as per Requirement 5.

If multiple Axiom implementations are available (on the class path in non OSGi environment or deployed
asbundlesin an OSGi environment), then the Axiom APl must also be able to select an appropriate default
implementation if no specific feature is requested by the application code. This can be easily implemented
by defining a special feature called "default” that would be declared by any Axiom implementation that
is suitable as a default implementation.

0000000(: DOOM s generally not considered suitable as a default implementation because it doesn't
/ implement the complete Axiom API (e.g. it doesn't support OVSour cedEl enent) and
l | because the factory classes are not stateless.

Finally, to make the selection algorithm deterministic, there should also be aconcept of priority: if multiple
Axiom implementations are found for the same feature, then the Axiom APl would select the one with
the highest priority.

Thisleads to the following design:

1. Every Axiom implementation declares a set of features that it supports. A feature is simply identified
by a string. Two features are predefined by the Axiom API:

« def aul t : indicates that the implementation is a complete implementation of the Axiom APl and
may be used as a default implementation.

» dom indicates that the implementation supports DOM in addition to the Axiom API.

For every featureit declares, the Axiom implementation specifiesapriority, which isapositive integer.

OSGi integration

. Therelevant Axiom APIs are enhanced so that they take an optional argument specifying the feature

requested by the application code. If no explicit feature isrequested, then Axiomwill usethedef aul t
feature.

. To determine the OMMet aFact ory to be used, Axiom locates the implementations declaring the

requested feature and selects the one that has the highest priority for that feature.

A remaining question is how the implementation declares the feature/priority information. There are two
options:

Add amethodto OVMet aFact or y that allowsthe Axiom API to query thefeature/priority information
from the implementation (i.e. the features and priorities are hardcoded in the implementation).

Let the implementation provide this information declaratively in its metadata (either in the manifest
or in a separate resource with a well defined name). Note that in a non OSGi environment, such a
metadata resource must be used anyway to enable the Axiom API to locate the OVMet aFact ory
implementations. Therefore this would be a natural place to declare the features as well.

The second option has the advantage to make it easier for users to debug and tweak the implementation
discovery process (e.g. there may be aneed to customize the features and prioritiesdeclared by the different
implementations to ensure that the right implementation is chosen in a particular use case).

Thisleads to the following design decision: the features and priorities (together with the class name of the
OwMet aFact or y implementation) will be defined in an XML descriptor with resource name META-

I NF/ axi om xnl . The format of that descriptor must take into account that a single JAR may contain
several Axiom implementations (e.g. if the JAR is an uber-JAR repackaged from the standard Axiom
JARS).

Chapter 3. Li f ecycl eManager design
(Axiom 1.3)

ThelLi f ecycl eManager API isused by the MIME handling code in Axiom to manage the temporary
filesthat are used to buffer the content of attachment parts. TheLi f ecycl eManager implementationis
responsibleto track the temorary filesthat have been created and to ensure that they are deleted when they
areno longer used. In Axiom 1.2.x, this APl has multiple issues and aredesign is required for Axiom 1.3.

Issues with the Li f ecycl eManager APIin
Axiom 1.2.X

1

Temporary files that are not cleaned up explicitly by application code will only be removed when the
JVM stops (Li f ecycl eManager | npl registers a shutdown hook and maintains a list of files that
need to be deleted when the JVM exits). This means that temporary files may pile up, causing the file
system to fill.

. Li fecycl eManager asohasamethod del et eOnTi el nt er val that deletes afile after some

specified time interval. However, the implementation creates a new thread for each invocation of that
method, which is generally not acceptable in high performance use cases.

. One of the stated design goals (see AXIOM-192 [https://issues.apache.org/jira’lbrowse/AX10M-192))

of theLi f ecycl eManager APl wastowrapthefilesinFi | eAccessor objectsto “keep track of
activity that occurs on the files’. However, as pointed out in AXIOM-185 [https://issues.apache.org/
jiralbrowse/AXIOM-185], since Fi | eAccessor hasamethod that returns the corresponding Fi | e
object, this goal has not been reached.

. As noted in AXIOM-382 [https://issues.apache.org/jira/lbrowse/AXIOM-382], the fact that

Li f ecycl eManager | mpl registers a shutdown hook which is never unregistered causes a class
loader leak in J2EE environments.

. In an attempt to work around the issues related to Li f ecycl eManager (in particular the first

item above), AXIOM-185 [https://issues.apache.org/jiralbrowse/AXIOM-185] introduced another
class called At t achnment Cachelbni t or that implements a timer based mechanism to clean up
temporary files. However, this change causes other issues:

e The existence of this APl has a negative impact on Axiom's architectural integrity because it
has functionality that overlaps with Li f ecycl eManager . This means that we now have two
completely separate APIs that are expected to serve the same purpose, but none of them addresses
the problem properly.

« Attachment CachelMbni t or automatically createsatimer, but thereisno way to stop that timer.
This means that this API can only be used if Axiom is integrated into the container, but not when
it is deployed with an application.

Fortunately, that change was only meant as a workaround to solve a particular
issue in WebSphere (see APAR PK91497 [http://www-01.ibm.com/support/docview.wss?
rs=180& uid=swglPK91497]), and once the Li f ecycl eManager API is redesigned to solve that
issue, At t achnent CacheMoni t or no longer has areason to exist.

. Li fecycl eManager isan abstract APl (interface), but refersto Fi | eAccessor which is placed

inani npl package.

https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497

Li f ecycl eManager
design (Axiom 1.3)

7. Fi | eAccessor usestheMessagi ngExcept i on classfrom JavaMail, although Axiom no longer
relies on this API to parse or create MIME messages.

Cleanup strategy for temporary files

As pointed out in the previous section, one of the primary problems with the Li f ecycl eManager

APl in Axiom 1.2.x is that temporary files that are not cleaned up explicitly by application code (e.g.
using the pur geDat aSour ce method defined by Dat aHandl er Ext) are only removed when the
JVM exits. A timer based strategy that deletes temporary file after a given time interval (as proposed by
At t achnment CachelMoni t or) is not reliable because in some use cases, application code may keep a
reference to the attachment part for along time before accessing it again.

Theonly reliable strategy isto take advantage of finalization, i.e. to rely on the garbage collector to trigger
the deletion of temporary files that are no longer used. For this to work the design of the API (and its
default implementation) must satisfy the following two conditions:

1. All accessto the underlying file must be strictly encapsulated, so that thefileis only accessible aslong
asthereisastrong reference to the object that encapsulates the file access. Thisis necessary to ensure
that the file can be safely deleted once there is no longer a strong reference and the object is garbage
collected.

2. Javaguaranteesthat thefinalizer isinvoked before theinstanceisgarbage collected. However, instances
are not necessarily garbage collected before the VM exits, and in that case the finalizer is never
invoked. Therefore, the implementation must delete all existing temporary files when the VM exits.
The API design should al so takeinto account that someimplementationsof thelLi f ecycl eManager
APl may want to trigger this cleanup before the VM exits, e.g. when the J2EE application in which
Axiom is deployed is stopped.

The first condition can be satisfied by redesigning the Fi | eAccessor such that it never leaks
the name of the file it represents (neither as a String nor a File object). This in turn
means that the CachedFi | eDat aSour ce class must be removed from the Axiom API. In
addition, the get | nput St r eam method defined by Fi | eAccessor must no longer return a
simple Fi | el nput St r eam instance, but must use a wrapper that keeps a strong reference to the
Fi | eAccessor, sothat theFi | eAccessor can't be garbage collected while the input stream is till
in use.

To satisfy the second condition, one may want to use Fi | e#del et eOnExi t . However, this method
causes a native memory leak, especially when used with temporary files, which are expected to
have unique names (see bug 4513817 [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817]).
Therefore this can only be implemented using a shutdown hook. However, a shutdown hook will cause
a class loader leak if it is used improperly, e.g. if it is registered by an application deployed into a
J2EE container and not unregistered when that application is stopped. For this particular case, it is
possible to create a special Li f ecycl eManager implementation, but for this to work, the lifecycle
of this type of Li f ecycl eManager must be bound to the lifecycle of the application, e.g. using a
Ser vl et Cont ext Li st ener . Thisis not always possible and this approach is therefore not suitable
for the default Li f ecycl eManager implementation.

To avoid the class loader leak, the default Li f ecycl eManager implementation should register the
shutdown hook when thefirst temporary fileisregistered and automatically unregister the shutdown hook
again when there are no more temporary files. Thisimpliesthat the shutdown hook isrepeatedly registered
and unregistered. However, since these are relatively cheap operati ons', this should not be a concern.

ISince the JRE typically uses an | dent i t yHashMap to store shutdown hooks, the only overhead is caused by Java 2 security checks and
synchronization.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817

Li f ecycl eManager
design (Axiom 1.3)

An additional complication isthat when the shutdown hook is executed, the temporary files may till bein
use. This contrasts with the finalizer case where encapsulation guarantees that the file is no longer in use.
This situation doesn't cause an issue on Unix platforms (whereit is possible to delete afile while it is still
open), but needs to be handled properly on Windows. This can only be achieved if the Fi | eAccessor

keeps track of created streams, so that it can forcibly close the underlying Fi | el nput St r eamaobjects.

10

Chapter 4. Release process

Release preparation

The following items should be checked before starting the release process:

» Check for the latest Apache parent POM version (artifact or g. apache: apache) and if necessary,
change the parent of the Axiom root POM.

* Check the dependencies between Javapackagesintheaxi om api module. The org.apache.axiom.util
package (including its subpackages) is specified to contain utility classes that don't depend
on higher level APIs. More precisely, org.apache.axiom.util should only have dependencies on
org.apache.axiom.ext, but not e.g. on org.apache.axiom.om. SonarJ [http://www.hello2morrow.com/
products/sonarj] can be used to check these dependencies. The following figure shows the expected
structure:

Figure4.1. Package dependenciesfor r 944680

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
{1 attachments

— {1} -injection
{1 qttachments
o B
\\

{1 soap
i om
1 mime &} mime
= Bt util
[Ht stax
i1 debug {4 debug
{1} xop i1 xop
i1 dialect = 1} dialect
{1 <types in 'stax'> == (1} <types in 'stax'>
i1 wrapper = {1 wrapper
i} namespace == [{} namespace
41 blob 4} blob
{1 base64 \ ’ 'i"“‘-‘- {1 base64
1 activation {1 activation
5 B ext
1 activation {1 activation
it io i io
{1 stax “' t stax

g External

In contrast, the following figure shows an earlier trunk version of axi om api with incorrect layering
and cyclic dependencies involving org.apache.axiom.util:

11

http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj

Release process

Figure 4.2. Package dependencies for r939984

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
1 mime
= Bt util
[Ht stax
i1 debug
4 xop
i1 dialect
{1 <types in 'stax'>
i1 wrapper
i} namespace
{1 base64
1 activation

F [F E

41 blob

{1 attachments

1 soap

i om

B ext

i io

1 stax.datahandler
g External & External

0 = = [

(N

' {1 stax.datahandler

The check can also be done using jdepend-maven-plugin [http://mojo.codehaus.org/jdepend-maven-
plugin/]. To do this, execute the following command in the axi om api module:

nm/n j depend: generate

Thenopent arget/sitel/jdepend-report. htm and go thethe "Cycles' section. The report
should not show any package cycles involving org.apache.axiom.mime, org.apache.axiom.util and
org.apache.axiom.ext.

Check that the generated Javadoc contains the appropriate set of packages. In particular, unit test related
classes should be excluded, except for the test suite classes in org.apache.axiom.ts (we don't need to
hide the fact that we have areusable test suite...).

Check that all dependencies and plugins are available from standard repositories. To do this, clean the
local repository and execute mvn clean install followed by mvn site.

Check that the set of licensefilesinthel egal directory is complete and accurate.

Check that the Maven site conforms to the latest version of the Apache Project Branding Guidelines
[http://apache.org/foundation/marks/pmcs].

Check that the apache- r el ease profile can be executed properly. To do this, issue the following
command:

m/n clean install -Papache-rel ease -Dmaven.test. skip=true
Y ou may also execute adry run of the release process:
m/n rel ease: prepare -DdryRun=true

After this, you need to clean up using the following command:

12

http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs

Release process

mvn rel ease: cl ean

 Prepare the release note. This should include a description of the major changes in the rel ease as well
as alist of resolved JIRA issues. Note that both i ndex. apt and RELEASE- NOTE. t xt need to be
updated.

* Add an entry for the release to the downl oad. xm . vmfile and change the links for older releases
so that they point to ar chi ve. apache. or g (Since the Axiom project doesn't use branches and
produces releases directly from the trunk, there should only be a single mirrored release).

» Preview and validate the changes that will be done by the release plugin to the POM files. In order to
do this, execute the following command:

m/n rel ease: prepare -DdryRun=true -Dmaven.test. skip=true
Next, comparethepom xm . t ag filesto the corresponding pom xm files:
for pomin $(find . -nane "pomxm"); do diff $pom $pom tag; done

The differences should be limited to ver si on and scmtags. If necessary, change the origina POM
filesto avoid spurious changes. After that, clean up using:

mvn rel ease: cl ean

Prerequisites

The following things are required to perform the actual release:

» A PGP key that conforms to the requirement for Apache release signing [http://www.apache.org/dev/
release-signing.html]. To maketherelease process easier, the passphrase for the code signing key should
be configured in ${ user . honme}/. n2/ setti ngs. xnl :

<settings>

<profil es>
<profile>
<i d>apache-rel ease</i d>
<properties>
<gpg. passphrase><! -- KEY PASSPHRASE - - ></ gpg. passphrase>
</ properties>
</profile>
</profil es>

</ settings>

» The release process uses a Nexus staging repository. Every committer should have access to the
corresponding staging profile in Nexus. To validate this, loginto r eposi t ory. apache. or g and
check that you can seetheor g. apache. ws staging profile. The credentials used to deploy to Nexus
should be addedto set t i ngs. xmi :

<servers>
<server>
<i d>apache. rel eases. https</i d>
<user nane><!-- ASF usernane --></usernane>

13

http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html

Release process

<passwor d><!-- ASF LDAP password --></password>
</ server>

</ servers>

Release

In order to prepare the rel ease artifacts for vote, execute the following steps:

1
2.

8.

Update the release date in downl oad. xm . vmandi ndex. apt .

Temporarily disable the Jenkins build(s) for Axiom, in order to avoid accidental deployment of the
release candidate to the local repository of a Jenkins executor if the rel ease process fails somewhere
in the middle and/or a Jenkins build starts at the wrong moment.

Start the release process with the following command:
m/n rel ease: prepare

When asked for the "SCM release tag or label", override the default value (axi om x. y. z) by
entering atagintheformx. y. z, which is compatible with the tag names used for previous rel eases.

The above command will create atag in Subversion and increment the version number of the trunk
to the next development version. It will also createar el ease. properti es filethat will be used
in the next step.

Perform the release using the following command:
mvn rel ease: perform
Thiswill upload the release artifacts to the Nexus staging repository.

Log in to the Nexus repository (https://repository.apache.org/ and close the staging repository. The
name of the staging profile is or g. apache. ws. See http://maven.apache.org/devel opers/rel ease/
apache-rel ease.ntml for a more thorough description of this step.

Generate and deploy the Maven site on apublic Web server. Y ou may use peopl e. apache. or g
for this.

Start the release vote by sending a mail to dev@s. apache. or g. The mail should mention the
following things:

» Thelist of issues solved in the release (by linking to the relevant JIRA view).
» Thelocation of the Nexus staging repository.

» The location where source and binary packages may be downloaded. This can be a reference to
the location inside the staging repository.

* A link to the preview of the Maven site.

Reenabl e the Jenkins build(s).

If the vote passes, execute the following steps:

1.

Promote the artifacts in the staging repository. See http://maven.apache.org/devel opers/rel ease/
apache-release.html for detailed instructions for this step.

14

https://repository.apache.org/
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html

Release process

2. Logintopeopl e. apache. or g and publish therelease distributionsto www. apache. or g. The
et c/ di st. py script can be used for that:

cd /ww/ ww. apache. or g/ di st/ ws/ axi om
umask 0002
pyt hon path to etc/dist.py version

ver si on isthereleaseversion, e.g. 1. 2. 9.

If not yet done, export your public key and append it to the KEYS file located in / vww/
www. apache. or g/ di st/ ws/ axi om The command to export apublic key isas follows:

gpg --arnor --export key id

3. Check out the release tag from Subversion and generate the Maven site. Also check out the existing
site:

svn co https://svn. apache. org/repos/ asf/webservi ces\
/axiom site axiomsite

The existing site needs to be overwritten with the site generated for the new release. This can be done
easily usingtheet ¢/ syncsi t e. py script (requires Python 2.6). It will copy the files and execute
any necessary Subversion commands to add new files and to delete files that no longer exist. After
executing the script, commit the changes to Subversion.

When generating the site, please use arecent JDK version, because some older versions
generate broken links.

4. Logintopeopl e. apache. or g and update the site:

cd /ww/ ws. apache. or g/ axi om
umask 0002
svn update

The umask setting makes sure that other members of the ws group will be able to update the site
aswell.

It may take severa hours before all the updates have been synchronized to the relevant ASF systems.
Before proceeding, check that

 the Maven artifacts for the release are available from the Maven central repository;
 the Maven site has been synchronized to http://ws.apache.org/axion;
» the binary and source distributions can be downloaded from http://ws.apache.org/axiom/download.cgi.

Once everything is in place, send announcements to users@ws. apache.org and
announce@pache. or g. Since the two lists have different conventions, audiences and moderation
policies, to send the announcement separately to the two lists.

Sample annhouncement:

Apache Axiom Team is pleased to announce the release of Axiom x.y.z. Thereleaseis
available for download at:

http://ws.apache.org/axiom/download.cgi

15

http://ws.apache.org/axiom/
http://ws.apache.org/axiom/download.cgi

Release process

Apache Axiom is a StAX-based, XML Infoset compliant object model which supports
on-demand building of the object tree. It supports a novel "pull-through” model which
allows one to turn off the tree building and directly access the underlying pull event
stream. It also has built in support for XML Optimized Packaging (XOP) and MTOM,
the combination of which allows XML to carry binary data efficiently and in a
transparent manner. The combination of these is an easy to use APl with a very high
performant architecture!

Developed as part of Apache Axis2, Apache Axiom is the core of Apache Axis2.
However, it is a pure standalone XML Infoset model with novel features and can be
used independently of Apache Axis2.

Highlightsin thisrelease:

Resolved JRA issues:

e [WSCOMMONS-513] Behavior of insertSiblingAfter and insertSiblingBefore is not
well defined for orphan nodes

» [WSCOMMONS-488] The sequence of events produced by OM StAXWrapper with
inlineM TOM=fa se isinconsistent

For users@s. apache. org, the subject (“Axiom x.y.z released’) should be prefixed with
“[ANN][Axiom]”, while for announce@pache. org “[ANN]” is enough. Note that mail to
announce@pache. or g must be sent from an apache. or g address.

Post-release actions

» Update the DOAPfile (see et ¢/ axi om r df) and add a new entry for the release.
 Update the status of the release version in the AXIOM project in JIRA.

* Remove archived releases from /www/ www. apache. or g/ di st/ ws/axi om on
peopl e. apache. org.

References

The following documents are useful when preparing and executing the release:

» ASF Source Header and Copyright Notice Policy [http://www.apache.org/legal/src-headers.html]
» Apache Project Branding Guidelines [http://apache.org/foundation/marks/pmcs]

» DOAP Files [http://projects.apache.org/doap.htmi]

* Publishing Releases [http://www.apache.org/dev/rel ease-publishing.html]

16

http://www.apache.org/legal/src-headers.html
http://www.apache.org/legal/src-headers.html
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://projects.apache.org/doap.html
http://projects.apache.org/doap.html
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html

Chapter 5. The StAX specification

The StAX specification comprises two parts: a specification document titled “ Streaming APl For XML
JSR-173 Specification” and a Javadoc describing the API. Both can be downloaded from the JSR-173
page [http://jcp.org/en/jsr/detail 7id=173]. Since StAX is part of Java 6, the Javadocs can also be viewed
online [http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html].

Semantics of the set Pr ef i x method

Probably one of the more obscure parts of the StAX specifications is the meaning of the set Pr ef i x!
method defined by XMLSt r eamW i t er . To understand how this method works, it is necessary to |ook
at different parts of the specification:

» The Javadoc of the set Pr ef i x method.

« Thetable shown in the Javadoc of the XM_St r eamW i t er classin Java 6%

» Section 5.2.2, “Binding Prefixes’ of the specification.

» The example shown in section 5.3.2, “XML StreamWriter” of the specification.
In addition, it isimportant to note the following facts:

» The terms defaulting prefixes used in section 5.2.2 of the specification and namespace repairing used
in the Javadocs of XMLSt r eamW i t er are synonyms.

* The methods writing namespace qualified information items, i.e. writeStartEl enent,
writ eEnpt yEl enent andwr i t eAttri but e al comeintwo variants: one that takes anamespace
URI and a prefix as arguments and one that only takes a namespace URI, but no prefix.

The purpose of the set Prefi x method is simply to define the prefixes that will be used by the
variantsof thewr i t eSt art El enent ,wri t eEnpt yEl enent andwr i t eAt t ri but e methodsthat
only take a namespace URI (and the local name). This becomes clear by looking at the table in the
XMLSt ream i t er Javadoc. Note that a call to set Pr ef i x doesn't cause any output and it is still
necessary to usewr i t eNanespace to actually write the necessary namespace declarations. Otherwise
the produced document will not be well formed with respect to namespaces.

The Javadoc of theset Pr ef i x method also clearly definesthe scope of the prefix bindings defined using
that method: aprefix bound using set Pr ef i x remainsvalidtill theinvocation of wr i t eEndEl enent
corresponding to the last invocation of wr i t eSt ar t El erent . While not explicitly mentioned in the
specifications, it is clear that a prefix binding may be masked by another binding for the same prefix
defined in anested element.

An aspect that may cause confusion is the fact that in the example shown in section 5.3.2 of the
specifications, the callsto set Pr ef i x (and set Def aul t Nanmespace) al appear immediately before
acdl towiteStartEl enent or witeEnpt yEl enent. This may lead people to incorrectly
believe that a prefix binding defined using set Pr ef i x only applies to the next element written®.
This interpretation is clearly in contradiction with the set Pr ef i x Javadoc, unless one assumes that

Yror simplicity, we only discussset Pr ef i x here. The same remarks also apply to set Def aul t Namespace.

2Thistableis not included in the Javadoc in the original StAX specification.

3Another factor that contributes to the confusion isthat in SAX, prefix mappings are always generated before the corresponding st ar t El enent

event and that their scope ends with the corresponding endEl enent event. Thisis so because the Cont ent Handl er interface specifies that
“al start PrefixMappi ng events will occur immediately before the corresponding st ar t El enent event, and al endPr ef i xMappi ng
events will occur immediately after the corresponding endEl emrent event”.

17

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html

The StAX specification

“the current START_ELEMENT / END_ELEMENT pair” means the element opened by a cal to
writeStart El enent immediately following the call to set Pr ef i x. This however would be avery
arbitrary interpretation of the Javadoc®.

The correctness of the comments in the previous paragraph can be checked using the following code
snippet:

XMLQut put Factory f = XM.Qut put Fact ory. newl nst ance();
XM.StreamWiter witer = f.createXM.StreanWiter(System out);
witer.witeStartEl ement("root");

witer.setPrefix("p", "urn:nsl");
witer.witeEnptyEl ement("urn:nsl", "elenmentl");
witer.witeEnptyEl ement("urn:nsl", "elenment2");

witer.witeEndEl ement();
witer.flush();
witer.close();

This produces the following outputs:
<r oot ><p: el enent 1/ ><p: el enent 2/ ></ r oot >

Since the code doesn't call wr i t eNanespace, the output is obviously not well formed with respect to
namespaces, but it also clearly shows that the scope of the prefix binding for p extends to the end of the
root element andisnot limited to el enent 1.

To avoid unexpected results and keep the code maintainable, it isin general advisable to keep the callsto
set Prefi xandw i t eNamespace aligned, i.e. to make surethat the scope in XMLSt r eamW i t er)
of the prefix binding defined by set Pr ef i x is compatible with the scope (in the produced document)
of the namespace declaration written by the corresponding call to wr i t eNarmespace. This makes it
necessary to write code like this:

witer.witeStartEl enent("p", "elementl", "urn:nsl");
witer.setPrefix("p", "urn:nsl");
witer.witeNanmespace("p", "urn:nsl");

As can be seen from this code snippet, keeping the two scopes in sync makes it necessary to use the
writeStart El enent variant which takes an explicit prefix. Note that this somewhat conflicts with
the purpose of the set Pr ef i x method; one may consider this as aflaw in the design of the StAX API.

The three XMLSt reanWW | t er usage patterns

Drawing the conclusions from the previous section and taking into account that XMLSt r eamV i t er
also has a “namespace repairing” mode, one can see that there are in fact three different ways to use
XMLSt reamW i t er . These usage patterns correspond to the three bullets in section 5.2.2 of the StAX
specificatione:

1 In the “namespace repairing” mode (enabled by the
javax. xnl . stream i sRepai ri ngNamespaces property), the writer takes care of all

4Early versions of XL XP-J were based on this interpretation of the specifications, but this has been corrected. Versions conforming to
the specifications support a specia property called j avax. xm . stream XMLSt reamW i ter. i sSet Prefi xBeforeStartEl enent,
which always returns Bool ean. FALSE. This alows to easily distinguish the non conforming versions from the newer versions. Note that in
contrast to what the usage of the reserved j avax. xm . st r eamprefix suggests, thisis a vendor specific property that is not supported by other
implementations.

SThis has been tested with Woodstox 3.2.9, SISXP 1.0.1 and version 1.2.0 of the reference implementation.

5The content of this section is largely based on a reply posted by Tatu Saloranta on the Axiom mailing list [http://markmail.org/message/
olsdl3p3gciggeob]. Tatu isthe main developer of the Woodstox project.

18

http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob

The StAX specification

namespace bindings and declarations, with minimal help from the calling code. This will aways
produce output that is well-formed with respect to namespaces. On the other hand, this adds some
overhead and the result may depend on the particular StAX implementation (though the result produced
by different implementations will be equivalent).

In repairing mode the calling code should avoid writing namespaces explicitly and leave that job to the
writer. Thereisalso no need to call set Pr ef i x, except to suggest apreferred prefix for a namespace
URI. All variantsof wr i t eSt art El ement ,wri t eEnpt YEI ement andwri t eAttri but e may
be used in this mode, but the implementation can choose whatever prefix mapping it wants, aslong as
the output resultsin proper URI mapping for elements and attributes.

. Only use the variants of the writer methods that take an explicit prefix together with the namespace
URI. Inthis usage pattern, set Pr ef i x isnot used at all and it isthe responsibility of the calling code
to keep track of prefix bindings.

Note that this approach is difficult to implement when different parts of the output document
will be produced by different components (or even different libraries). Indeed, when passing the
XMLSt reamW i t er from one method or component to the other, it will also be necessary to pass
additional information about the prefix mappingsin scope at that moment, unlesstheit is acceptable to
let the called method write (potentially redundant) namespace declarations for all namespaces it uses.

. Use set Prefi x to keep track of prefix bindings and make sure that the bindings are in sync with
the namespace declarations that have been written, i.e. dwaysuseset Pr ef i x immediately before or
immediately after each call towr i t eNanmespace. Notethat the codeis still freeto use al variants of
witeStart El enent,witeEnptyEl enent andwiteAttribute;itonly needsto make
sure that the usage it makes of these methods is consistent with the prefix bindings in scope.

The advantage of this approach is that it allows to write modular code: when a method receives an
XML_St ream i t er object (to write part of the document), it can use the namespace context of that
writer (i.e. get Pr ef i x andget NamespaceCont ext) to determine which namespace declarations
are currently in scope in the output document and to avoid redundant or conflicting namespace
declarations. Note that in order to do so, such code will have to check for an existing prefix binding
before starting to use a namespace.

19

Appendix A. Appendix

Installing IBM's JDK on Debian Linux

1

Make surethat f aker oot andj ava- package areinstalled:
apt-get install fakeroot java-package

Download the . t gz version of the JDK from http://www.ibm.com/devel operworks/javaljdk/linux/
download.html.

Edit / usr/ shar e/ j ava- package/i bm j 2sdk. sh and (if necessary) add an entry for the
particular version of the IBM JDK downloaded in the previous step.

Build a Debian package from the tarball:
$ fakeroot nake-jpkg xxxx.tgz

Install the Debian package.

20

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

