
Axiom Developer Guide

Axiom Developer Guide
1.2.14

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

iii

Table of Contents
1. Working with the Axiom source code ... 1

Importing the Axiom source code into Eclipse ... 1
Testing ... 1

Unit test organization .. 1
Testing Axiom with different StAX implementations .. 1

2. OSGi integration ... 3
Requirements ... 3
Analysis of the Geronimo JAXB bundles .. 5
New abstract APIs .. 6

3. LifecycleManager design (Axiom 1.3) ... 8
Issues with the LifecycleManager API in Axiom 1.2.x ... 8
Cleanup strategy for temporary files .. 9

4. Release process ... 11
Release preparation ... 11
Prerequisites ... 13
Release ... 14
Post-release actions ... 16
References ... 16

5. The StAX specification .. 17
Semantics of the setPrefix method ... 17
The three XMLStreamWriter usage patterns .. 18

A. Appendix .. 20
Installing IBM's JDK on Debian Linux ... 20

iv

List of Figures
4.1. Package dependencies for r944680 ... 11
4.2. Package dependencies for r939984 ... 12

1

Chapter 1. Working with the Axiom
source code
Importing the Axiom source code into Eclipse

In order to import the Axiom source code into Eclipse with the Maven Eclipse plugin, use the following
command:

mvn -DskipTests=true -DdownloadSources=true install eclipse:eclipse

Testing

Unit test organization
Historically, all unit tests were placed in the axiom-tests project. One specific problem with this is
that since all tests are in a common Maven module which depends on both axiom-impl and axiom-
dom, it is not rare to see DOOM tests that accidentally use the LLOM implementation (which is the
default). The project description in axiom-tests/pom.xml indicates that it was the intention to split
the axiom-tests project into several parts and make them part of axiom-api, axiom-impl and
axiom-dom. This reorganization is not complete yet1. For new test cases (or when refactoring existing
tests), the following guidelines should be applied:

1. Tests that validate the code in axiom-api and that do not require an Axiom implementation to execute
should be placed in axiom-api. This primarily applies to tests that validate utility classes in axiom-
api.

2. The code of unit tests that apply to all Axiom implementations and that check conformance to the
specifications of the Axiom API should be added to axiom-api and executed in axiom-impl and
axiom-dom. Currently, the recommended way is to create a base class in axiom-api (with suffix
TestBase) and to create subclasses in axiom-impl and axiom-dom. This makes sure that the
DOOM tests never accidentally use LLOM (because axiom-impl is not a dependency of axiom-
dom).

3. Tests that check integration with other libraries should be placed in axiom-integration. Note that
this is the only module that requires Java 1.5 (so that e.g. integration with JAXB2 can be tested).

4. Tests related to code in axiom-api and requiring an Axiom implementation to execute, but that don't
fall into category 2 should stay in axiom-tests.

Testing Axiom with different StAX implementations
The following StAX implementations are available to test compatibility with Axiom:

Woodstox
This is the StAX implementation that Axiom uses by default.

Sun Java Streaming XML Parser (SJSXP)
This implementation is available as Maven artifact com.sun.xml.stream:sjsxp:1.0.1.

1See AXIOM-311 [https://issues.apache.org/jira/browse/AXIOM-311].

https://issues.apache.org/jira/browse/AXIOM-311
https://issues.apache.org/jira/browse/AXIOM-311

Working with the Axiom source code

2

StAX Reference Implementation
The reference implementation was written by BEA and is available as Maven artifact
stax:stax:1.2.0. The homepage is http://stax.codehaus.org/Home. Note that the JAR doesn't
contain the necessary files to enable service discovery. Geronimo's implementation of the StAX API
library will not be able to locate the reference implementation unless the following system properties
are set:

javax.xml.stream.XMLInputFactory=com.bea.xml.stream.MXParserFactory
javax.xml.stream.XMLOutputFactory=com.bea.xml.stream.XMLOutputFactoryBase

XL XP-J
“XL XML Processor for Java” is IBM's implementation of StAX 1.0 and is part of IBM's JRE/JDK v6.
Note that due to an agreement between IBM and Sun, IBM's Java implementation for the Windows
platform is not available as a separate download, but only bundled with another IBM product, e.g.
WebSphere Application Server for Developers [http://www.ibm.com/developerworks/downloads/ws/
wasdevelopers/].

On the other hand, the JDK for Linux can be downloaded as a separate package from the
developerWorks site. There are versions for 32-bit x86 (“xSeries”) and 64-bit AMD. They are
available as RPMs and tarballs. To install the JDK properly on a Debian based system (including
Ubuntu), follow the instructions given in the section called “Installing IBM's JDK on Debian Linux”.

http://stax.codehaus.org/Home
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/

3

Chapter 2. OSGi integration
Requirements

Requirement 1. The Axiom artifacts SHOULD be usable both as normal JAR files and as OSGi
bundles.

The alternative would be to produce two sets of artifacts during the build. This should be
avoided in order to keep the build process as simple as possible. It should also be noted that
the Geronimo Spec artifacts also meet this requirement.

Requirement 2. All APIs defined by the axiom-api module, and in particular the
OMAbstractFactory API MUST continue to work as expected in an OSGi environment, so that code
in downstream projects doesn't need to be rewritten.

Requirement 3. OMAbstractFactory MUST select the same implementation regardless of
the type of container (OSGi or non OSGi). The only exception is related to the usage of system
properties to specify the default OMMetaFactory implementation: in an OSGi environment, selecting
an implementation class using a system property is not meaningful.

This is currently not the case. In a non OSGi environment, recent versions of Axiom use JDK
1.3 service discovery to locate the default implementation and fall back to LLOM if none is
found. DOOM will never be selected as the default implementation. On the other hand, the
current OSGi integration will select any Axiom implementation as default implementation,
but gives priority to LLOM.

Requirement 4. The bundles for the LLOM and DOOM implementations MUST NOT export any
packages. This is required to keep a clean separation between the public API and implementation
specific classes and to make sure that the implementations can be modified without the risk of breaking
existing code. An exception MAY be made for factory classes related to foreign APIs, such as the
DocumentBuilderFactory implementation for an Axiom implementation supporting DOM.

When the Axiom artifacts are used as normal JAR files in a Maven build, this requirement
implies that they should be used in scope runtime.

Although this requirement is easy to implement for the Axiom project, there are currently a
couple of issues in the downstreams project that need to be addressed to make this work:

• As explained in AXIS2-4902 [https://issues.apache.org/jira/browse/AXIS2-4902], there
are many places in Axis2 that still refer directly to Axiom implementation classes.

• The axis2-saaj module is tightly coupled to axiom-dom. Making this work will
probably require using maven-shade-plugin to include (a relocated copy of) the
DOOM classes into axis2-saaj.

• Abdera extends the LLOM implementation. Probably, some maven-shade-plugin
magic will be required here as well to create Abdera OSGi bundles that work properly
with the Axiom bundles.

Requirement 5. It MUST be possible to use a non standard (third party) Axiom implementation as
a drop-in replacement for the standard LLOM and DOOM implementation, i.e. the axiom-impl and
axiom-dom bundles. It MUST be possible to replace axiom-impl (resp. axiom-dom) by any Axiom
implementation that supports the full Axiom API (resp. that supports DOM in addition to the Axiom API),
without the need to change any application code.

https://issues.apache.org/jira/browse/AXIS2-4902
https://issues.apache.org/jira/browse/AXIS2-4902

OSGi integration

4

This requirement has several important implications:

• It restricts the allowable exceptions to Requirement 4.

• It implies that there must be an API that allows application code to select an Axiom
implementation based on its capabilities (e.g. DOM support) without introducing a hard
dependency on a particular Axiom implementation.

• In accordance with Requirement 2 and Requirement 3 this requirement not only applies
to an OSGi environment, but extends to non OSGi environments as well.

Requirement 6. The OSGi integration SHOULD remove the necessity for downstreams projects to
produce their own custom OSGi bundles for Axiom. There SHOULD be one and only one set of OSGi
bundles for Axiom, namely the ones released by the Axiom project.

Currently there are at least two projects that create their own modified Axiom bundles:

• Apache Geronimo has a custom Axiom bundle to support the Axis2 integration.

• ServiceMix also has a custom bundles for Axiom. However, this bundle only seem
to exist to support their own custom Abdera bundle, which is basically an incorrect
repackaging of the original Abdera code. See SMX4-877 [https://issues.apache.org/jira/
browse/SMX4-877] for more details.

Note that this requirement can't be satisfied directly by Axiom. It requires that the above
mentioned projects (Geronimo, Axis2 and Abdera) use Axiom in a way that is compatible
with its design, and in particular with Requirement 4. Nevertheless, Axiom must provide the
necessary APIs and features to meet the needs of these projects.

Requirement 7. The Axiom OSGi integration SHOULD NOT rely on any particular OSGi framework
such as Felix SCR (Declarative Services). When deployed in an OSGi environment, Axiom should have
the same runtime dependencies as in a non OSGi environment (i.e. StAX, Activation and JavaMail).

Axiom 1.2.12 relies on Felix SCR. Although there is no real issue with that, getting rid of
this extra dependency is seen as a nice to have. One of the reasons for using Felix SCR was
to avoid introducing OSGi specific code into Axiom. However, there is no issue with having
such code, provided that Requirement 8 is satisfied.

Requirement 8. In a non OSGi environment, Axiom MUST NOT have any OSGi related dependencies.
That means that the OSGi integration must be written in such a way that no OSGi specific classes are ever
loaded in a non OSGi environment.

Requirement 9. The OSGi integration MUST follow established best practices. It SHOULD be inspired
by what has been done to add OSGi integration to APIs that have a similar structure as Axiom.

Axiom is designed around an abstract API and allows for the existence of multiple
independent implementations. A factory (OMAbstractFactory) is used to locate
and instantiate the desired implementation. This is similar to APIs such as JAXP
(DocumentBuilderFactory, etc.) and JAXB (JAXBContext). These APIs have been
successfully "OSGi-fied" e.g. by the Apache Geronimo project. Instead of reinventing the
wheel, we should leverage that work and adapt it to Axiom's specific requirements.

It should be noted that because of the way the Axiom API is designed and taking into account
Requirement 2, it is not possible to make Axiom entirely compatible with OSGi paradigms
(the same is true for JAXB). In an OSGi-only world, each Axiom implementation would
simply expose itself as an OSGi service (of type OMMetaFactory e.g.) and code depending

https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877

OSGi integration

5

on Axiom would bind to one (or more) of these services depending on its needs. That is not
possible because it would conflict with Requirement 2.

Non-Requirement 1. APIs such as JAXP and JAXB have been designed from the start for inclusion
into the JRE. They need to support scenarios where an application bundles its own implementation
(e.g. an application may package a version of Apache Xerces, which would then be instantiated
by the newInstance method in DocumentBuilderFactory). That implies that the selected
implementation depends on the thread context class loader. It is assumed that there is no such requirement
for Axiom, which means that in a non OSGi environment, the Axiom implementations are always loaded
from the same class loader as the axiom-api JAR.

This (non-)requirement is actually not directly relevant for the OSGi support, but it
nevertheless has some importance because of Requirement 3 (which implies that the
OSGi support needs to be designed in parallel with the implementation discovery strategy
applicable in a non OSGi environment).

Analysis of the Geronimo JAXB bundles
As noted in Requirement 9 the Apache Geronimo has successfully added OSGi support
to the JAXB API which has a structure similar to the Axiom API. This section
briefly describes how this works. The analysis refers to the following Geronimo
artifacts: org.apache.geronimo.specs:geronimo-jaxb_2.2_spec:1.0.1 (called the
"API bundle" hereafter), org.apache.geronimo.bundles:jaxb-impl:2.2.3-1_1 (the
"implementation bundle"), org.apache.geronimo.specs:geronimo-osgi-locator:1.0
(the "locator bundle") and org.apache.geronimo.specs:geronimo-osgi-registry:1.0
(the "registry bundle"):

• The implementation bundle retains the META-INF/services/
javax.xml.bind.JAXBContext resource from the original artifact
(com.sun.xml.bind:jaxb-impl). In a non OSGi environment, that resource will be used to
discover the implementation, following the standard JDK 1.3 service discovery algorithm will (as
required by the JAXB specification). This is the equivalent of our Requirement 1.

• The manifest of the implementation bundle has an attribute SPI-Provider: true that indicates
that it contains provider implementations that are discovered using the JDK 1.3 service discovery.

• The registry bundle creates a BundleTracker that looks for the SPI-Provider attribute in active
bundles. For each bundle that has this attribute set to true, it will scan the content of META-INF/
services and add the discovered services to a registry (Note that the registry bundle supports other
ways to declare SPI providers, but this is not really relevant for the present discussion).

• The ContextFinder class (the interface of which is defined by the JAXB specification and that is
used by the newInstance method in JAXBContext) in the API bundle delegates the discovery of
the SPI implementation to a static method of the ProviderLocator class defined by the locator
bundle (which is not specific to JAXB and is used by other API bundles as well). This is true both in
an OSGi environment and in a non OSGi environment.

The build is configured (using a Private-Package instruction) such that the classes of the locator
bundle are actually included into the API bundle, thus avoiding an additional dependency.

• The ProviderLocator class and related code provided by the locator bundle is designed such that in
a non OSGi environment, it will simply use JDK 1.3 service discovery to locate the SPI implementation,
without ever loading any OSGi specific class. On the other hand, in an OSGi environment, it will query
the registry maintained by the registry bundle to locate the provider. The reference to the registry is
injected into the ProviderLocator class using a bundle activator.

OSGi integration

6

• Finally, it should also be noted that the API bundle is configured with singleton=true. There is
indeed no meaningful way how providers could be matched with different versions of the same API
bundle.

This is an example of a particularly elegant way to satisfy Requirement 1, Requirement 2 and
Requirement 3, especially because it relies on the same metadata (the META-INF/services/
javax.xml.bind.JAXBContext resources) in OSGi and non OSGi environments.

Obviously, Axiom could reuse the registry and locator bundles developed by Geronimo. This however
would contradict Requirement 7. In addition, for Axiom there is no requirement to strictly follow the JDK
1.3 service discovery algorithm. Therefore Axiom should reuse the pattern developed by Geronimo, but
not the actual implementation.

New abstract APIs
Application code rarely uses DOOM as the default Axiom implementation. Several downstream projects
(e.g. the Axis2/Rampart combination) use both the default (LLOM) implementation and DOOM. They
select the implementation based on the particular context. As of Axiom 1.2.12, the only way to create
an object model instance with the DOOM implementation is to use the DOOMAbstractFactory API
or to instantiate one of the factory classes (OMDOMMetaFactory, OMDOMFactory or one of the
subclasses of DOMSOAPFactory). All these classes are part of the axiom-dom artifact. This is clearly
in contradiction with Requirement 4 and Requirement 5.

To overcome this problem the Axiom API must be enhanced to make it possible to select an Axiom
implementation based on capabilities/features requested by the application code. E.g. in the case of DOOM,
the application code would request a factory that implements the DOM API. It is then up to the Axiom API
classes to locate an appropriate implementation, which may be DOOM or another drop-in replacement,
as per Requirement 5.

If multiple Axiom implementations are available (on the class path in non OSGi environment or deployed
as bundles in an OSGi environment), then the Axiom API must also be able to select an appropriate default
implementation if no specific feature is requested by the application code. This can be easily implemented
by defining a special feature called "default" that would be declared by any Axiom implementation that
is suitable as a default implementation.

DOOM is generally not considered suitable as a default implementation because it doesn't
implement the complete Axiom API (e.g. it doesn't support OMSourcedElement) and
because the factory classes are not stateless.

Finally, to make the selection algorithm deterministic, there should also be a concept of priority: if multiple
Axiom implementations are found for the same feature, then the Axiom API would select the one with
the highest priority.

This leads to the following design:

1. Every Axiom implementation declares a set of features that it supports. A feature is simply identified
by a string. Two features are predefined by the Axiom API:

• default: indicates that the implementation is a complete implementation of the Axiom API and
may be used as a default implementation.

• dom: indicates that the implementation supports DOM in addition to the Axiom API.

For every feature it declares, the Axiom implementation specifies a priority, which is a positive integer.

OSGi integration

7

2. The relevant Axiom APIs are enhanced so that they take an optional argument specifying the feature
requested by the application code. If no explicit feature is requested, then Axiom will use the default
feature.

3. To determine the OMMetaFactory to be used, Axiom locates the implementations declaring the
requested feature and selects the one that has the highest priority for that feature.

A remaining question is how the implementation declares the feature/priority information. There are two
options:

• Add a method to OMMetaFactory that allows the Axiom API to query the feature/priority information
from the implementation (i.e. the features and priorities are hardcoded in the implementation).

• Let the implementation provide this information declaratively in its metadata (either in the manifest
or in a separate resource with a well defined name). Note that in a non OSGi environment, such a
metadata resource must be used anyway to enable the Axiom API to locate the OMMetaFactory
implementations. Therefore this would be a natural place to declare the features as well.

The second option has the advantage to make it easier for users to debug and tweak the implementation
discovery process (e.g. there may be a need to customize the features and priorities declared by the different
implementations to ensure that the right implementation is chosen in a particular use case).

This leads to the following design decision: the features and priorities (together with the class name of the
OMMetaFactory implementation) will be defined in an XML descriptor with resource name META-
INF/axiom.xml. The format of that descriptor must take into account that a single JAR may contain
several Axiom implementations (e.g. if the JAR is an uber-JAR repackaged from the standard Axiom
JARs).

8

Chapter 3. LifecycleManager design
(Axiom 1.3)

The LifecycleManager API is used by the MIME handling code in Axiom to manage the temporary
files that are used to buffer the content of attachment parts. The LifecycleManager implementation is
responsible to track the temorary files that have been created and to ensure that they are deleted when they
are no longer used. In Axiom 1.2.x, this API has multiple issues and a redesign is required for Axiom 1.3.

Issues with the LifecycleManager API in
Axiom 1.2.x

1. Temporary files that are not cleaned up explicitly by application code will only be removed when the
JVM stops (LifecycleManagerImpl registers a shutdown hook and maintains a list of files that
need to be deleted when the JVM exits). This means that temporary files may pile up, causing the file
system to fill.

2. LifecycleManager also has a method deleteOnTimeInterval that deletes a file after some
specified time interval. However, the implementation creates a new thread for each invocation of that
method, which is generally not acceptable in high performance use cases.

3. One of the stated design goals (see AXIOM-192 [https://issues.apache.org/jira/browse/AXIOM-192])
of the LifecycleManager API was to wrap the files in FileAccessor objects to “keep track of
activity that occurs on the files”. However, as pointed out in AXIOM-185 [https://issues.apache.org/
jira/browse/AXIOM-185], since FileAccessor has a method that returns the corresponding File
object, this goal has not been reached.

4. As noted in AXIOM-382 [https://issues.apache.org/jira/browse/AXIOM-382], the fact that
LifecycleManagerImpl registers a shutdown hook which is never unregistered causes a class
loader leak in J2EE environments.

5. In an attempt to work around the issues related to LifecycleManager (in particular the first
item above), AXIOM-185 [https://issues.apache.org/jira/browse/AXIOM-185] introduced another
class called AttachmentCacheMonitor that implements a timer based mechanism to clean up
temporary files. However, this change causes other issues:

• The existence of this API has a negative impact on Axiom's architectural integrity because it
has functionality that overlaps with LifecycleManager. This means that we now have two
completely separate APIs that are expected to serve the same purpose, but none of them addresses
the problem properly.

• AttachmentCacheMonitor automatically creates a timer, but there is no way to stop that timer.
This means that this API can only be used if Axiom is integrated into the container, but not when
it is deployed with an application.

Fortunately, that change was only meant as a workaround to solve a particular
issue in WebSphere (see APAR PK91497 [http://www-01.ibm.com/support/docview.wss?
rs=180&uid=swg1PK91497]), and once the LifecycleManager API is redesigned to solve that
issue, AttachmentCacheMonitor no longer has a reason to exist.

6. LifecycleManager is an abstract API (interface), but refers to FileAccessor which is placed
in an impl package.

https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497

LifecycleManager
design (Axiom 1.3)

9

7. FileAccessor uses the MessagingException class from JavaMail, although Axiom no longer
relies on this API to parse or create MIME messages.

Cleanup strategy for temporary files
As pointed out in the previous section, one of the primary problems with the LifecycleManager
API in Axiom 1.2.x is that temporary files that are not cleaned up explicitly by application code (e.g.
using the purgeDataSource method defined by DataHandlerExt) are only removed when the
JVM exits. A timer based strategy that deletes temporary file after a given time interval (as proposed by
AttachmentCacheMonitor) is not reliable because in some use cases, application code may keep a
reference to the attachment part for a long time before accessing it again.

The only reliable strategy is to take advantage of finalization, i.e. to rely on the garbage collector to trigger
the deletion of temporary files that are no longer used. For this to work the design of the API (and its
default implementation) must satisfy the following two conditions:

1. All access to the underlying file must be strictly encapsulated, so that the file is only accessible as long
as there is a strong reference to the object that encapsulates the file access. This is necessary to ensure
that the file can be safely deleted once there is no longer a strong reference and the object is garbage
collected.

2. Java guarantees that the finalizer is invoked before the instance is garbage collected. However, instances
are not necessarily garbage collected before the JVM exits, and in that case the finalizer is never
invoked. Therefore, the implementation must delete all existing temporary files when the JVM exits.
The API design should also take into account that some implementations of the LifecycleManager
API may want to trigger this cleanup before the JVM exits, e.g. when the J2EE application in which
Axiom is deployed is stopped.

The first condition can be satisfied by redesigning the FileAccessor such that it never leaks
the name of the file it represents (neither as a String nor a File object). This in turn
means that the CachedFileDataSource class must be removed from the Axiom API. In
addition, the getInputStream method defined by FileAccessor must no longer return a
simple FileInputStream instance, but must use a wrapper that keeps a strong reference to the
FileAccessor, so that the FileAccessor can't be garbage collected while the input stream is still
in use.

To satisfy the second condition, one may want to use File#deleteOnExit. However, this method
causes a native memory leak, especially when used with temporary files, which are expected to
have unique names (see bug 4513817 [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817]).
Therefore this can only be implemented using a shutdown hook. However, a shutdown hook will cause
a class loader leak if it is used improperly, e.g. if it is registered by an application deployed into a
J2EE container and not unregistered when that application is stopped. For this particular case, it is
possible to create a special LifecycleManager implementation, but for this to work, the lifecycle
of this type of LifecycleManager must be bound to the lifecycle of the application, e.g. using a
ServletContextListener. This is not always possible and this approach is therefore not suitable
for the default LifecycleManager implementation.

To avoid the class loader leak, the default LifecycleManager implementation should register the
shutdown hook when the first temporary file is registered and automatically unregister the shutdown hook
again when there are no more temporary files. This implies that the shutdown hook is repeatedly registered
and unregistered. However, since these are relatively cheap operations1, this should not be a concern.

1Since the JRE typically uses an IdentityHashMap to store shutdown hooks, the only overhead is caused by Java 2 security checks and
synchronization.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817

LifecycleManager
design (Axiom 1.3)

10

An additional complication is that when the shutdown hook is executed, the temporary files may still be in
use. This contrasts with the finalizer case where encapsulation guarantees that the file is no longer in use.
This situation doesn't cause an issue on Unix platforms (where it is possible to delete a file while it is still
open), but needs to be handled properly on Windows. This can only be achieved if the FileAccessor
keeps track of created streams, so that it can forcibly close the underlying FileInputStream objects.

11

Chapter 4. Release process

Release preparation
The following items should be checked before starting the release process:

• Check for the latest Apache parent POM version (artifact org.apache:apache) and if necessary,
change the parent of the Axiom root POM.

• Check the dependencies between Java packages in the axiom-api module. The org.apache.axiom.util
package (including its subpackages) is specified to contain utility classes that don't depend
on higher level APIs. More precisely, org.apache.axiom.util should only have dependencies on
org.apache.axiom.ext, but not e.g. on org.apache.axiom.om. SonarJ [http://www.hello2morrow.com/
products/sonarj] can be used to check these dependencies. The following figure shows the expected
structure:

Figure 4.1. Package dependencies for r944680

In contrast, the following figure shows an earlier trunk version of axiom-api with incorrect layering
and cyclic dependencies involving org.apache.axiom.util:

http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj

Release process

12

Figure 4.2. Package dependencies for r939984

The check can also be done using jdepend-maven-plugin [http://mojo.codehaus.org/jdepend-maven-
plugin/]. To do this, execute the following command in the axiom-api module:

mvn jdepend:generate

Then open target/site/jdepend-report.html and go the the "Cycles" section. The report
should not show any package cycles involving org.apache.axiom.mime, org.apache.axiom.util and
org.apache.axiom.ext.

• Check that the generated Javadoc contains the appropriate set of packages. In particular, unit test related
classes should be excluded, except for the test suite classes in org.apache.axiom.ts (we don't need to
hide the fact that we have a reusable test suite...).

• Check that all dependencies and plugins are available from standard repositories. To do this, clean the
local repository and execute mvn clean install followed by mvn site.

• Check that the set of license files in the legal directory is complete and accurate.

• Check that the Maven site conforms to the latest version of the Apache Project Branding Guidelines
[http://apache.org/foundation/marks/pmcs].

• Check that the apache-release profile can be executed properly. To do this, issue the following
command:

mvn clean install -Papache-release -Dmaven.test.skip=true

You may also execute a dry run of the release process:

mvn release:prepare -DdryRun=true

After this, you need to clean up using the following command:

http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs

Release process

13

mvn release:clean

• Prepare the release note. This should include a description of the major changes in the release as well
as a list of resolved JIRA issues. Note that both index.apt and RELEASE-NOTE.txt need to be
updated.

• Add an entry for the release to the download.xml.vm file and change the links for older releases
so that they point to archive.apache.org (Since the Axiom project doesn't use branches and
produces releases directly from the trunk, there should only be a single mirrored release).

• Preview and validate the changes that will be done by the release plugin to the POM files. In order to
do this, execute the following command:

mvn release:prepare -DdryRun=true -Dmaven.test.skip=true

Next, compare the pom.xml.tag files to the corresponding pom.xml files:

for pom in $(find . -name "pom.xml"); do diff $pom $pom.tag; done

The differences should be limited to version and scm tags. If necessary, change the original POM
files to avoid spurious changes. After that, clean up using:

mvn release:clean

Prerequisites
The following things are required to perform the actual release:

• A PGP key that conforms to the requirement for Apache release signing [http://www.apache.org/dev/
release-signing.html]. To make the release process easier, the passphrase for the code signing key should
be configured in ${user.home}/.m2/settings.xml:

<settings>
 ...
 <profiles>
 <profile>
 <id>apache-release</id>
 <properties>
 <gpg.passphrase><!-- KEY PASSPHRASE --></gpg.passphrase>
 </properties>
 </profile>
 </profiles>
 ...
</settings>

• The release process uses a Nexus staging repository. Every committer should have access to the
corresponding staging profile in Nexus. To validate this, login to repository.apache.org and
check that you can see the org.apache.ws staging profile. The credentials used to deploy to Nexus
should be added to settings.xml:

<servers>
 ...
 <server>
 <id>apache.releases.https</id>
 <username><!-- ASF username --></username>

http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html

Release process

14

 <password><!-- ASF LDAP password --></password>
 </server>
 ...
</servers>

Release
In order to prepare the release artifacts for vote, execute the following steps:

1. Update the release date in download.xml.vm and index.apt.

2. Temporarily disable the Jenkins build(s) for Axiom, in order to avoid accidental deployment of the
release candidate to the local repository of a Jenkins executor if the release process fails somewhere
in the middle and/or a Jenkins build starts at the wrong moment.

3. Start the release process with the following command:

mvn release:prepare

When asked for the "SCM release tag or label", override the default value (axiom-x.y.z) by
entering a tag in the form x.y.z, which is compatible with the tag names used for previous releases.

The above command will create a tag in Subversion and increment the version number of the trunk
to the next development version. It will also create a release.properties file that will be used
in the next step.

4. Perform the release using the following command:

mvn release:perform

This will upload the release artifacts to the Nexus staging repository.

5. Log in to the Nexus repository (https://repository.apache.org/ and close the staging repository. The
name of the staging profile is org.apache.ws. See http://maven.apache.org/developers/release/
apache-release.html for a more thorough description of this step.

6. Generate and deploy the Maven site on a public Web server. You may use people.apache.org
for this.

7. Start the release vote by sending a mail to dev@ws.apache.org. The mail should mention the
following things:

• The list of issues solved in the release (by linking to the relevant JIRA view).

• The location of the Nexus staging repository.

• The location where source and binary packages may be downloaded. This can be a reference to
the location inside the staging repository.

• A link to the preview of the Maven site.

8. Reenable the Jenkins build(s).

If the vote passes, execute the following steps:

1. Promote the artifacts in the staging repository. See http://maven.apache.org/developers/release/
apache-release.html for detailed instructions for this step.

https://repository.apache.org/
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html

Release process

15

2. Log in to people.apache.org and publish the release distributions to www.apache.org. The
etc/dist.py script can be used for that:

cd /www/www.apache.org/dist/ws/axiom
umask 0002
python path_to_etc/dist.py version

version is the release version, e.g. 1.2.9.

If not yet done, export your public key and append it to the KEYS file located in /www/
www.apache.org/dist/ws/axiom. The command to export a public key is as follows:

gpg --armor --export key_id

3. Check out the release tag from Subversion and generate the Maven site. Also check out the existing
site:

svn co https://svn.apache.org/repos/asf/webservices\
/axiom/site axiom-site

The existing site needs to be overwritten with the site generated for the new release. This can be done
easily using the etc/syncsite.py script (requires Python 2.6). It will copy the files and execute
any necessary Subversion commands to add new files and to delete files that no longer exist. After
executing the script, commit the changes to Subversion.

When generating the site, please use a recent JDK version, because some older versions
generate broken links.

4. Log in to people.apache.org and update the site:

cd /www/ws.apache.org/axiom/
umask 0002
svn update

The umask setting makes sure that other members of the ws group will be able to update the site
as well.

It may take several hours before all the updates have been synchronized to the relevant ASF systems.
Before proceeding, check that

• the Maven artifacts for the release are available from the Maven central repository;

• the Maven site has been synchronized to http://ws.apache.org/axiom/;

• the binary and source distributions can be downloaded from http://ws.apache.org/axiom/download.cgi.

Once everything is in place, send announcements to users@ws.apache.org and
announce@apache.org. Since the two lists have different conventions, audiences and moderation
policies, to send the announcement separately to the two lists.

Sample announcement:

Apache Axiom Team is pleased to announce the release of Axiom x.y.z. The release is
available for download at:

http://ws.apache.org/axiom/download.cgi

http://ws.apache.org/axiom/
http://ws.apache.org/axiom/download.cgi

Release process

16

Apache Axiom is a StAX-based, XML Infoset compliant object model which supports
on-demand building of the object tree. It supports a novel "pull-through" model which
allows one to turn off the tree building and directly access the underlying pull event
stream. It also has built in support for XML Optimized Packaging (XOP) and MTOM,
the combination of which allows XML to carry binary data efficiently and in a
transparent manner. The combination of these is an easy to use API with a very high
performant architecture!

Developed as part of Apache Axis2, Apache Axiom is the core of Apache Axis2.
However, it is a pure standalone XML Infoset model with novel features and can be
used independently of Apache Axis2.

Highlights in this release:

• ...

• ...

Resolved JIRA issues:

• [WSCOMMONS-513] Behavior of insertSiblingAfter and insertSiblingBefore is not
well defined for orphan nodes

• [WSCOMMONS-488] The sequence of events produced by OMStAXWrapper with
inlineMTOM=false is inconsistent

For users@ws.apache.org, the subject (“Axiom x.y.z released”) should be prefixed with
“[ANN][Axiom]”, while for announce@apache.org “[ANN]” is enough. Note that mail to
announce@apache.org must be sent from an apache.org address.

Post-release actions
• Update the DOAP file (see etc/axiom.rdf) and add a new entry for the release.

• Update the status of the release version in the AXIOM project in JIRA.

• Remove archived releases from /www/www.apache.org/dist/ws/axiom on
people.apache.org.

References
The following documents are useful when preparing and executing the release:

• ASF Source Header and Copyright Notice Policy [http://www.apache.org/legal/src-headers.html]

• Apache Project Branding Guidelines [http://apache.org/foundation/marks/pmcs]

• DOAP Files [http://projects.apache.org/doap.html]

• Publishing Releases [http://www.apache.org/dev/release-publishing.html]

http://www.apache.org/legal/src-headers.html
http://www.apache.org/legal/src-headers.html
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://projects.apache.org/doap.html
http://projects.apache.org/doap.html
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html

17

Chapter 5. The StAX specification
The StAX specification comprises two parts: a specification document titled “Streaming API For XML
JSR-173 Specification” and a Javadoc describing the API. Both can be downloaded from the JSR-173
page [http://jcp.org/en/jsr/detail?id=173]. Since StAX is part of Java 6, the Javadocs can also be viewed
online [http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html].

Semantics of the setPrefix method
Probably one of the more obscure parts of the StAX specifications is the meaning of the setPrefix1

method defined by XMLStreamWriter. To understand how this method works, it is necessary to look
at different parts of the specification:

• The Javadoc of the setPrefix method.

• The table shown in the Javadoc of the XMLStreamWriter class in Java 62.

• Section 5.2.2, “Binding Prefixes” of the specification.

• The example shown in section 5.3.2, “XMLStreamWriter” of the specification.

In addition, it is important to note the following facts:

• The terms defaulting prefixes used in section 5.2.2 of the specification and namespace repairing used
in the Javadocs of XMLStreamWriter are synonyms.

• The methods writing namespace qualified information items, i.e. writeStartElement,
writeEmptyElement and writeAttribute all come in two variants: one that takes a namespace
URI and a prefix as arguments and one that only takes a namespace URI, but no prefix.

The purpose of the setPrefix method is simply to define the prefixes that will be used by the
variants of the writeStartElement, writeEmptyElement and writeAttribute methods that
only take a namespace URI (and the local name). This becomes clear by looking at the table in the
XMLStreamWriter Javadoc. Note that a call to setPrefix doesn't cause any output and it is still
necessary to use writeNamespace to actually write the necessary namespace declarations. Otherwise
the produced document will not be well formed with respect to namespaces.

The Javadoc of the setPrefix method also clearly defines the scope of the prefix bindings defined using
that method: a prefix bound using setPrefix remains valid till the invocation of writeEndElement
corresponding to the last invocation of writeStartElement. While not explicitly mentioned in the
specifications, it is clear that a prefix binding may be masked by another binding for the same prefix
defined in a nested element.

An aspect that may cause confusion is the fact that in the example shown in section 5.3.2 of the
specifications, the calls to setPrefix (and setDefaultNamespace) all appear immediately before
a call to writeStartElement or writeEmptyElement. This may lead people to incorrectly
believe that a prefix binding defined using setPrefix only applies to the next element written3.
This interpretation is clearly in contradiction with the setPrefix Javadoc, unless one assumes that

1For simplicity, we only discuss setPrefix here. The same remarks also apply to setDefaultNamespace.
2This table is not included in the Javadoc in the original StAX specification.
3Another factor that contributes to the confusion is that in SAX, prefix mappings are always generated before the corresponding startElement
event and that their scope ends with the corresponding endElement event. This is so because the ContentHandler interface specifies that
“all startPrefixMapping events will occur immediately before the corresponding startElement event, and all endPrefixMapping
events will occur immediately after the corresponding endElement event”.

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html

The StAX specification

18

“the current START_ELEMENT / END_ELEMENT pair” means the element opened by a call to
writeStartElement immediately following the call to setPrefix. This however would be a very
arbitrary interpretation of the Javadoc4.

The correctness of the comments in the previous paragraph can be checked using the following code
snippet:

XMLOutputFactory f = XMLOutputFactory.newInstance();
XMLStreamWriter writer = f.createXMLStreamWriter(System.out);
writer.writeStartElement("root");
writer.setPrefix("p", "urn:ns1");
writer.writeEmptyElement("urn:ns1", "element1");
writer.writeEmptyElement("urn:ns1", "element2");
writer.writeEndElement();
writer.flush();
writer.close();

This produces the following output5:

<root><p:element1/><p:element2/></root>

Since the code doesn't call writeNamespace, the output is obviously not well formed with respect to
namespaces, but it also clearly shows that the scope of the prefix binding for p extends to the end of the
root element and is not limited to element1.

To avoid unexpected results and keep the code maintainable, it is in general advisable to keep the calls to
setPrefix and writeNamespace aligned, i.e. to make sure that the scope (in XMLStreamWriter)
of the prefix binding defined by setPrefix is compatible with the scope (in the produced document)
of the namespace declaration written by the corresponding call to writeNamespace. This makes it
necessary to write code like this:

writer.writeStartElement("p", "element1", "urn:ns1");
writer.setPrefix("p", "urn:ns1");
writer.writeNamespace("p", "urn:ns1");

As can be seen from this code snippet, keeping the two scopes in sync makes it necessary to use the
writeStartElement variant which takes an explicit prefix. Note that this somewhat conflicts with
the purpose of the setPrefix method; one may consider this as a flaw in the design of the StAX API.

The three XMLStreamWriter usage patterns
Drawing the conclusions from the previous section and taking into account that XMLStreamWriter
also has a “namespace repairing” mode, one can see that there are in fact three different ways to use
XMLStreamWriter. These usage patterns correspond to the three bullets in section 5.2.2 of the StAX
specification6:

1. In the “namespace repairing” mode (enabled by the
javax.xml.stream.isRepairingNamespaces property), the writer takes care of all

4Early versions of XL XP-J were based on this interpretation of the specifications, but this has been corrected. Versions conforming to
the specifications support a special property called javax.xml.stream.XMLStreamWriter.isSetPrefixBeforeStartElement,
which always returns Boolean.FALSE. This allows to easily distinguish the non conforming versions from the newer versions. Note that in
contrast to what the usage of the reserved javax.xml.stream prefix suggests, this is a vendor specific property that is not supported by other
implementations.
5This has been tested with Woodstox 3.2.9, SJSXP 1.0.1 and version 1.2.0 of the reference implementation.
6The content of this section is largely based on a reply posted by Tatu Saloranta on the Axiom mailing list [http://markmail.org/message/
olsdl3p3gciqqeob]. Tatu is the main developer of the Woodstox project.

http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob

The StAX specification

19

namespace bindings and declarations, with minimal help from the calling code. This will always
produce output that is well-formed with respect to namespaces. On the other hand, this adds some
overhead and the result may depend on the particular StAX implementation (though the result produced
by different implementations will be equivalent).

In repairing mode the calling code should avoid writing namespaces explicitly and leave that job to the
writer. There is also no need to call setPrefix, except to suggest a preferred prefix for a namespace
URI. All variants of writeStartElement, writeEmptyElement and writeAttribute may
be used in this mode, but the implementation can choose whatever prefix mapping it wants, as long as
the output results in proper URI mapping for elements and attributes.

2. Only use the variants of the writer methods that take an explicit prefix together with the namespace
URI. In this usage pattern, setPrefix is not used at all and it is the responsibility of the calling code
to keep track of prefix bindings.

Note that this approach is difficult to implement when different parts of the output document
will be produced by different components (or even different libraries). Indeed, when passing the
XMLStreamWriter from one method or component to the other, it will also be necessary to pass
additional information about the prefix mappings in scope at that moment, unless the it is acceptable to
let the called method write (potentially redundant) namespace declarations for all namespaces it uses.

3. Use setPrefix to keep track of prefix bindings and make sure that the bindings are in sync with
the namespace declarations that have been written, i.e. always use setPrefix immediately before or
immediately after each call to writeNamespace. Note that the code is still free to use all variants of
writeStartElement, writeEmptyElement and writeAttribute; it only needs to make
sure that the usage it makes of these methods is consistent with the prefix bindings in scope.

The advantage of this approach is that it allows to write modular code: when a method receives an
XMLStreamWriter object (to write part of the document), it can use the namespace context of that
writer (i.e. getPrefix and getNamespaceContext) to determine which namespace declarations
are currently in scope in the output document and to avoid redundant or conflicting namespace
declarations. Note that in order to do so, such code will have to check for an existing prefix binding
before starting to use a namespace.

20

Appendix A. Appendix
Installing IBM's JDK on Debian Linux

1. Make sure that fakeroot and java-package are installed:

apt-get install fakeroot java-package

2. Download the .tgz version of the JDK from http://www.ibm.com/developerworks/java/jdk/linux/
download.html.

3. Edit /usr/share/java-package/ibm-j2sdk.sh and (if necessary) add an entry for the
particular version of the IBM JDK downloaded in the previous step.

4. Build a Debian package from the tarball:

$ fakeroot make-jpkg xxxx.tgz

5. Install the Debian package.

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

