Axiom Developer Guide

Axiom Developer Guide
129

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS |S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

T = 11 o [PPSO UPPPTTRSPPIN 1
Uit tESE OFGANIZALIONceeetieeeeit ettt ettt e et e e et e e e e et e e e ent e eeenes 1
Testing Axiom with different SIAX implementationsccouvviiiiiiiiiiii e 1

2. REIBASE PIOCESS ... ceeiii ettt ettt ettt et et 3
REIEASE PIrEPAIELiONieeiii ettt 3
PrEIEOUISITES ... ettt ettt e et e e e s 7
REIBASE ...t e 8
POSE-TEIBASE @CHIONS ...ttt ettt et e s 8
REFEIENCES ..ot e 8

3. The SEAX SPECITICAIIONuu ittt e ettt e e e et e e e enb e eees 9
Semantics of the set Prefi X Method ..o 9
The three XMLSt r eamNV i t er USage PAtEINSccevuneiiiiiieeeeei e 10

AL APPENTIX ettt e et e e e et e et et e e eaba e aee 12
Installing IBM'S JDK 0N DEDIAN LINUX ...covvuiiiiiiiieiiiii e 12

List of Figures

2.1. Package dependencies fOr r944680cc.uuieiiiiiieeeiii et
2.2. Package dependencies fOr 1939984coouuii i

Chapter 1. Testing

Unit test organization

Historically, all unit tests were placed in the axi ont t est s project. One specific problem with thisis
that since all tests are in a common Maven module which depends on both axi om i npl and axi om

dom it is not rare to see DOOM tests that accidentally use the LLOM implementation (which is the
default). The project descriptioninaxi om t est s/ pom xmi indicates that it was the intention to split
the axi omt est s project into several parts and make them part of axi om api , axi om i npl and
axi om dom This reorganization is not complete yetl. For new test cases (or when refactoring existing
tests), the following guidelines should be applied:

1. Teststhat validatethecodeinaxi om api andthat do not require an Axiomimplementation to execute
should be placedinaxi om api . Thisprimarily appliesto teststhat validate utility classesinaxi om

api .

2. The code of unit tests that apply to all Axiom implementations and that check conformance to the
specifications of the Axiom API should be added to axi om api and executed in axi om i npl and
axi om dom Currently, the recommended way isto create a base classin axi om api (with suffix
Test Base) and to create subclasses in axi om i npl and axi om dom This makes sure that the
DOOM tests never accidentally use LLOM (because axi om i npl isnot a dependency of axi om

dom).

3. Teststhat check integration with other libraries should beplacedinaxi om i nt egr at i on. Notethat
thisisthe only module that requires Java 1.5 (so that e.g. integration with JAXB2 can be tested).

4. Testsrelated to codeinaxi om api and requiring an Axiom implementation to execute, but that don't
fall into category 2 should stay inaxi om t est s.

Testing Axiom with different StAX
Implementations

The following StAX implementations are available to test compatibility with Axiom:

Woodstox Thisisthe StAX implementation that Axiom uses by default.

Sun Java Streaming XML Parser This implementation is avalable as Maven artifact
(SISXP) com sun. xm . stream sj sxp: 1. 0. 1.

StAX Reference Implementation The reference implementation was written by BEA and is

available as Maven artifact st ax: st ax: 1. 2. 0. The homepage
ishttp://stax.codehaus.org/Home. Notethat the JAR doesn't contain
the necessary files to enable service discovery. Geronimo's
implementation of the StAX API library will not be able to
locate the reference implementation unless the following system
properties are set:

j avax. xm . stream XM.I nput Fact or y=com bea. xnl . st r eam MXPal
j avax. xm . stream XM_CQut put Fact ory=com bea. xm . st r eam XML

1See WSCOMMONS-419 [https://issues.apache.org/jira/browse/ WSCOMMONS-419].

http://stax.codehaus.org/Home
https://issues.apache.org/jira/browse/WSCOMMONS-419
https://issues.apache.org/jira/browse/WSCOMMONS-419

Testing

XL XP-J

“XL XML Processor for Java’ is IBM's implementation of
StAX 1.0 and is part of IBM's JRE/JDK v6. Note that
due to an agreement between IBM and Sun, IBM's Java
implementation for the Windows platform is not available as
a separate download, but only bundled with another 1BM
product, e.g. WebSphere Application Server for Developers[http://
www.ibm.com/devel operworks/downl oads/ws/wasdevel opers/].

On the other hand, the JDK for Linux can be downloaded as a
separate package from the devel operWorks site. There are versions
for 32-bit x86 (“xSeries’) and 64-bit AMD. They are available
as RPMs and tarballs. To install the JDK properly on a Debian
based system (including Ubuntu), follow the instructions given in
the section called “Installing IBM's JDK on Debian Linux”.

http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/

Chapter 2. Release process

Release preparation

The following items should be checked before starting the release process:

» Check for the latest Apache parent POM version (artifact or g. apache: apache) and if necessary,
change the parent of the Axiom root POM.

* Check the dependencies between Javapackagesintheaxi om api module. The org.apache.axiom.util
package (including its subpackages) is specified to contain utility classes that don't depend
on higher level APIs. More precisely, org.apache.axiom.util should only have dependencies on
org.apache.axiom.ext, but not e.g. on org.apache.axiom.om. SonarJ [http://www.hello2morrow.com/

products/sonarj] can be used to check these dependencies. The following figure shows the expected
structure:

http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj

Release process

Figure 2.1. Package dependencies for r 944680

Release process

In contrast, the following figure shows an earlier trunk version of axi ont api with incorrect layering
and cyclic dependencies involving org.apache.axiom.util:

Release process

Figure 2.2. Package dependencies for r939984

Release process

Check that the generated Javadoc contains the appropriate set of packages. In particular, unit test related
classes should be excluded.

Check that all dependencies and plugins are available from standard repositories. To do this, clean the
local repository and execute mvn clean install followed by mvn site.

Check that the set of licensefilesinthel egal directory is complete and accurate.

Check that the Maven site conforms to the latest version of the Apache Project Branding Guidelines
[http://apache.org/foundation/marks/pmcs).

» Check that the apache- r el ease profile can be executed properly. To do this, issue the following
command:

m/n cl ean install -Papache-rel ease -Draven.test. skip=true
Y ou may also execute adry run of the release process:

mvn rel ease: prepare -DdryRun=true

After this, you need to clean up using the following command:

m/n rel ease: cl ean

* Prepare the release note. This should include a description of the major changes in the release as well
asalist of resolved JIRA issues. Note that both i ndex. apt and RELEASE- NOTE. t xt need to be
updated.

» Check thedownl oad. xm filefor releases that are no longer available from the mirrors and change
the corresponding entries so that they point to the archives.

* Preview and validate the changes that will be done by the release plugin to the POM files. In order to
do this, execute the following command:

m/n rel ease: prepare -DdryRun=true
Next, compare thepom xm . t ag filesto the corresponding pom xm files:
for pomin $(find . -nane "pomxm"); do diff $pom $pomtag; done

The differences should be limited to ver si on and scmtags. If necessary, change the origina POM
filesto avoid spurious changes. After that, clean up using:

mvn rel ease: cl ean

Prerequisites

The following things are required to perform the actual release:

» A PGP key that conforms to the requirement for Apache release signing [http://www.apache.org/dev/
release-signing.html]. To maketherelease process easier, the passphrase for the code signing key should
be configured in ${ user . hone}/. m2/ setti ngs. xm :

<settings>

<profil es>

http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html

Release process

<profil e>
<i d>apache-rel ease</i d>
<properties>
<gpg. passphrase> <!-- YOUR KEY PASSPHRASE --> </ gpg. passphrase>
</ properties>
</profile>
</profil es>

</.s;a;cti ngs>
Release

1. Addanentry for therelease to thedownl oad. xm file.
2. Start the release process with the following command:
mvn rel ease: prepare

When asked for the "SCM release tag or label”, override the default value (axi om x. y. z) by
entering atag intheform x. y. z, which is compatible with the tag names used for previous rel eases.

The above command will create atag in Subversion and increment the version number of the trunk
to the next development version. It will also createar el ease. properti es filethat will be used
in the next step.

3. Perform the release using the following command:
mvn rel ease: perform

Thiswill upload the release artifacts to the Nexus staging repository.

To be continued.

Post-release actions

» Update the DOAPfile (see et ¢/ axi om r df) and add a new entry for the release.

References

The following documents are useful when preparing and executing the release:

» ASF Source Header and Copyright Notice Poalicy [http://www.apache.org/legal/src-headers.html]
» Apache Project Branding Guidelines [http://apache.org/foundation/marks/pmcs]

» DOAP Files [http://projects.apache.org/doap.htmi]

* Publishing Releases [http://www.apache.org/dev/rel ease-publishing.htmi]

http://www.apache.org/legal/src-headers.html
http://www.apache.org/legal/src-headers.html
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://projects.apache.org/doap.html
http://projects.apache.org/doap.html
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html

Chapter 3. The StAX specification

The StAX specification comprises two parts: a specification document titled “ Streaming APl For XML
JSR-173 Specification” and a Javadoc describing the API. Both can be downloaded from the JSR-173
page [http://jcp.org/en/jsr/detail 7id=173]. Since StAX is part of Java 6, the Javadocs can aso be viewed
online [http://java.sun.com/javase/6/docs api/javax/xml/stream/package-summary.html].

Semantics of the set Pr ef i x method

Probably one of the more obscure parts of the StAX specifications is the meaning of the set Pr ef i xt
method defined by XMLSt r eamW i t er . To understand how this method works, it is necessary to look
at different parts of the specification:

» The Javadoc of the set Pr ef i x method.

« Thetable shown in the Javadoc of the XM_St r eamW i t er classin Java 6%

e Section 5.2.2, “Binding Prefixes’ of the specification.

» The example shown in section 5.3.2, “XML StreamWriter” of the specification.
In addition, it isimportant to note the following facts:

» The terms defaulting prefixes used in section 5.2.2 of the specification and namespace repairing used
in the Javadocs of XMLSt r eamW i t er are synonyms.

* The methods writing namespace qualified information items, i.e. writeStartEl ement,
writ eEnpt yEl enent andwr i t eAt tri but e all comeintwo variants: onethat takes anamespace
URI and a prefix as arguments and one that only takes a namespace URI, but no prefix.

The purpose of the set Prefi x method is simply to define the prefixes that will be used by the
variantsof thewr i t eSt art El enent ,wri t eEnpt yEI enent andwri t eAt t ri but e methodsthat
only take a namespace URI (and the local name). This becomes clear by looking at the table in the
XM.St reamW i t er Javadoc. Note that a call to set Pr ef i X doesn't cause any output and it is still
necessary to usewr i t eNanespace to actually write the necessary namespace declarations. Otherwise
the produced document will not be well formed with respect to namespaces.

The Javadoc of theset Pr ef i x method also clearly definesthe scope of the prefix bindings defined using
that method: aprefix bound using set Pr ef i x remainsvalidtill theinvocation of wr i t eEndEl enent
corresponding to the last invocation of wri t eSt ar t El enent . While not explicitly mentioned in the
specifications, it is clear that a prefix binding may be masked by another binding for the same prefix
defined in a nested element.

An aspect that may cause confusion is the fact that in the example shown in section 5.3.2 of the
specifications, the callsto set Pr ef i x (and set Def aul t Nanespace) al appear immediately before
acdl towiteStartEl enent or witeEnpt yEl enent. This may lead people to incorrectly
believe that a prefix binding defined using set Pr ef i x only applies to the next element written®.
This interpretation is clearly in contradiction with the set Pr ef i x Javadoc, unless one assumes that
“the current START_ELEMENT / END_ELEMENT pair" means the element opened by a cal to

ror simplicity, we only discussset Pr ef i x here. The same remarks also apply to set Def aul t Namespace.

3Another factor that contributes to the confusion isthat in SAX, prefix mappings are always generated before the corresponding st ar t El enent
event and that their scope ends with the corresponding endEl enent event. Thisis so because the Cont ent Handl er interface specifies that
“al start PrefixMappi ng events will occur immediately before the corresponding st ar t El enent event, and al endPr ef i xMappi ng
events will occur immediately after the corresponding endEl emrent event”.

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/package-summary.html

The StAX specification

writeStart El enent immediately following the call to set Pr ef i x. This however would be avery
arbitrary interpretation of the Javadoc®.

The correctness of the comments in the previous paragraph can be checked using the following code
snippet:

XMLQut put Factory f = XM.Qut put Fact ory. new nst ance() ;
XM.StreamWiter witer = f.createXM.StreanmWiter(System out);
witer.witeStartEl ement("root");

witer.setPrefix("p", "urn:nsl");
witer.witeEnptyEl ement("urn:nsl", "elenmentl");
witer.witeEnptyEl ement("urn:nsl", "elenment2");

witer.witeEndEl ement();
witer.flush();
witer.close();

This produces the following output5:
<r oot ><p: el enent 1/ ><p: el emrent 2/ ></ r oot >

Since the code doesn't call wr i t eNanmespace, the output is obviously not well formed with respect to
namespaces, but it also clearly shows that the scope of the prefix binding for p extends to the end of the
r oot element andisnot limited to el ement 1.

To avoid unexpected results and keep the code maintainable, it isin general advisable to keep the callsto
set Prefi xandw i t eNanespace aligned, i.e. to make surethat thescope (in XMLSt r eanW i t er)
of the prefix binding defined by set Pr ef i x is compatible with the scope (in the produced document)
of the namespace declaration written by the corresponding call to wr i t eNanmespace. This makes it
necessary to write code like this:

witer.witeStartEl ement("p", "elenentl", "urn:nsl");
witer.setPrefix("p", "urn:nsl");
witer.witeNamespace("p", "urn:nsl");

As can be seen from this code snippet, keeping the two scopes in sync makes it necessary to use the
writeStart El enent variant which takes an explicit prefix. Note that this somewhat conflicts with
the purpose of the set Pr ef i x method; one may consider this as aflaw in the design of the StAX API.

The three XMLSt reanWW i t er usage patterns

Drawing the conclusions from the previous section and taking into account that XMLSt r eamW i t er
also has a “namespace repairing” mode, one can see that there are in fact three different ways to use
XML.St r eamW i t er . These usage patterns correspond to the three bullets in section 5.2.2 of the StAX
specificationﬁ:

1 In the “namespace repairing” mode (enabled by the
javax. xnl . stream i sRepai ri ngNamespaces property), the writer takes care of all

4Early versions of XL XP-J were based on this interpretation of the specifications, but this has been corrected. Versions conforming to
the specifications support a specia property called j avax. xm . stream XMLSt reamW i ter. i sSet Prefi xBeforeStartEl enent,
which always returns Bool ean. FALSE. This alows to easily distinguish the non conforming versions from the newer versions. Note that in
contrast to what the usage of the reserved j avax. xm . st r eamprefix suggests, thisis a vendor specific property that is not supported by other
implementations.

SThis has been tested with Woodstox 3.2.9, SISXP 1.0.1 and version 1.2.0 of the reference implementation.

5The content of this section is largely based on a reply posted by Tatu Saloranta on the Axiom mailing list [http://markmail.org/message/
olsdl3p3gciggeob]. Tatu isthe main developer of the Woodstox project.

10

http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob
http://markmail.org/message/olsdl3p3gciqqeob

The StAX specification

namespace bindings and declarations, with minimal help from the calling code. This will aways
produce output that is well-formed with respect to namespaces. On the other hand, this adds some
overhead and the result may depend on the particular StAX implementation (though the result produced
by different implementations will be equivalent).

In repairing mode the calling code should avoid writing namespaces explicitly and leave that job to the
writer. Thereisalso no need to call set Pr ef i x, except to suggest apreferred prefix for a namespace
URI. All variantsof wr i t eSt art El ement ,wri t eEnpt YEI ement andwri t eAttri but e may
be used in this mode, but the implementation can choose whatever prefix mapping it wants, aslong as
the output resultsin proper URI mapping for elements and attributes.

. Only use the variants of the writer methods that take an explicit prefix together with the namespace
URI. Inthis usage pattern, set Pr ef i x isnot used at all and it isthe responsibility of the calling code
to keep track of prefix bindings.

Note that this approach is difficult to implement when different parts of the output document
will be produced by different components (or even different libraries). Indeed, when passing the
XMLSt reamW i t er from one method or component to the other, it will also be necessary to pass
additional information about the prefix mappingsin scope at that moment, unlesstheit is acceptable to
let the called method write (potentially redundant) namespace declarations for all namespaces it uses.

. Use set Prefi x to keep track of prefix bindings and make sure that the bindings are in sync with
the namespace declarations that have been written, i.e. dwaysuseset Pr ef i x immediately before or
immediately after each call towr i t eNanmespace. Notethat the codeis still freeto use al variants of
witeStart El enent,witeEnptyEl enent andwiteAttribute;itonly needsto make
sure that the usage it makes of these methods is consistent with the prefix bindings in scope.

The advantage of this approach is that it allows to write modular code: when a method receives an
XML_St ream i t er object (to write part of the document), it can use the namespace context of that
writer (i.e. get Pr ef i x andget NamespaceCont ext) to determine which namespace declarations
are currently in scope in the output document and to avoid redundant or conflicting namespace
declarations. Note that in order to do so, such code will have to check for an existing prefix binding
before starting to use a namespace.

11

Appendix A. Appendix

Installing IBM's JDK on Debian Linux

1

Make surethat f aker oot andj ava- package areinstalled:
apt-get install fakeroot java-package

Download the . t gz version of the JDK from http://www.ibm.com/devel operworks/javaljdk/linux/
download.html.

Edit / usr/ shar e/ j ava- package/i bm j 2sdk. sh and (if necessary) add an entry for the
particular version of the IBM JDK downloaded in the previous step.

Build a Debian package from the tarball:
$ fakeroot nake-jpkg xxxx.tgz

Install the Debian package.

12

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

