Proxy chains (also known as:
Delegator pattern)

The proxy chain is best explained with the situation it was made for. Suggest a really
complex source generator with varying options. For example, a child element of an object
can have multiplicity zero, one or more: In the latter case the child element will most
probably be represented by a list. Quite necessarily the source generator will sonner or later
be bloated with statements like

if (child.isMultiple()) {
/! Do sonething, working with a List

} else {
/1 Do sonething else, working with a single el enment
}

Even worse, the code will in both cases ook quite similar: As soon asthe list item is fetched
and casted to a proper type, thisis just like working with a single item. As time goes by,
more and more similar options come into play: Localization, varying datatypes, and so on.
Soon you start to think of better solutions.

The first attempt is typically subclassing. For example, if you have a source generator for the
case multiplicity zero or one, it can well be expanded to the general case, with multiplicity
two or more being handled in the subclass. Localization is handled in the next subclass, and
so on. Y our code looks much better now and becomes maintainable again.

However, time goes by, and more options are added to the source generator: Transaction
handling, encoding issues, and so on. Soon you find yourself in trouble again: The
subclassing approach doesn't work so well anymore, because in a subclasschan E->D ->C
-> B -> A (where B isasubclass of A, C is asubclass of B, and so on) you sometimes want
al of them, but sometimes only D -> C -> A or E -> A. At that point of thinking a new
approach was born: The event chain.

The idea is replacing the subclasses with an event interface. For example, suggest that the
source generator might contain code like the following:

public class FooGeneratorlnpl inplenments FooGenerator {
publ i c JavaSource get Food ass() {
JavaSource js = factory. newJavaSour ce(fooC assNane, "public");

Page 1

Proxy chains (also known as: Delegator pattern)

get XMet hod(j s)
get YMet hod(] s)
get ZMet hod(] s)

}
The corresponding interface might look like this:

public interface FooGenerator {
publ i c JavaSource get Food ass();
publ i c JavaMet hod get XMet hod(JavaSource js);
publ i c JavaMet hod get YMet hod(JavaSource | s);
publ i c JavaMet hod get ZMet hod(JavaSource | s);

}

If you take this methods as events, then you might well write a default class A implementing
the interface. The other classes are implemented as subclasses of an automatically generated
proxy class. For example, the class B might just add another method to the Foo. This might
look like the following:

public class B extends FooGenerator Proxy {
/1 Override only the getFooC ass() nethod, all other nethods are
/1 passed to the base generator by the proxy.
publ i ¢ JavaSource get Food ass() {
JavaSour ce result = super.get Food ass();
JavaMet hod bMet hod = result. newJavaMet hod("bMet hod”, "void", "public");
return result;

}
}

Likewise, the C class might change the interface of method X, and so on. Any feature is
implemented by a single class, which you can optionally add to the chain (turning the feature
on) or remove from the chain (turning the feature off).

However, there's still a problem left: When you are inside A (the topmost class) and do a
get XMet hod() , then you call your own class and not the chains bottom. This problem is
fixed by the following design:

Controller Implements
FooGenerator
E D C B A Implements

ChainedFooGenerator

The Chai nedFooGener at or is exactly matching the FooCGener at or interface, the
exception being an additional parameter FooGener at or pContr ol | er in al methods.

Page 2

proxy.html

Proxy chains (also known as: Delegator pattern)

The FooGenerator interface can be created automatically, also an implementation of
FooGenerator calling the first element in the chain of Chai nedFooGener at or
implementations. The manually created classes have to be changed dlightly, here's the
updated FooGener at or | npl :

public class FooGeneratorlnpl inplements Chai nedFooCenerator {
publ i ¢ JavaSource get FooCl ass(FooGenerator pController) {
JavaSource js = factory. newJavaSource(f ool assNane, "public");
pControl | er. get XMet hod(j s) ;
pControl |l er. get YMet hod(] s) ;
pControl |l er. get ZMet hod(| s) ;

}
Likewise, hereisthe updated B class:

public class B extends Chai nedFooGener at or Proxy {
/1 Override only the getFooC ass() nethod, all other nethods are
/1 passed to the base generator by the proxy.
publ i c JavaSource get FooC ass(FooGenerator pController) {
JavaSour ce result = super.get Food ass(pController);
JavaMet hod bMet hod = result. newJavaMet hod("bMet hod”, "void", "public");
return result;
}
}

The proxy chain pattern is implemented by the ChainGenerator. From within Ant, it looks
like the following:

<chai nGenerator destDir="src">
<chai n
control |l erlnterfaceName="com dcx. sei n. dbt k. gener at or. j avasg. | Model SG'
chai nl nt er f aceNanme="com dcx. sei n. dbt k. gener at or. j avasg. aut o. | Chai nedMod
pr oxyCl assName="com dcx. sei n. dbt k. gener at or. j avasg. aut o. Chai nedvbdel SGP
i mpl ement ati onCl assNanme="com dcx. sei n. dbt k. gener at or. j avasg. aut 0. Model S
<chai n
control |l erlnterfaceNanme="com dcx. sei n. dbt k. gener at or. j avasg. | Obj ect SG'
chai nl nt er f aceNane="com dcx. sei n. dbt k. gener at or. j avasg. aut 0. | Chai nedbj
pr oxyCl assName="com dcx. sei n. dbt k. gener at or. j avasg. aut 0. Chai nedObj ect SC
i mpl enent ati onCl assNanme="com dcx. sei n. dbt k. gener at or. j avasg. aut 0. Obj ect
</ chai nGener at or >

The control | erl nt erfaceNane is the name of the basic interface. This is what you
actually want to use from the outside. The controller interface must be available as a
compiled class, because it is inspected with Java reflection. The other classes are generated:
The chai nl nt er f aceNane is the interface being implemented by the manually written
classes. The proxyC assNane is an automatically generated implementation of the

Page 3

../../apidocs/org/apache/ws/jaxme/js/pattern/ChainGenerator.html

Proxy chains (also known as: Delegator pattern)

chai nl nt er f ace, which passes all events to the next element in the chain. And the
i npl enent ati onCl assNane is an also automatically generated implementation of

control |l erlnterface, that works internaly by passing all events to the first element
in the chain.

Page 4

