
jUDDI Installation Guide

1. Requirements

jUDDI is a pure Java web application and as such can be deployed to any application server
or servlet engine that supports version 2.1 or later of the servlet API. If you need an
application server, we recommend Jakarta Tomcat. Note also that jUDDI requires Java 1.3 or
later. As with any Java web application, deployment to your application server or servlet
engine will vary on a product-by-product basis.

Instructions for deploying jUDDI to several application servers have been donated and are
available in the HOW-TO section of the jUDDI wiki.

jUDDI also requires an external datastore in which to persist the registry data it manages.
Typically this is a relational database management system such as MySQL, Oracle or DB2.
Support for several open source and commercial database products are included. See the
section below titled Persistence for more information.

2. Configuration

To properly configure and deploy jUDDI it will be helpful to understand a bit about it's
architecture. jUDDI consist of a core request processor that unmarshalls incoming UDDI
requests, invoking the appropriate UDDI function and marshalling UDDI responses
(marshalling and unmarshalling is the process of converting XML data to/from Java objects).

To invoke a UDDI function jUDDI employs the services of three configurable
sub-components or modules that handle persistence (the DataStore), authentication (the
Authenticator) and the generation of UUID's (the UUIDGen). jUDDI is bundled and
pre-configured to use default implementations of each of these modules to help your registry
up and running quickly. These sub-components and a description of the default
implementations are described below.

Several public Java interfaces for creating your own DataStore, Authenticator and UUIDGen
module implementations are available. Please see the jUDDI Developer's Guide for more
information regarding jUDDI module development.

3. Persistence (jUDDI DataStore)

Page 1
Copyright © 2003 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/tomcat/
http://wiki.apache.org/ws/jUDDI_20HOW_2dTOs
/devguide.html


jUDDI needs a place to store it's registry data so it should come as no surprise that jUDDI is
pre-configured to use JDBC and any one of several different DBMSs to do this.

The process of setting this up is straight forward. Start by creating a new jUDDI database
using the instructions for your preferred DBMS which you will find in the 'sql' directory of
your jUDDI distribution. At the time of this writing instructions for the following products
were available:

• MySQL
• DB2
• HSQLdb (HypersonicSQL)
• Sybase
• PostreSQL
• Oracle
• TotalXML
• JDataStore (Borland)

If support for your DBMS is not listed you might try posting a message to the juddi-user list
to see if someone has already developed support for it. You can also try to create the scripts
yourself by using the instructions for a supported DBMS as a guide. Please consider
contributing your work back to the project so the next person won't have the same issue.

To complete the DataStore set up you'll need to configure a JNDI Datasource with a name of
'jdbc/juddiDB' in the application server or servlet engine that you're deploying to. Datasource
setup varies on an product-by-product basis so review documentation for your application
server. If you're deploying to Jakarta Tomcat, take a look at Tomcat's JNDI Datasource
HOW-TO for assistance.

4. Authentication (jUDDI Authenticator)

Authenticating a jUDDI publisher is a two-step process. The first step confirms that the
ID/password combination provided by the user in a get_authToken request is valid. The
default Authenticator implementation simply approves any authentication attempt. It is
expected that a typical jUDDI deployment will use an external authentication mechanism. It
is our hope that additional jUDDI authentication implementations will be developed by
jUDDI users as they determine how they would like authentication to take place in their
particular environment. See the jUDDI Developers Guide for more information on
developing a custom jUDDI authentication module for your environment.

The second step confirms that the publisher has been defined to jUDDI. A publisher is said to
be defined when a row identifying the publisher exists in the PUBLISHER table of the
jUDDI datastore. At the moment the only way to do this is via SQL. An example of defining

jUDDI Installation Guide

Page 2
Copyright © 2003 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html


a new publisher named John Doe would look like this:

INSERT INTO PUBLISHER (PUBLISHER_ID,PUBLISHER_NAME,ADMIN,ENABLED)
VALUES ('jdoe','John Doe','false','true');

The PUBLISHER table consists of several columns but only four of them are required and
they are defined as follows:

Column Name Description

PUBLISHER_ID The user ID the publisher uses when
authenticating. IMPORTANT: This should be the
same value used to authenticate with the
external authentication service.

PUBLISHER_NAME The publisher's name (or in UDDI speak the
Authorized Name).

ADMIN Indicate if the publisher has administrative
privileges. Valid values for this column are 'true'
or 'false'. The ADMIN value is currently not
used.

ENABLED Indicate if the publishers account is enabled and
eligible for use.

The jUDDI web application will (eventually) be extended to facilitate the Publisher creation
process. The value of the ADMIN column in the PUBLISHER table above will be used to
determine who has the privilege to create new jUDDI publishers.

5. UUID Generation (jUDDI UUIDGen)

There's nothing for you to do here but I thought I'd offer a little information about how, why
and where jUDDI makes use of UUID generation.

The UDDI specification indicates that each Business, Service, Binding and TModel
(Technical Model) is to be uniquely identified by a Universally Unique ID (UUID).
Additionally, jUDDI also uses the UUID generator to create AuthTokens.

Generation of a UUID typically requires access to hardware level information that
(unfortunately) is not easily accessible from Java. Fortunately, the UUID specification offers
an alternative method for generating these ID's when this hardware information is not
present. By default the jUDDI implements this alternative method.

6. Logging

jUDDI Installation Guide

Page 3
Copyright © 2003 The Apache Software Foundation All rights reserved.



When deploying jUDDI you may wish to make changes to the juddi.properties and
log4j.properties files. These files are located in the juddi webapp's WEB-INF/classes
directory. They're here because they need to be in the classpath for jUDDI to locate and load
them at runtime. One Log4j property value that you'll most likely want to set is
log4j.appender.LOGFILE.File which specifies the name and location of the jUDDI log file.

jUDDI Installation Guide

Page 4
Copyright © 2003 The Apache Software Foundation All rights reserved.


	1 Requirements
	2 Configuration
	3 Persistence (jUDDI DataStore)
	4 Authentication (jUDDI Authenticator)
	5 UUID Generation (jUDDI UUIDGen)
	6 Logging

