
Xindice 1.0 Developers Guide

$Revision: 1.2 $

by Kimbro Staken

1. Introduction to Programming Xindice

1.1. Accessing the Server

The Xindice server can be accessed either programmatically through the server's APIs or
from the command line using the provided command line tools. This document covers
programmatic access, for more information on using the command line interface please refer
to the Xindice Users Guide.

1.1.1. API's

Xindice currently offers three layers of APIs that can be used to develop applications.

• XML:DB XML Database API used to develop Xindice applications in Java. This is the
primary API used to develop applications and will be the API given the most coverage in
this manual. The XML:DB API is built on top of the Xindice CORBA API. Xindice
currently implements the May 07, 2001 draft of the XML:DB API. This API will change
slightly in the future to track the development of the XML:DB API.

• CORBA API used when accessing Xindice from a language other then Java. The
CORBA API is built on top of the Core Server API. It is likely that the CORBA API will
be replaced with a new network API in a later version of Xindice.

• Core Server API is the internal Java API of the core database engine. This API is used to
build the CORBA API and is also used when writing XMLObject server extensions. This
is the lowest level API and is only available to software running in the same Java VM as
the database engine itself. the most common use of this API is in developing XMLObject
server extensions.

The most common API for end user applications is the XML:DB XML Database API that
was developed by the XML:DB Initiative. This API is a vendor neutral API intended to make
it possible to build applications that will work with more then one XML database without too
much difficulty. This is similar to the capabilities provided by JDBC for relational databases.
More information about this API can be found on the XML:DB Initiative web site,

Page 1
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

guide-user.html
http://www.xmldb.org

http://www.xmldb.org. Most programming examples in this manual will use the XML:DB
API. The Xindice implementation of the API is a Core Level 1 implementation.

The Xindice server also exposes a CORBA API that is used to implement the XML:DB API.
The CORBA API will mainly be of interest to those who want to access Xindice from a
language other then Java. Any language that supports a CORBA binding should be able to
utilize the services of the Xindice server via the CORBA API. This document does not cover
development with the CORBA API as the XML:DB API is the preferred mechanism for
developing Xindice applications. If you are developing applications in Java you can safely
ignore the existence of this API. The CORBA API will be covered in a seperate document to
be written at a later time.

The final API for Xindice is the Core Server API.

1.2. Introducing the XML:DB XML Database API

XML:DB API is being developed by the XML:DB Initiative to facilitate the development of
applications that function with minimal change on more then one XML database. This is
roughly equivalent to the functionality provided by JDBC or ODBC for providing access to
relational databases. Xindice provides an implementation of the XML:DB API that also
serves as the primary programming API for Xindice.

The XML:DB API is based around the concept of collections that store resources. A resource
can be an XML Document, a binary blob or some type that is not currently defined.
Collections can be arranged in a hierarchical fashion. This makes the architecture very
similar to that of a typical Windows or UNIX file system. What is different however, is that
collections also expose services that allow you to do things such as query XML documents
using XPath or update resources in a transactionally secure manner.

The XML:DB API defines several levels of interoperability called Core Levels in XML:DB
terminology. The Xindice implementation of the API is a Core Level 1 implementation plus
implementations of some of the optional services.

The additional supported services include.

• XUpdateQueryService - Enables execution of XUpdate queries against the database.
• CollectionManagementService - Provides basic facilities to create and remove

collections.

In addition to Core Level 1 support the Xindice implementation also supports a few added
services that are specific to Xindice. These services exist because the functionality is
necessary to fully utilize all the capabilities provided by Xindice. However, they are
proprietary to Xindice and will not function unchanged on other XML databases.

Xindice 1.0 Developers Guide

Page 2
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

http://www.xmldb.org/
http://www.xmldb.org

The following services are currently provided by Xindice and are not part of the common
XML:DB API.

• DatabaseInstanceManager - Provides the ability to control the operation of the server
programatically.

• CollectionManager - Provides the ability to create and configure collection instances
within the server. This is a much more functional version of
CollectionManagementService that will only work with Xindice.

While this guide aims to provide some useful examples and to guide you in the process of
getting to know how to program Xindice it is also useful to know that there is a good source
of example code within the server it self. The Xindice command line tools are built 100% on
the XML:DB API and provide a pretty comprehensive set of examples in how to use the API.
This is especially true when it comes to the Xindice specific services that are included with
the server. The source code for all the command line tools can be found in
Xindice/java/src/org/apache/xindice/tools/command.

1.3. Setting up Your Build Environment

Before you can build applications for Xindice you need to make sure you have your build
environment properly setup. This mainly consists of making sure that you have the proper
VM version and a properly configured CLASSPATH.

To build applications for Xindice you can use JDK 1.3 or 1.4. JDK 1.2 and below will not
work. If you have more than one Java VM installed make sure that your JAVA_HOME
environment variable and PATH environment variable both include the correct path.

Once you have your Java VM properly configured you need to add a few jar files to your
CLASSPATH. The following list of jars are required and should be made available on your
CLASSPATH. All required jars can be found in Xindice/java/lib

• xindice.jar - contains the main Xindice classes that are used by the client API.
• xmldb.jar - contains the XML:DB API interfaces.
• openorb-1.2.0.jar - contains the CORBA ORB implementation used by the client API to

communicate with the server.
• xerces-1.4.3.jar - contains the Xerces XML parser.
• xalan-2.0.1.jar - contains the Xalan XSL-T engine. This jar isn't absolutely required but

you'll probably want it so it's worth adding it.

1.4. Preparing the Server For the Examples

Before we get to some example code, we need to do a little work to setup the server. Don't
worry nothing hard.

Xindice 1.0 Developers Guide

Page 3
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

First we need to make sure the addressbook collection exists. If you followed the install
instructions completely you should have already created this, but if not you should do so
now. To find out if the collection exists you can run:
xindice lc -c /db

If you don't see 'addressbook' listed in the result then you need to create the collection. To
create it just run:
xindice ac -c /db -n addressbook

Now that we have the collection, we can add a few example documents so that we have
something to play with. You can find the examples in your Xindice installation in the
directory java/examples/guide/xml. Run these commands to add the documents.

cd $XINDICE_HOME/java/examples/guide/xml
xindice ad -c /db/addressbook -f address1.xml -n address1
xindice ad -c /db/addressbook -f address2.xml -n address2

If you're on Windows you'll need to adjust the path in the cd command for your platform.
Most of the examples in the manual will be written for UNIX but will work fine in Windows
if you just replace / with \ and $XINDICE_HOME with %XINDICE_HOME%.

That wasn't so bad and now we're set to look at some example code.

1.5. Diving in With an Example Program

1.5.1. Simple XML:DB Example Program

This example simply executes an XPath query against a collection, retrieves the results as
text and prints them out.

You can find the source code for this example in
Xindice/java/examples/guide/src/org/apache/xindice/examples/Example1.java

package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

public class Example1 {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Xindice 1.0 Developers Guide

Page 4
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

col = DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

String xpath = "//person[fname='John']";
XPathQueryService service =
(XPathQueryService) col.getService("XPathQueryService", "1.0");
ResourceSet resultSet = service.query(xpath);
ResourceIterator results = resultSet.getIterator();
while (results.hasMoreResources()) {
Resource res = results.nextResource();
System.out.println((String) res.getContent());
}

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);
}
finally {

if (col != null) {
col.close();
}

}
}

}

Before diving into the gory detail of what this program is doing, let's run it and see what we
get back.

If you have a binary build of Xindice the examples are already built and you can run this
example by typing.

cd $XINDICE_HOME/java/examples/guide
./run org.apache.xindice.examples.Example1

If all goes well, you should see a result that looks something like this.
<?xml version="1.0"?>
<person xmlns:src="http://xml.apache.org/xindice/Query"

src:col="/db/addressbook" src:key="address1">
<fname>John</fname>
<lname>Smith</lname>
<phone type="work">563-456-7890</phone>
<phone type="home">534-567-8901</phone>
<email type="home">jsmith@somemail.com</email>
<email type="work">john@lovesushi.com</email>
<address type="home">34 S. Colon St.</address>
<address type="work">9967 W. Shrimp Ave.</address>
</person>

Now that we've seen the result, let's dive in and look at the code in detail. While this isn't the
simplest possible example program to start with it does a nice job of showing all the basic
techniques used when building applications with the XML:DB API.

Xindice 1.0 Developers Guide

Page 5
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

To begin the program imports several XML:DB packages.

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

These import the basic classes required by the API. import
org.xmldb.api.base.*; is the base API module and is required for all XML:DB
applications. import org.xmldb.api.*; imports the all important
DatabaseManager class which is the entry point into the API. import
org.xmldb.api.modules.*; brings in the optional modules defined for the API. In
this case the module we're interested in is XPathQueryService.

Before we can use the API we need to create and register the database driver we want to use.
In this case since we're writing for Xindice we use
org.apache.xindice.client.xmldb.DatabaseImpl for our driver and register
it with the DatabaseManager

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

Now that our driver is registered we're ready to retrieve the collection that we want to work
with.

Collection col =
DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

In the XML:DB API collections are retrieved by calling getCollection and handing it a
URI that specifies the collection we want. The format of this URI will vary depending on the
database implementation being used but will always begin with xmldb: and be followed by
a database specific database name, xindice: in the case of Xindice.

The rest of the URI is a path used to locate the collection you want to work with. This path
begins with the name of the root collection for the Xindice instance that you are trying to
connect with. All Xindice instances must have a unique name for the root collection. The
reason for this is that the name of the root collection is also the name of the database instance
and that name is what the Xindice server uses to register itself with the naming service. In all
examples in this guide the root collection is called db. This is the default name used for a
newly installed instance of Xindice. If you have more then one instance of Xindice running
that you must be sure to change the names on all other instances so that they are unique.
Once you do this you can switch between the instances by simply changing the first
component of the path.

Xindice 1.0 Developers Guide

Page 6
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

xindice:///db/news
xindice:///db2/news

These paths will switch between a Xindice server with a root collection of db and one of db2.
These instances could be on the same machine or on two completely different machines and
to your application there is no significant difference.

After the root collection name the rest of the URI simply consists of the path to locate the
collection you want to work with.

Now that we have a reference to the collection that we want to work with we need to get a
reference to the XPathQueryService service for that collection.

String xpath = "//person[fname='John']";
XPathQueryService service =

(XPathQueryService) col.getService("XPathQueryService", "1.0");
ResourceSet resultSet = service.query(xpath);

Services provide a way to extend the functionality of the XML:DB API as well as enabling
the definition of optional functionality. In this case the XPathQueryService is an
optional part of Core Level 0 but is a required part of Core Level 1. Since Xindice provides a
Core Level 1 XML:DB API implementation the XPathQueryService is available.

To retrieve a service you must know the name of the service that you want as well as the
version. Services define their own custom interfaces so you must cast the result of the
getService() call to the appropriate service type before you can call its methods. The
XPathQueryService defines a method query() that takes an XPath string as an
argument. Different services will define different sets of methods.

Now that we have an XPathQueryService reference and have called the query()
method we get a ResourceSet containing the results. Since we just want to print out the
results of the query, we need to get an iterator for our results and then use it to print out the
results.

ResourceIterator results = resultSet.getIterator();
while (results.hasMoreResources()) {

Resource res = results.nextResource();
System.out.println((String) res.getContent());

}

Resources are another important concept within the XML:DB API. Since XML can be
accessed with multiple APIs and since an XML database could potentialy store more the one
type of data, resources provide an abstract way to access the data in the database. The
Xindice implementation only supports XMLResource but other vendors may support
additional resource types as well.

Xindice 1.0 Developers Guide

Page 7
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

XMLResource provides access to the underlying XML data as either text, a DOM Node or
via SAX ContentHandlers. In our example we're simply working with the content as text but
we could just as easily have called getContentAsDom() to get the content as a DOM
Node. Since we just want to print the XML out to the screen it is easier to just work with text.

The final element about our example program worth noting is the finally clause.

finally {
if (col != null) {
col.close();
}

}

The finally clause closes the collection that we created earlier. This is vitally important and
should never be overlooked. Closing the collection releases all the resources consumed by
the collection. In the Xindice implementation this will make sure that the CORBA resources
are released properly. Failure to properly call close on the collection will result in a resource
leak within the server.

1.6. Accessing Xindice Remotely

By default Xindice assumes that the client and server are running on the same machine. In
most configurations this will not be the case so it will be necessary to include the hostname
and port of the server where Xindice is running in your URIs. The port you use is the port
that the Xindice HTTP server is listening on. The port setting is displayed when you start the
server. By default the configuration used is xindice://localhost:4080. To access
the collection /db/addressbook on host xml.apache.org port 4090 the URI would look
something like this xindice://xml.apache.org:4090/db/addressbook. If you
are running the client and server on the same machine you do not need to specify a host or
port. All examples in this document assume the client and server are on the same machine.

If you are having problems accessing Xindice remotely this may be the result of the server
publishing an incorrect IP address as part of its CORBA IOR. The IOR is generated by the
ORB using the hostname setting of the server. If the hostname is set to a fully qualified
domain name that can not be resolved by the client you will not be able to remotely access
the server. To fix this you must insure the host name on the server is resolvable by the client.
To see the setting of the host name on the server you should be able to type hostname at a
command prompt. If the hostname is not a fully qualified domain name then the ORB will
use the IP address of the server instead of the name and you shouldn't have any problems.

2. Managing Documents

In this chapter we'll look at using the XML:DB API to manage documents within the Xindice

Xindice 1.0 Developers Guide

Page 8
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

server. As part of this we'll look at some sample code that could be used to manage the data
used by the AddressBook example application included with the server and discussed in
more detail later.

When looking at managing documents with the XML:DB API the first thing we need to
confront is that the API doesn't actually work directly with documents. It works with what
the API calls resources that are an abstraction of a document. This abstraction allows you to
work with the same document as either text, a DOM tree or SAX events. This is important to
understand as the use of resources runs as a common thread throughout the XML:DB API.
The XML:DB API actually defines more then one type of resource however Xindice does not
implement anything beyond XMLResource.

2.1. Creating a Collection

Before we can work with any data in the database we need to create a collection to hold our
data. While we could easily create this collection using the command line tools it will be
more fun to see how you might do this from your own program. This will also show you a
quick example of using the Xindice specific CollectionManager service to manage
collections. This guide doesn't go into detail about using this service but you can find lots of
examples by looking at the source code to the command line tool commands in the package
org/apache/xindice/tools/commands.

The collection we want to create will be named mycollection and will be a child of the
root collection.

2.1.1. Creating a Collection
package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

// For the Xindice specific CollectionManager service
import org.apache.xindice.client.xmldb.services.*;

import org.apache.xindice.xml.dom.*;

public class CreateCollection {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();

Xindice 1.0 Developers Guide

Page 9
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

DatabaseManager.registerDatabase(database);
col =
DatabaseManager.getCollection("xmldb:xindice:///db/");

String collectionName = "mycollection";
CollectionManager service =
(CollectionManager) col.getService("CollectionManager", "1.0");

// Build up the Collection XML configuration.
String collectionConfig =
"<collection compressed=\"true\" name=\"" + collectionName + "\">" +
" <filer class=\"org.apache.xindice.core.filer.BTreeFiler\" gzip=\"true\"/>" +
"</collection>";

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

System.out.println("Collection " + collectionName + " created.");
}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);
}
finally {

if (col != null) {
col.close();
}

}
}

}

With this example you can see a basic example of how to create the
CollectionManager service and use it to create the collection. This service is
proprietary to Xindice so if you use it in your application you will not be able to port it to
another server. However, if you have the need to create collections within your programs this
is currently the most powerful way to do it.

The trickiest part of creating a collection is creating the proper XML configuration to hand to
the createCollection method. This XML is the exact same thing that is placed into the
system.xml file. At this time these XML configurations are not documented so to see what
they need to be you should look for examples in system.xml and the source code for the
command line tools. Future versions of this documentation will cover this area in more detail.

2.2. Working with Documents

Now that we have a collection to store our data, we need to add some data to it. We could use
the command line tools to do this but since we want to learn how the XML:DB API works
we'll look at how we can do this in a program that we write.

For our examples in this chapter we'll work with some very simple XML files that could be

Xindice 1.0 Developers Guide

Page 10
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

used to represent a person in an address book. Later in the guide we'll look at an example
application that implements the actual address book functionality. Each address book entry is
stored in a seperate XML file.

2.2.1. Example Document
<person>

<fname>John</fname>
<lname>Smith</lname>
<phone type="work">563-456-7890</phone>
<phone type="home">534-567-8901</phone>
<email type="home">jsmith@somemail.com</email>
<email type="work">john@lovesushi.com</email>
<address type="home">34 S. Colon St.</address>
<address type="work">9967 W. Shrimp Ave.</address>

</person>

If we store this example XML into a file we can then load it into our addressbook collection
using a simple program.

2.2.2. Adding an XML File to the Database
package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

import java.io.*;

public class AddDocument {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);
col =
DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

String data = readFileFromDisk(args[0]);

XMLResource document = (XMLResource) col.createResource(null,
"XMLResource");
document.setContent(data);
col.storeResource(document);
System.out.println("Document " + args[0] + " inserted");

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);

Xindice 1.0 Developers Guide

Page 11
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

}
finally {

if (col != null) {
col.close();
}

}
}

public static String readFileFromDisk(String fileName) throws Exception {
File file = new File(fileName);
FileInputStream insr = new FileInputStream(file);

byte[] fileBuffer = new byte[(int)file.length()];

insr.read(fileBuffer);
insr.close();

return new String(fileBuffer);
}

}

Much of this program is similar to what we've already seen in our other XML:DB programs.
Really the only difference is the code to add the document.

Documents are added to the server by first creating a new resource implementation from a
collection, setting its content and then storing the resource to the collection. The type of
resource that is created is an XMLResource this can be used to store XML as either text, a
DOM Node or a SAX ContentHandler.

If you had your content already in a DOM tree you could also add the document as a DOM.

XMLResource document = (XMLResource) col.createResource(null);
document.setContentAsDOM(doc); // doc is a DOM document
col.storeResource(document);

The only difference here is that you must have the document as a DOM Document already
and then call setContentAsDOM(). From there the resource works the same as always.

One thing to note is that a resource must be stored in the same collection from which it was
originally created.

2.2.3. Retrieving an XML Document from the Database
package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

import java.io.*;

Xindice 1.0 Developers Guide

Page 12
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

public class RetrieveDocument {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);
col =
DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

XMLResource document = (XMLResource) col.getResource(args[0]);
if (document != null) {
System.out.println("Document " + args[0]);
System.out.println(document.getContent());
}
else {
System.out.println("Document not found");
}

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);
}
finally {

if (col != null) {
col.close();
}

}
}

}

2.2.4. Deleting an XML Document from the Database
package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

import java.io.*;

public class DeleteDocument {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);
col =
DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

Xindice 1.0 Developers Guide

Page 13
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

Resource document = col.getResource(args[0]);
col.removeResource(document);
System.out.println("Document " + args[0] + " removed");

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);
}
finally {

if (col != null) {
col.close();
}

}
}

}

3. Using XPath to Query the Database

3.1. Introduction

Xindice currently supports XPath as a query language. In many applications XPath is only
applied at the document level but in Xindice XPath queries are executed at the collection
level. This means that a query can be run against multiple documents and the result set will
contain all matching nodes from all documents in the collection. The Xindice server also
support the creation of indexes on particular XPaths to speed up commonly used XPath
queries.

3.2. Using the XML:DB Java API

The XML:DB API defines operations for searching single documents as well as collections
of XML documents using XPath. These operations are exposed through the
XPathQueryService. In order to query single documents you use the queryResource()
method and to query an entire collection you use the query() method.

3.2.1. Querying with XPath

This example simply executes an XPath query against a collection, retrieves the results as
text and prints them out.

You can find the source code for this example in
Xindice/java/examples/guide/src/org/apache/xindice/examples/Example1.java
package org.apache.xindice.examples;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

Xindice 1.0 Developers Guide

Page 14
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

public class Example1 {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

col = DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

String xpath = "//person[fname='John']";
XPathQueryService service =
(XPathQueryService) col.getService("XPathQueryService", "1.0");
ResourceSet resultSet = service.query(xpath);
ResourceIterator results = resultSet.getIterator();
while (results.hasMoreResources()) {
Resource res = results.nextResource();
System.out.println((String) res.getContent());
}

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode);
}
finally {

if (col != null) {
col.close();
}

}
}

}

3.2.2. Query Results

XPath queries always return anonymous resources. An anonymous resource is one that has
no Resource ID. If a resource is anonymous, a call to Resource.getID() returns null. Queries
return anonymous resources because a query can return all or a fragment of a document.
Documents have a Resource ID and can be retrieved (in their entirety) from the database
using that ID. A fragment of a document has no ID. The fragment can only be retrieved using
an XPath that selects the same fragment of the document. The burden of knowing whether a
query returns a complete document or a fragment is placed on the user. This is simple for the
user (users know the structure of their data and syntax of their queries). Requiring the
implementation to determine if a query selects a complete Resource or a fragment and to
provide either an identified or anonymous Resource depending on that determination places
too great a burden on the implementation. Thus, XPath queries always return anonymous
Resources. A call to Resource.getDocumentID() will provide the ID of the Resource
containing the Resource returned by the query. If a user knows that the Resource is in fact the

Xindice 1.0 Developers Guide

Page 15
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

complete document, then the ID may be used as a locator of the returned Resource
interchangeably with the XPath query.

TODO: cover namespace support

4. Using XUpdate to Modify the Database

4.1. Introduction

XUpdate is a specification under development by the XML:DB Initiative to enable simpler
updating of XML documents. It is useful within the context of an XML database as well as in
standalone implementations for general XML applications. XUpdate gives you a declarative
method to insert nodes, remove nodes, and change nodes within an XML document. The
syntax is specified in the XUpdate working draft available on the XML:DB Initiative
website.

The XUpdate implementation in Xindice is based around the Lexus XUpdate implementation
that was developed by the Infozone Group.

The general model around XUpdate is to use an xupdate:modifications container to
batch a series of XUpdate commands. All commands will be performed in series against
either a single XML document or an entire collection of XML documents as specified by the
developer.

Execution of XUpdate commands is performed in two phases. First selecting a node set
within the document or collection and then applying a change to the selected nodes.

4.1.1. Basic XUpdate Insert Command
<xupdate:modifications version="1.0"

xmlns:xupdate="http://www.xmldb.org/xupdate">

<xupdate:insert-after select="/addresses/address[1]" >

<xupdate:element name="address">
<xupdate:attribute name="id">2</xupdate:attribute>
<fullname>John Smith</fullname>
<born day='2' month='12' year='1974'/>
<country>Germany</country>

</xupdate:element>

</xupdate:insert-after>
</xupdate:modifications>

4.2. XUpdate Commands

Xindice 1.0 Developers Guide

Page 16
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

http://www.xmldb.org/xupdate/xupdate-wd.html
http://www.infozone-group.org/

• xupdate:insert-before - Inserts a new node in document order before the
selected node.

• xupdate:insert-after - Inserts a new node in document order after the selected
node.

• xupdate:update - Replaces all child nodes of the selected node with the specified
nodes.

• xupdate:append - Appends the specified node to the content of the selected node.
• xupdate:remove - Remove the selected node
• xupdate:rename - Renames the selected node
• xupdate:variable - Defines a variable containing a node list that can be reused in

later operations.

4.3. XUpdate Node Construction
• xupdate:element - Creates a new element in the document.
• xupdate:attribute - Creates a new attribute node associated with an

xupdate:element.
• xupdate:text - Creates a text content node in the document.
• xupdate:processing-instruction - Creates a processing instruction node in

the document.
• xupdate:comment - Creates a new comment node in the document.

4.4. Using the XML:DB API for XUpdate

The XML:DB API provides an XUpdateQueryService to enable executing XUpdate
commands against single documents or collections of documents. To update a single
document you use the updateResource() method and to apply the updates to an entire
collection you use the update() method.

The next example program applies a set of XUpdate modifications to an entire collection of
data. It first removes all elements that match the XPath /person/phone[@type =
'home'] and then adds a new entry after all elements that match the XPath
/person/phone[@type = 'work']

4.4.1. Using XUpdate to modify the database

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;

/**
* Simple XML:DB API example to update the database.
*/

Xindice 1.0 Developers Guide

Page 17
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

public class XUpdate {
public static void main(String[] args) throws Exception {
Collection col = null;
try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);
col =
DatabaseManager.getCollection("xmldb:xindice:///db/addressbook");

String xupdate = "<xu:modifications version=\"1.0\"" +
" xmlns:xu=\"http://www.xmldb.org/xupdate\">" +
" <xu:remove select=\"/person/phone[@type = 'home']\"/>" +
" <xu:update select=\"/person/phone[@type = 'work']\">" +
" 480-300-3003" +
" </xu:update>" +
"</xu:modifications>";

XUpdateQueryService service =
(XUpdateQueryService) col.getService("XUpdateQueryService", "1.0");
service.update(xupdate);

}
catch (XMLDBException e) {

System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());

}
finally {

if (col != null) {
col.close();
}

}
}

}

5. Address Book Example Application

5.1.

The address book example is a simple servlet based application constructued using Xindice.
For more information on this example look in the
Xindice/java/examples/addressbook directory.

TODO: Add more detail about building servlet applications.

6. Experimental Features

There are a couple features in Xindice that are definitely experimental. These features can be
interesing to explore to see some things that could be useful in future versions of Xindice but

Xindice 1.0 Developers Guide

Page 18
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

they should not be considered complete or stable.

Xindice 1.0 Developers Guide

Page 19
Copyright © 2001-2003 The Apache Software Foundation. All rights reserved.

	1 Introduction to Programming Xindice
	1.1 Accessing the Server
	1.1.1 API's

	1.2 Introducing the XML:DB XML Database API
	1.3 Setting up Your Build Environment
	1.4 Preparing the Server For the Examples
	1.5 Diving in With an Example Program
	1.5.1 Simple XML:DB Example Program

	1.6 Accessing Xindice Remotely

	2 Managing Documents
	2.1 Creating a Collection
	2.1.1 Creating a Collection

	2.2 Working with Documents
	2.2.1 Example Document
	2.2.2 Adding an XML File to the Database
	2.2.3 Retrieving an XML Document from the Database
	2.2.4 Deleting an XML Document from the Database

	3 Using XPath to Query the Database
	3.1 Introduction
	3.2 Using the XML:DB Java API
	3.2.1 Querying with XPath
	3.2.2 Query Results

	4 Using XUpdate to Modify the Database
	4.1 Introduction
	4.1.1 Basic XUpdate Insert Command

	4.2 XUpdate Commands
	4.3 XUpdate Node Construction
	4.4 Using the XML:DB API for XUpdate
	4.4.1 Using XUpdate to modify the database

	5 Address Book Example Application
	5.1

	6 Experimental Features

