
Xindice Users Guide 0.7.1

by Kimbro Staken

NOTICE:

1 Introduction to Xindice

1.1 What Is Xindice
The Xindice Core server is a database server designed from the ground up to store XML
data. The Xindice server is what is termed by the XML:DB Initiative as a Native XML
Database. You could also refer to it as a seamless XML database which might be an easier to
understand description.

What this means is that to the largest extent possible you work with XML tools and
technologies when working with the data in the server. All data that goes into and out of the
server is XML. The query language used is XPath and the programming APIs support DOM
and SAX. All things that should be familiar to a developer used to using XML in their
applications. When working with XML data and Xindice there is no mapping between
different data models. You simply design your data as XML and store it as XML.

What this gives you can be summed up in one word, flexibility. XML provides an extremely
flexible mechanism for modeling application data and in many cases will allow you to model
constructs that are difficult or impossible to model in more traditional systems. This model is
a semi-structured model and for some applications it is an essential component. By using a
native XML database such as Xindice to store this data you can focus on building your
applications and not worry about how the complex XML construct maps to the underlying
data store or trying force a flexible data model into a rigid set of schema constraints.

Ultimately though, Xindice is a tool. It will be right for some jobs and completely wrong for
others. The job it is best at is simply storing XML data. In fact, that's all it does. If you have

Page 1
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

http://www.xmldb.org
http://www.xmldb.org

lots of XML data then Xindice may just be the right tool. However, if your data isn't XML or
if you have the need for precise control over the structure of the data you might be better off
using another database solution.

1.2 Current Status
Native XML database technology is a very new area and Xindice is very much a project still
in development. The server currently supports storing well formed XML documents. This
means it does not have any schema that constrains what can be placed into a document
collection. This makes Xindice a semi-structured database and provides tremendous
flexiblity in how you store your data, but, also means you give up some common database
functionality such as data types. In its current state Xindice is already a powerful tool for
managing XML data. However, there is still much that needs to be done. Feedback and
contributions are actively encouraged.

This document attempts to describe those features that are working and can be used today.
You should review the README file that is part of the Xindice distribution for the most
current status on the project.

NOTE: Both the Xindice server and this document are works in progress. Any comments are
welcome and encouraged.

1.3 Feature Summary
Document Collections: Documents are stored in collections that can be queried as a whole.
You can create collections that contain just documents of the same type or you can create a
collection to store all your documents together. The database doesn't care.

XPath Query Engine: To query the Document Collections you use XPath as defined by the
W3C. This provides a reasonably flexible mechanism for querying documents by navigating
and restricting the result tree that is returned.

XML Indexing: In order to improve the performance of queries over large numbers of
documents you can define indexes on element and attribute values. This can dramatically
speed up query response time.

XML:DB XUpdate Implementation: When you store XML in the database you may want to
be able to change that data without retrieving the entire document. XUpdate is the
mechanism to use when you want to do server side updates of the data. It is an XML based
language for specifying XML modifications and allows those modifications to be applied to
entire document collections as well as single documents.

Java XML:DB API Implementation: For Java programmers Xindice provides an

Xindice Users Guide 0.7.1

Page 2
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

http://www.w3.org/TR/xpath

mentation of the XML:DB API. This API is intended to bring portability to XML database
applications just as JDBC has done for relational databases. Most applications developed for
Xindice will use the XML:DB API.

XMLObjects: XMLObject provide a server extension mechanism for adding extra
functionality to the server. They can be used to execute complex operations within the
database engine to cut down on network bandwidth or to add functionality that doesn't
currently exist in the server.

Command Line Management Tools: To aid the administrator Xindice provides a full suite of
command line driven management tools. Just about everything you can do through the
XML:DB API can also be done from the command line.

CORBA Network API: For developers who are interested in working in languages other then
Java, Xindice provides a CORBA API that can be used to build applications. All
functionality available through the XML:DB API is also available through the CORBA API.
In fact the XML:DB API is built on top of the CORBA API. Most Java developers though,
will never even need to know that the CORBA API exists.

Modular Architecture: The Xindice server is constructed in a very modular manner. This
makes it easy to add and remove components to tailor the server to a particular environment
or to embed it into another application.

1.4 Database Structure
The Xindice server is designed to store collections of XML documents. Collections can be
arranged in a hierarchy similar to that of a typical UNIX or Windows file system.

In Xindice the data store is rooted in a database instance that can also be used as a document
collection. This database instance can then contain any number of child collections. In a
default install of Xindice the database instance is called 'db' and all collection paths will
begin with /db. It is possible to rename the database instance if desired though it is not
necessary to do so.

Collections are referenced in a similar manner to how you would work with a hierarchical
file system.

1.4.1 Collection Path Example
If you had a collection created under 'db' called my-collection and a collection under that
called my-child-collection the path used when accessing the my-child-collection collection
would be

/db/my-collection/my-child-collection

Xindice Users Guide 0.7.1

Page 3
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

Within collections there are several types of objects that can be stored. You can store XML
documents, XMLObjects and other collections. Each of these objects can also be referenced
via a path.

1.4.2 Collection Path Referencing a Document
Extending the previous example by adding a document to my-child-collection named
my-document it to could be referenced via a path.

/db/my-collection/my-child-collection/my-document

There is one catch to this however. Since you can have more then one object in a collection
with the same name there is an order of precedence that is applied when evaluating a path.
The order of precendence is collection followed by XMLObject and then document. What
this means is that if you have a document and a collection with the same name you will not
be able to retrieve the document.

You can also access collections on remote machines by specifying the host and port of the
server.

1.4.3 Collection Path Referencing a remote Document
If the previous example was on a remote machine the path would look something like this.

myhost.domain.com:4080/db/my-collection/my-child-collection/my-document

This can also take the form of a Xindice URI.

xindice://myhost.domain.com:4080/db/my-collection/my-child-collection/my-document

1.5 Introducing the Command Line Tools
The Xindice server includes a command line program named xindice that allows you to
manage the data stored in the server. A complete list of available commands and more detail
about each command can be found in the Command Line Tools Reference Guide.

The xindice tool is located in the Xindice-Core/bin directory and it is probably a good
idea to add this directory to your PATH environment variable. All examples in this manual
will assume that the Xindice-Core/bin directory is on the operating system path.

2 Managing Documents

Xindice Users Guide 0.7.1

Page 4
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

guide-tools.html
guide-tools.html
guide-tools.html
guide-tools.html
guide-tools.html
guide-tools.html
guide-tools.html

2.1 Introduction
In many ways the Xindice database can be viewed as a simple file store. This is of course a
highly simplified view of things but is a useful place to get started in learning the
functionality of the server.

The Xindice server provides facilities to store, retrieve and delete well formed XML
documents.

2.2 Adding Documents

2.2.1 Adding a Document With a Given Key
The document fx102.xml will be added to the collection /db/data/products and will be stored
under the key fx102.

xindice add_document -c /db/data/products -f fx102.xml -n fx102

2.2.2 Adding a Document Without a Key
The document fx102.xml will be added to the collection /db/data/products. No key is
provided so one will be generated automatically by the server. The generated key will look
similar to this 0625df6b0001a5d4000bc49d0060b6f5

xindice add_document -c /db/data/products -f fx102.xml

2.3 Retrieving Documents
Documents can be retrieved from the database using the ID that they were inserted under.

2.3.1 Retrieving a Document Using an ID
The document identified by the key fx102 will be retrieved from the /db/data/products
collection and stored in the file fx102.xml

xindice retrieve_document -c /db/data/products -n fx102 -f fx102.xml

2.4 Deleting Documents

2.4.1 Deleting a document using an ID

Xindice Users Guide 0.7.1

Page 5
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

The document identified by the key fx102 will be removed from the collection
/db/data/products.

xindice delete_document -c /db/data/products -n fx102

3 Querying the Database
Xindice currently supports XPath as a query language. In many applications XPath is only
applied at the document level but in Xindice XPath queries can be executed at either the
document level or the collection level. This means that a query can be run against multiple
documents and the result set will contain all matching nodes from all documents in the
collection. The Xindice server also supports the creation of indexes on XML documents to
speed up commonly used XPath queries. Please refer to the Administrators Guide for more
detail about configuring indexes.

You can execute XPath queries against the database using the command line tools and the
result of the query will be displayed.

3.1 Executing an XPath query against a collection of XML documents
Here we assume we have a collection /db/data/products that contains documents that are
similar to the following.
<?xml version="1.0"?>
<product product_id="120320">

<description>Glazed Ham</description>
</product>

The XPath /product[@product_id="120320"] will be executed against the collection
/db/data/products and all matching product entries will be returned.

xindice xpath_query -c /db/data/products -q /product[@product_id="120320"]

The result of the query is an XPath node-set that contains one node for each result. In this
particular example there is only one result and the node that matches is the root element so
you get back basically the whole document.

To make it easy to link the result node back to the originating document, Xindice adds a few
attributes to the result. These attributes are added in the NodeSource namespace that has the
URI http://xml.apache.org/xindice/NodeSource. The col attribute specifies the collection
where the document can be found and the key attribute provides the key of the original
document. Using this information it is possible to retrieve the original document that this
node was selected from for further processing.
<product product_id="120320" xmlns:src="http://xml.apache.org/xindice/NodeSource"

Xindice Users Guide 0.7.1

Page 6
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

guide-administrator.html
guide-administrator.html

src:col="/db/data/products" src:key="120320">
<description>Glazed Ham</description>

</product>

If more then one result is found the results look something like this. This could be the result
of the query /product

<product product_id="120320" xmlns:src="http://xml.apache.org/xindice/NodeSource"
src:col="/db/data/products" src:key="120320">

<description>Glazed Ham</description>
</product>
<product product_id="120321" xmlns:src="http://xml.apache.org/xindice/NodeSource"

src:col="/db/data/products" src:key="120321">
<description>Boiled Ham</description>

</product>
<product product_id="120322" xmlns:src="http://xml.apache.org/xindice/NodeSource"

src:col="/db/data/products" src:key="120322">
<description>Honey Ham</description>

</product>

While it is certainly useful to be able to query from the command line it is probably more
useful to be able to use the results of a query in an application. For more information on
building applications for Xindice, please refer to the Developers Guide.

Xindice Users Guide 0.7.1

Page 7
Copyright © 2001-2002 The Apache Software Foundation. All rights reserved.

guide-user.html
guide-user.html

	Xindice Users Guide 0.7.1
	1 Introduction to Xindice
	1.1 What Is Xindice
	1.2 Current Status
	1.3 Feature Summary
	1.4 Database Structure
	1.4.1 Collection Path Example
	1.4.2 Collection Path Referencing a Document
	1.4.3 Collection Path Referencing a remote Document

	1.5 Introducing the Command Line Tools

	2 Managing Documents
	2.1 Introduction
	2.2 Adding Documents
	2.2.1 Adding a Document With a Given Key
	2.2.2 Adding a Document Without a Key

	2.3 Retrieving Documents
	2.3.1 Retrieving a Document Using an ID

	2.4 Deleting Documents
	2.4.1 Deleting a document using an ID

	3 Querying the Database
	3.1
 Executing an XPath query against a collection of XML documents

