Image Loader Framework

Table of contents

L OVEIVIBW. ...ttt et e e e esbe e teeseesaeeaeeeseeebeeseeeseeeseesseemeeaReesseeneeeReeseaneeaseenseaneenreenseensenneensenn
2 V1o = RO
2.1 SEiNG UP the MANBGET........ee et be e e s e e sae e sbe e sbeesnneenseennreens
2.2 Prel0ading @N IMAQE.........coiieieiee ettt sa et e e e s aeesesneesaeebeeneesreesesnnesneenneens
R B 0= o (1 aTo = N1 7= = S
B TIPS & TTICKS. .ttt bbbttt e bbbt b e bt bt e e e e e e e b e nb e benb e bt nneene s
4 Service Provider Interface (SPI, PIUG-INS) ..o
R gt e s = 0T L= PSRRI
4.2 Imageloader and Imagel 0aderFactory ..o
R A 1T= 0 [ 000 01V 4 (= SRS
R T (0] 1011 1[0 o 1SS
5.1 DiSabIiNG SOUMCE RE-USE........c.eiiiiirieiieee ettt bbbttt e et b e b b s
5.2 AdjUSEING PIUG-TN PENAITIES.......oviieiieieieeeee bbb




Image Loader Framework

1. Overview

Apache XML Graphics Commons contains a unified framework for loading and processing images
(bitmap and vector). The package name is or g. apache. xm gr aphi cs. i mage. | oader. Key
features:

« Unified basic API for al supported image types.

« Image"Preloading": It allows automatic detection on the image content type and can extract the
intrinsic size (in pixels and length units) of the image without 1oading the whole image into memory
in most cases. Apache FOP uses this as it only needs the size of the image to do the layout. The
image isonly fully read at the rendering stage.

» Image conversion facility: Images can be converted into different representations depending on the
needs of the consumer.

» Supported formats: All bitmap formats for which there are codecs for the Imagel O API (like JPEG,
PNG, GIF etc.), EPS, EMF. These formats are bundled. Other formats such as SVG and WMF are
available through plug-ins hosted elsewhere.

» Supported in-memory representations:

* Renderedlmage/Bufferedimage

raw/undecoded (JPEG, EPS, CCITT group 3/4)

JavazD (Images painted through Graphics2D)

XML DOM (for SVG, MathML etc.)

Additional representations can be added as necessary.

» Custom image loaders and converters can be dynamically plugged in. Automatic plug-in detection
through the application classpath.
« Animage cache speeds up the processing for images that are requested multiple times.

2. Tutorial

2.1. Setting up the manager

Before we can start to work with the package we need to set up the | nageManager . It provides
convenience methods to load and convert images and holds the image cache.

The | rageManager needs an | mageCont ext . This interface provides the | mrageManager with
important context and configuration data. Currently this is only the source resolution. The
| mmgeManager and | nageCont ext areintended to be shared within an application.

i mport org. apache. xm graphi cs. i mage. | oader . | nageCont ext ;
i mport org. apache. xml gr aphi cs. i mage. | oader . | nrageManager ;
i nport org. apache. xnl gr aphi cs. i mage. | oader . i npl . Def aul t | nageCont ext ;

[..]

| mmgeManager i mageManager = new | mageManager (new Def aul t | mageCont ext () ) ;



http://xmlgraphics.apache.org/fop/

Image Loader Framework

} In this example, Def aul t | mageCont ext isused. You may need to write your own implementation of | mageCont ext for your use case. {

2.2. Preloading an image

In order to load an image, it needs to be "preloaded” firgt, i.e. the image content type is detected and the
intrinsic size of the image is determined. The result of this process is an | magel nf o instance which
contains the URI, MIME type and intrinsic size. In most cases, this is done without loading the whole
image (see SPI section below for information on exceptions to this rule).

Preloading is normally done through the | mageManager's get | magel nf o() method. For this
operation an | nageSessi onCont ext needs to be provided. It is responsible for supplying JAXP
Sour ce objects, URI resolution and providing other information needed for the image operations. In
simple cases you can simply use Def aul t | nageSessi onCont ext , but often you will want to write
your own implementation of | mageSessi onCont ext . In that case, it's recommended to subclass
Abst ract | mageSessi onCont ext which lets you avoid rewriting a lot of code for providing
Sour ce objects.

i nport org.apache. xnl gr aphi cs. i nage. | oader . | magel nf o;
i nport org. apache. xm gr aphi cs. i mage. | oader . | nageSessi onCont ext ;
i mport org. apache. xm graphi cs. i mage. | oader . i npl . Def aul t | nageSessi onCont ext ;

'inageSessioanntext sessi onCont ext = new Def aul t | mageSessi onCont ext (
i mageManager . get | mageContext (), null);

I magel nfo i nfo = i mageManager . get | nagel nfo(uri, sessionContext);

2.3. Loading an image

Once the image is "preloaded”, it can be fully loaded in the form/flavor that is needed by the consuming
application. The required flavor is indicated through the | mageF| avor class. If you want the image as
a bitmap image in memory, you could request an | mageFl avor . RENDERED | MAGE. Again, the
| mmgeSessi onCont ext will be needed.

i mport org.apache. xm graphi cs. i nage. | oader . | nage;
i mport org.apache. xnm graphi cs. i nage. | oader . | nageFl avor ;

[..]
I mage img = this.inmgeManager. get| mage(
i nfo, |nmageFl avor. RENDERED | MAGE, sessi onCont ext);

| mmgeRender ed i mageRend = (| nageRender ed) i ng;
Render edl mage ri = i mageRend. get Render edl mage() ;
[/...and do anything with the Renderedl mage

In this example above, we simply acquire the image as a Renderedlmage instance. If the original image
was a vector graphic image (SVG, WMF etc.), it's automatically converted to a bitmap image. Note: The




Image Loader Framework

resolution of the created image is controlled by the target resolution returned by the
| mrageSessi onCont ext .

Of course, the framework can only provide images in the formats, it has image loaders or image
converters for. An example: It is possible to load EPS images, but they can only be provided in raw
form. In order to provide it as a bitmap image, a PostScript interpreter would be needed to interpret the
PostScript code. This interpreter would be integrated using an | mageConver t er implementation (see
SPI section below). If the requested form of the image cannot be provided you will get an
| mageExcept i on onwhich you'll have to react as needed.

In Apache FOP, each renderer supports a different set of image flavors that can be embedded in the
target format. For example: The PDF renderer can deal with Java2D image, bitmaps, XML, native JPEG
and CCITT images. The PCL renderer, however, can only consume bitmap images. So, if you can
accept more than one flavor, the package allows you to specify al of them in an ordered list (the firstin
the list is the preferred format). The package will then try to return the best representation possible.
Here's a code example:

i mport org.apache. xnm graphi cs. i nage. | oader . | nage;
i mport org.apache. xn graphi cs. i nage. | oader . | nageFl avor ;

final | mageFl avor[] flavors = new | mageFl avor|[]
{1 mageFl avor . GRAPHI CS2D,
| mageF| avor . BUFFERED | MAGE,
| mageFl avor . RENDERED_| MAGE} ;

| mage i mg = manager . get | mage(
i nfo, flavors, sessionContext);

if (ing instanceof |mgeG aphics2D) {
/' handl e Java2D/ Gr aphi cs2D i mage
} else if (ing instanceof |nmageRendered) {
/' handl e Bufferedl nage and Render edl nage
el //(?ufferedl mage i s a subcl ass of Renderedl nage)
el se
) throw new |11 egal St at eExcepti on("Unexpected fl avor");

While each Buf f er edl mage is aso a Render edl nage, it can be more efficient to also specify | mageFl avor . BUFFERED | MAGE in
the flavor array.

3. Tips& Tricks

If you are loading bitmap images and you get an error like "Cannot |oad imge (no
suitable |oader/converter conbination available) for nyimage.tif
(i mage/ tiff),youmaybe be missing the necessary Imagel O codec to decode the image. A number
of well-written codecs can be found in JAI Image I/O Tools Project. Just download the distribution and
add the JAR to the classpath. ImagelO will automatically pick up the new codecs and they will
subsequently be available to the image framework.



http://xmlgraphics.apache.org/fop/
https://jai-imageio.dev.java.net/

Image Loader Framework

4. Service Provider Interface (SPI, Plug-ins)

The whole image framework is designed to be highly extensible. There are various extension points
where new functionality can be added. The three main SPI interfaces are:

« | magePr el oader : detects the content type and preloads an image
« | magelLoader and| mageLoader Fact or y: loads images
« | mageConvert er : convertsimages from one representation into another

If you plan to write an implementation of one of the above interfaces, please also take a look at the
existing implementations for reference.

Throughout the SPI, you'll find a Map parameter (hints) in the most important methods. That's a way to
supply additional information to the implementation by the caller. For example, the source and target
resolutions from the image (session) context is stored in the hints. The implementation should not rely
on the presence of specialized information and should always have sensible defaults to rely on in this
case.

4.1. ImagePr eloader

Thefirst task is identifying whether the implementation supports the given image. If the image is loaded
using an Imagel nputStream it is important to always reset the stream position to the beginning of the file
at the end of the pr el oadl mage() method, because all registered preloaders are check in turn until
one implementation signals that it supports the format. In that case, it has to extract only the minimal
information from the image necessary to identify the image's intrinsic size. For most formats, this is
doable without loading the whole image into memory.

However, for some formats (like MathML or WMF), loading the whole image at preloading time is hard
to avoid since the image's size can only be determined that way. In such a case, the | magePr el oader
implementations shall pass the loaded document to the respective | nageLoader through the custom
objects that can be attached to the | magel nf o object. If the preloader loads the whole document, it
shall close the given Sour ce object (caling | mageUti | . cl oseQui etl y( Source)).

The priority the implementation reports is used to sort al registered implementations. This is to
fine-tune the inner workings and to optimize performance since some formats are usually used more
frequently than others.

Normally, if you implement an | nagePrel oader you will aso need to implement the respective
| mageLoader /| mageLoader Fact ory, or vice versa

4.2. Imagel oader and | magel oader Factory

The factory interface has been created to allow checking if some library that an implementation depends
on is redly in the classpath so it can report back that the | magelLoader is not funtional. The factory
also reports what kind of image formats it supports and which image flavors it can return. There can be a




Image Loader Framework

complex relationship between the two. It is recommmended, however, to write smaller implementations
rather than big, almighty ones.

The usage penalty is used when constructing image conversion pipelines. There can be multiple ways to
provide an image in one of the supported flavors and this value hel ps to make the best decision.

While the factory basically just provides information and creates new | magelLoader instances, the
image loaders are doing the actual leg work of decoding the images. The image flavor returned by the
loader must match the flavor that isreturned by get Tar get Fl avor () .

4.3. ImageConverter

The image converter is responsible to transform one image representation into another. Bundled
implementations support these conversions: Java2D to bitmap, bitmap to Java2D and Renderedimage to
"raw" PNG. Ideas for additional image converters could be: PDF to Java2D, EPS to Java2D or MathML
to SVG or JavaZD.

Each ImageConverter comes with a usage penalty which is used when constructing conversion pipelines
so the pipeline with the least penalty value can be chosen. This is necessary as the consuming
application my support multiple image flavors and there can be multiple ways to convert an image in
one of the requested image flavors. Internally, Dijkstra's shortest path algorithm is used to find the best
path using the penalties as "way lengths".

5. Customization

5.1. Disabling Sour ce Re-use

By default, the Source object being used during the pre-loading stage is re-used when the image is fully
loaded later (assuming an  ImageSessionContext is used that descends from
AbstractlmageSessionContext). That means that a stream is only opened once and the image loading
framework tries to re-wind the stream when it has to re-read portions of the stream when loading the
complete image.

In some situations, this behavior may be undesired. Therefore, it can be disabled through a system
property

(or g. apache. xm gr aphi cs. i mage. | oader. i npl . Abstract| nageSessi onCont ext . no- sot
Set it to "true" and that feature will be disabled.

5.2. Adjusting plug-in penalties

Every image loader plug-in has a hard-coded usage penalty that influences which solution is chosen if
there are multiple possibilities to load an image. Sometimes, though, these penalties need to be tweaked.
The | magel npl Regi stry (reachable through | mageManager. get Regi stry()) supports
storing additional penalty values. An example:

| magel npl Regi stry registry = i nageManager . get Regi stry();



http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Image Loader Framework

regi stry. set Addi ti onal Penal t y(

"org. apache. xm gr aphi cs. | nage. | oader . i npl . | mageLoader RawCCl TTFax",

Penal ty. t oPenal t y(10000) ) ;
This increases the penalty for the raw CCITT loader significantly so it will only be used if no other
solutions exist. You can aso set Penal ty. | NFI NI TE_PENALTY to disable the plug-in altogether.
Negative penalties are possible to promote a plug-in but a negative penalty sum will be treated as zero
penalty in most cases.




	1 Overview
	2 Tutorial
	2.1 Setting up the manager
	2.2 Preloading an image
	2.3 Loading an image

	3 Tips & Tricks
	4 Service Provider Interface (SPI, Plug-ins)
	4.1 ImagePreloader
	4.2 ImageLoader and ImageLoaderFactory
	4.3 ImageConverter

	5 Customization
	5.1 Disabling Source Re-use
	5.2 Adjusting plug-in penalties


