
Apache FOP Output Formats

$Revision: 393470 $

by Keiron Liddle, Art Welch

Table of contents

1 General Information...2

1.1 Fonts.. 2

1.2 Output to a Printer or Other Device.. 2

2 PDF.. 2

2.1 Fonts.. 3

2.2 Post-processing..3

2.3 Watermarks..4

3 PostScript... 4

3.1 Limitations...5

4 RTF.. 5

5 XML (Area Tree XML)... 5

6 Java2D/AWT... 5

7 Print..5

8 Bitmap (TIFF/PNG)...6

9 TXT..6

10 Output Formats in the Sandbox..6

10.1 PCL.. 7

10.2 MIF.. 7

10.3 SVG... 7

11 Wish list..7

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

FOP supports multiple output formats by using a different renderer for each format. The
renderers do not all have the same set of capabilities, sometimes because of the output format
itself, sometimes because some renderers get more development attention than others.

1. General Information

1.1. Fonts

Most FOP renderers use a FOP-specific system for font registration. However, the Java2D/AWT
and print renderers use the Java AWT package, which gets its font information from the
operating system registration. This can result in several differences, including actually using
different fonts, and having different font metrics for the same font. The net effect is that the
layout of a given FO document can be quite different between renderers that do not use the same
font information.

1.2. Output to a Printer or Other Device

The most obvious way to print your document is to use the FOP print renderer, which uses the
Java2D API (AWT). However, you can also send output from the Postscript renderer directly to
a Postscript device, or output from the PCL renderer directly to a PCL device.

Here are Windows command-line examples for Postscript and PCL:
fop ... -ps \\computername\printer
fop ... -pcl \\computername\printer

Here is some Java code to accomplish the task in UNIX:
proc = Runtime.getRuntime().exec("lp -d" + print_queue + " -o -dp -");
out = proc.getOutputStream();

Set the output MIME type to "application/x-pcl" (MimeConstants.MIME_PCL) and it happily
sends the PCL to the UNIX printer queue.

2. PDF

PDF is the best supported output format. It is also the most accurate with text and layout. This
creates a PDF document that is streamed out as each page is rendered. This means that the
internal page index information is stored near the end of the document. The PDF version
supported is 1.4. PDF versions are forwards/backwards compatible.

Note that FOP does not currently support "tagged PDF", PDF/X or PDF/A-1a. Support for

Apache FOP Output Formats

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

PDF/A-1b has recently been added, however.

2.1. Fonts

PDF has a set of fonts that are always available to all PDF viewers; to quote from the PDF
Specification: "PDF prescribes a set of 14 standard fonts that can be used without prior
definition. These include four faces each of three Latin text typefaces (Courier, Helvetica, and
Times), as well as two symbolic fonts (Symbol and ITC Zapf Dingbats). These fonts, or suitable
substitute fonts with the same metrics, are guaranteed to be available in all PDF viewer
applications."

2.2. Post-processing

FOP does not currently support several desirable PDF features: XMP metadata and watermarks.
One workaround is to use Adobe Acrobat (the full version, not the Reader) to process the file
manually or with scripting that it supports.

Another popular post-processing tool is iText, which has tools for adding security features,
document properties, watermarks, and many other features to PDF files.

Warning:
Caveat: iText may swallow PDF bookmarks. But Jens Stavnstrup tells us that this doesn't happen if you use iText's PDFStamper.

Here is some sample code that uses iText to encrypt a FOP-generated PDF. (Note that FOP now
supports PDF encryption. However the principles for using iText for other PDF features are
similar.)
public static void main(String args[]) {
try {
ByteArrayOutputStream fopout = new ByteArrayOutputStream();
FileOutputStream outfile = new FileOutputStream(args[2]);
FopFactory fopFactory = FopFactory.newInstance();
Fop fop = fopFactory.newFop(MimeConstants.MIME_PDF, fopout);

Transformer transformer = TransformerFactory.newInstance().newTransformer(
new StreamSource(new File(args[1])));

transformer.transform(new StreamSource(new File(args[0])),
new SAXResult(fop.getDefaultHandler()));

PdfReader reader = new PdfReader(fopout.toByteArray());
int n = reader.getNumberOfPages();
Document document = new Document(reader.getPageSizeWithRotation(1));
PdfWriter writer = PdfWriter.getInstance(document, outfile);
writer.setEncryption(PdfWriter.STRENGTH40BITS, "pdf", null,
PdfWriter.AllowCopy);

document.open();

Apache FOP Output Formats

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

pdfa.html
http://www.lowagie.com/iText
http://issues.apache.org/bugzilla/show_bug.cgi?id=37589
pdfencryption.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

PdfContentByte cb = writer.getDirectContent();
PdfImportedPage page;
int rotation;
int i = 0;
while (i < n) {
i++;
document.setPageSize(reader.getPageSizeWithRotation(i));
document.newPage();
page = writer.getImportedPage(reader, i);
rotation = reader.getPageRotation(i);
if (rotation == 90 || rotation == 270) {
cb.addTemplate(page, 0, -1f, 1f, 0, 0,
reader.getPageSizeWithRotation(i).height());

} else {
cb.addTemplate(page, 1f, 0, 0, 1f, 0, 0);

}
System.out.println("Processed page " + i);

}
document.close();

} catch(Exception e) {
e.printStackTrace();

}
}

Check the iText tutorial and documentation for setting access flags, password, encryption
strength and other parameters.

2.3. Watermarks

In addition to the PDF Post-processing options, consider the following workarounds:

• Use a background image for the body region.
• (submitted by Trevor Campbell) Place an image in a region that overlaps the flowing text.

For example, make region-before large enough to contain your image. Then include a block
(if necessary, use an absolutely positioned block-container) containing the watermark image
in the static-content for the region-before. Note that the image will be drawn on top of the
normal content.

3. PostScript

The PostScript renderer has been brought up to a similar quality as the PDF renderer, but may
still be missing certain features. It provides good support for most text and layout. Images and
SVG are not fully supported, yet. Currently, the PostScript renderer generates PostScript Level 3
with most DSC comments. Actually, the only Level 3 feature used is FlateDecode, everything
else is Level 2.

Apache FOP Output Formats

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

3.1. Limitations

• Images and SVG may not be displayed correctly. SVG support is far from being complete.
No image transparency is available.

• Only Type 1 fonts are supported.
• Multibyte characters are not supported.
• PPD support is still missing.

4. RTF

JFOR, an open source XSL-FO to RTF converter has been integrated into Apache FOP. This will
create an RTF (rich text format) document that will attempt to contain as much information from
the fo document as possible. The RTF output follows Microsoft's RTF specifications and
produces best results on Microsoft Word.

5. XML (Area Tree XML)

This is primarily for testing and verification. The XML created is simply a representation of the
internal area tree put into XML. We use that to verify the functionality of FOP's layout engine.

The other use case of the Area Tree XML is as FOP's "intermediate format". More information
on that can be found on the page dedicated to the Intermediate Format.

6. Java2D/AWT

Warning:
The Java2D/AWT, Print and Bitmap renderers may not yet fully work as expected. There are some known bugs and missing
features.

The AWT viewer shows a window with the pages displayed inside a Java graphic. It displays
one page at a time. The fonts used for the formatting and viewing depend on the fonts available
to your JRE.

7. Print

It is possible to directly print the document from the command line. This is done with the same

Apache FOP Output Formats

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

intermediate.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

code that renders to the Java2D/AWT renderer.

8. Bitmap (TIFF/PNG)

It is possible to directly create bitmap images from the individual pages generated by the layout
engine. This is done with the same code that renders to the Java2D/AWT renderer.

Currently, two output formats are supported: PNG and TIFF. TIFF produces one file with
multiple pages, while PNG output produces one file per page. The quality of the bitmap depends
on the resolution setting on the FOUserAgent.

9. TXT

The text renderer produces plain ASCII text output that attempts to match the output of the
PDFRenderer as closely as possible. This was originally developed to accommodate an archive
system that could only accept plain text files, and is primarily useful for getting a quick-and-dirty
view of the document text. The renderer is very limited, so do not be surprised if it gives
unsatisfactory results.

The Text renderer works with a fixed size page buffer. The size of this buffer is controlled with
the textCPI and textLPI public variables. The textCPI is the effective horizontal characters per
inch to use. The textLPI is the vertical lines per inch to use. From these values and the page
width and height the size of the buffer is calculated. The formatting objects to be rendered are
then mapped to this grid. Graphic elements (lines, borders, etc) are assigned a lower priority than
text, so text will overwrite any graphic element representations.

Because FOP lays the text onto a grid during layout, there are frequently extra or missing spaces
between characters and lines, which is generally unsatisfactory. Users have reported that the
optimal settings to avoid such spacing problems are:

• font-family="Courier"
• font-size="7.3pt"
• line-height="10.5pt"

10. Output Formats in the Sandbox

Due to the state of certain renderers we moved some of them to a "sandbox" area until they are
ready for more serious use. The renderers and FOEventHandlers in the sandbox can be found
under src/sandbox and are compiled into build/fop-sandbox.jar during the main build. The output

Apache FOP Output Formats

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

formats in the sandbox are marked as such below.

10.1. PCL

Warning:
The PCL Renderer is in the sandbox and not yet functional in FOP Trunk!!! Please help us ressurrect this feature.

This format is for the Hewlett-Packard PCL printers. It should produce output as close to
identical as possible to the printed output of the PDFRenderer within the limitations of the
renderer, and output device.

10.2. MIF

Warning:
The MIF handler is in the sandbox and not yet functional in FOP Trunk!!! Please help us ressurrect this feature.

This format is the Maker Interchange Format which is used by Adobe Framemaker.

10.3. SVG

Warning:
The SVG renderer is in the sandbox and may not work as expected in FOP Trunk!!! Please help us improve this feature.

This format creates an SVG document that has links between the pages. This is primarily for
slides and creating svg images of pages. Large documents will create SVG files that are far too
large for an SVG viewer to handle. Since FO documents usually have text the SVG document
will have a large number of text elements. The font information for the text is obtained from the
JVM in the same way as for the AWT viewer. If the SVG is viewed on a system where the fonts
are different, such as another platform, then the page may look wrong.

11. Wish list

Apache FOP is easily extensible and allows you to add new output formats to enhance FOP's
functionality. There's a number of output formats which are on our wish list. We're looking for
volunteers to help us implement them.

• AFP (Advanced Function Presentation): The renderer has already been built and is in the

Apache FOP Output Formats

Page 7
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://en.wikipedia.org/wiki/Advanced_Function_Presentation
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

process of being brought into the Apache FOP codebase.
• ODF (Open Document Format): The standardized successor to OpenOffice's file format.

Apache FOP Output Formats

Page 8
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://en.wikipedia.org/wiki/OpenDocument
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 General Information
	1.1 Fonts
	1.2 Output to a Printer or Other Device

	2 PDF
	2.1 Fonts
	2.2 Post-processing
	2.3 Watermarks

	3 PostScript
	3.1 Limitations

	4 RTF
	5 XML (Area Tree XML)
	6 Java2D/AWT
	7 Print
	8 Bitmap (TIFF/PNG)
	9 TXT
	10 Output Formats in the Sandbox
	10.1 PCL
	10.2 MIF
	10.3 SVG

	11 Wish list

