
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

FOP Development: Implementation
Overview

Following a Document Through FOP
Version 627324

by Arved Sandstrom

Table of contents

1 Overview.. 2

2 Startup...2

3 Formatting Object Tree..2

4 Layout...3

5 Area Tree..3

6 Rendering..3

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

FOP Development: Implementation Overview

2PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

The purpose of this document is to tie together the FOP design (interface) with some of the key points
where control is passed within FOP (implementation), so that developers can quickly find the section of
code that is relevant to their needs. The process described is for a "typical" command-line document. All
classes are in org.apache.fop unless otherwise designated.

1 Overview

The input FO document is sent to the FO tree builder via SAX events. Fragments of an FO Tree are built
from this process. As each page-sequence element is completed, it is passed to a layout processor, which
in turn converts it into an Area Tree. The Area Tree is then given to the Renderer, which converts it into a
stream of data containing the output document. The sections below will provide additional details. Where
needed differences between the trunk and maintenance branches are shown in tabular format.

2 Startup

• The job starts in apps.Fop.main().
• Control is passed to apps.CommandLineStarter.run().
• Control is passed to apps.Driver.render(). This class fires up a SAX parser, the events from which

indirectly control the remaining processing, including building the FO Tree, building the Area Tree,
rendering, output and logging.

3 Formatting Object Tree

Trunk Maintenance

The SAX events that the parser creates are handled by fo.FOTreeBuilder, which uses startElement(), endElement(),
and characters() methods to build the FO Tree.

fo.FOTreeBuilder.endElement() runs the
end() method for each node as
it is created. The fo.pagination.PageSequence
class overrides this end() method to
run apps.LayoutHandler.endPageSequence(),
which in turn runs
fo.pagination.PageSequence.format().

the end of a PageSequence element causes
the PageSequence object to be passed to
apps.StreamRenderer.render(), which in turn runs
fo.pagination.PageSequence.format().

fo.pagination.PageSequence.format() creates
a layoutmgr.PageLayoutManager, passing the AreaTree and
PageSequence objects to it, then calls its run() method.

fo.pagination.PageSequence.addFlow()
programatically adds a Flow object to the page sequence.

. fo.pagination.PageSequence.makePage()
creates a BodyArea and passes it to fo.Flow.layout

. the layout process is then driven from
fo.pagination.PageSequence.format().

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

FOP Development: Implementation Overview

3PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

4 Layout

There are layout managers for each type of layout decision. They take an FO Tree as input and build a
laid-out Area Tree from it. The layout process involves finding out where line breaks and page breaks
should be made, then creating the areas on the page. Static areas can then be added for any static regions.
As pages are completed, they are added to the Area Tree.

5 Area Tree

The area tree is a data structure designed to hold the page areas. These pages are then filled with the page
regions and various areas. The area tree is used primarily as a minimal structure that can be rendered by
the renderers.

The area tree is supported by an area tree model. This model handles the adding of pages to the area tree. It
also handles page sequence starts, document level extensions, id references and unresolved id areas. This
model allows the pages to be handled directly by a renderer or to store the pages for later use.

6 Rendering

The renderer receives pages from the area tree and renders those pages. If a renderer supports out of order
rendering then it will either render or prepare a page in the correct order. Otherwise the pages are rendered
in order. The task of the renderer is to take the pages and output them to the requested type. In the case
of the AWTRenderer it needs to be able to view any page.

When rendering a page it takes the page and renders each page region. The main work for a renderer
implementation is to handle the viewports and inline areas. The inline areas need to be drawn on the page
in the correct place.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	Table of contents
	1 Overview
	2 Startup
	3 Formatting Object Tree
	4 Layout
	5 Area Tree
	6 Rendering

